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The metastasis suppressor, N-Myc downstream-regulated
gene-1 (NDRG1) inhibits a plethora of oncogenic signaling
pathways by down-regulating the epidermal growth factor
receptor (EGFR). Herein, we examined the mechanism involved
in NDRG1-mediated EGFR down-regulation. NDRG1 overex-
pression potently increased the levels of mitogen-inducible gene
6 (MIG6), which inhibits EGFR and facilitates its lysosomal pro-
cessing and degradation. Conversely, silencing NDRG1 in mul-
tiple human cancer cell types decreased MIG6 expression, dem-
onstrating the regulatory role of NDRG1. Further, NDRG1
overexpression facilitated MIG6 –EGFR association in the
cytoplasm, possibly explaining the significantly (p <0.001)
increased half-life of MIG6 from 1.6 � 0.2 h under control con-
ditions to 7.9 � 0.4 h after NDRG1 overexpression. The
increased MIG6 levels enhanced EGFR co-localization with the
late endosome/lysosomal marker, lysosomal-associated mem-
brane protein 2 (LAMP2). An increase in EGFR levels after
MIG6 silencing was particularly apparent when NDRG1 was
overexpressed, suggesting a role for MIG6 in NDRG1-mediated
down-regulation of EGFR. Silencing phosphatase and tensin ho-
molog (PTEN), which facilitates early to late endosome matura-
tion, decreased MIG6, and also increased EGFR levels in both
the presence and absence of NDRG1 overexpression. These
results suggest a role for PTEN in regulating MIG6 expression.
Anti-tumor drugs of the di-2-pyridylketone thiosemicarbazone
class that activate NDRG1 expression also potently increased
MIG6 and induced its cytosolic co-localization with NDRG1.
This was accompanied by a decrease in activated and total EGFR
levels and its redistribution to late endosomes/lysosomes. In

conclusion, NDRG1 promotes EGFR down-regulation through
the EGFR inhibitor MIG6, which leads to late endosomal/lyso-
somal processing of EGFR.

N-Myc downstream regulated gene 1 (NDRG1)4 is a potent
metastasis suppressor in many tumor cell types, including pan-
creatic (1, 2), breast (3), prostate (4), and colonic cancer (5). The
NDRG1 gene is found on chromosome 8q24.3 (6), which
encodes a 394 –amino acid protein of the NDRG1 family that
includes four members, NDRG1– 4 (7–9). Considering this
family of proteins, NDRG1 is unique in that it has three tandem
(GTRSRSHTSE) repeat sequences near its C terminus end (9).
The NDRG1 protein can be induced by stress stimuli, including
cellular iron depletion and hypoxia through hypoxia-inducible
factor-1� (HIF-1�)– dependent and –independent mecha-
nisms (10, 11).

The surprisingly broad and promiscuous anti-tumor activity
of NDRG1 includes its ability to inhibit oncogenic PI3K/AKT
(12, 13), ERK (13), RAS (12), TGF-� (13, 14), WNT (15, 16), Src
(17), ROCK/pMLC2 (18), and NF-�B (19) signaling. Studies
from our laboratory recently indicate that the ability of NDRG1
to inhibit these pathways is because of its ability to down-reg-
ulate the epidermal growth factor receptor (EGFR) (20, 21) that
plays a role as a master regulator of diverse downstream signal-
ing pathways. However, the exact mechanism(s) involved in
terms of the interaction between EGFR and NDRG1 remain
unclear. The anti-oncogenic effector function of NDRG1 has
been convincingly documented in vitro (14, 21) and in vivo (4,
16), making this molecule an important therapeutic target (10,
16, 22).

The EGFR is a membrane-bound tyrosine kinase that plays a
key role in critical cellular programs, including survival, prolif-
eration, and metastasis, with spurious EGFR activation being
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involved in cellular transformation (23). EGFR activation is pre-
vented by self-inhibitory constraints imposed on the extracel-
lular ligand– binding domain (24) and its intracellular catalytic
domain (25). These constraints are liberated by epidermal
growth factor (EGF) binding that drives dimerization, allosteric
activation of the kinase, EGFR autophosphorylation and down-
stream signaling (24, 26). Interestingly, EGFR signaling is neg-
atively controlled by 1) multiple inducible inhibitors (27, 28)
and 2) receptor-mediated endocytosis, leading to its internal-
ization and degradation by the lysosomal compartment (29).

The mitogen-inducible gene 6 (MIG6), also known as the
receptor-associated late transducer (RALT), or ERBB receptor
feedback inhibitor 1 (ERRFI), is a transcriptionally induced
EGFR inhibitor that is also a tumor suppressor (30, 31). MIG6 is
a cytoplasmic protein (32) that binds to the EGFR dimer inter-
face, preventing the formation of asymmetric catalytic dimers,
locking it into a catalytically inactive conformation (26). Signif-
icantly, MIG6 can also induce internalization and degradation
of EGFR via a lysosomal mechanism, which integrates its ability
to act to inhibit EGFR catalytic activity and down-regulate its
levels (33).

A recently described group of anti-cancer agents of the di-2-
pyridylketone thiosemicarbazone (DpT) class potently inhibit
tumor growth and metastasis at least in part by their ability to
up-regulate NDRG1 through a mechanism involving intracel-
lular iron binding (10, 16, 22, 34 –37). The first lead agent of this
class of agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemi-
carbazone (Dp44mT), leads to the marked up-regulation of
NDRG1 in many tumor cell types (10, 35). An analog of
Dp44mT, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-
3-thiosemicarbazone (DpC) (36), also potently up-regulates
NDRG1 (35). This agent possesses marked anti-tumor activity
against a variety of belligerent tumors in vitro and in vivo (35,
36, 38, 39) and has entered Phase I clinical trials for the treat-
ment of advanced and resistant cancer (40). Of interest, agents
that bind intracellular iron, such as desferrioxamine (DFO), can
also up-regulate MIG6 (41), which could be mediated through
an iron-responsive increase in HIF-1� levels, which is known to
transcriptionally up-regulate MIG6 (42).

Herein, we demonstrate that the mechanism involved in
EGFR down-regulation mediated by NDRG1 occurs through it
potently increasing MIG6 levels, which both directly inhibits
EGFR and facilitates its lysosomal degradation. NDRG1 was
shown to increase EGFR internalization and co-localization
with the late endosome/lysosomal marker, lysosome-associ-
ated membrane protein 2 (LAMP2). Moreover, MIG6 and
NDRG1 were demonstrated to be associated and co-localized
in the cytoplasm with NDRG1 overexpression increasing MIG6
half-life. Increased EGFR levels after MIG6 silencing was par-
ticularly apparent with NDRG1 overexpression, suggesting a
role for MIG6 in the NDRG1-mediated down-regulation of
EGFR. As an innovative therapeutic targeting strategy, novel
anti-cancer drugs of the DpT class that up-regulate NDRG1
expression (10, 35) increased MIG6 and induced its co-localiza-
tion with NDRG1 in the cytoplasm. This led to a decrease in
activated and total EGFR levels as well as the redistribution of
EGFR to LAMP2-stained late endosomes/lysosomes. In con-
clusion, NDRG1 promotes MIG6-mediated EGFR down-regu-

lation by lysosomal processing, and this could be important for
understanding the broad ability of NDRG1 expression to
inhibit a plethora of oncogenic signaling pathways.

Results

NDRG1 overexpression up-regulates MIG6 and decreases
EGFR total levels and EGFR phosphorylation at Tyr-1068

Our laboratory previously demonstrated that NDRG1 inhib-
ited a plethora of oncogenic signaling pathways by down-regu-
lating a key upstream regulator, EGFR (21). The aim of the
current study was to dissect the mechanism by which NDRG1
decreased EGFR expression. Therefore, considering the inte-
gral role of MIG6 in this process (33), it was deemed important
to investigate the potential effect of NDRG1 on MIG6 expres-
sion and its ability to down-regulate EGFR.

Initially, PANC-1 vector control (VC) cells and cells stably
transfected to overexpress NDRG1 (Fig. 1A; N1) were used as
they have been well-characterized in our laboratory regarding
the ability of NDRG1 to inhibit multiple oncogenic signaling
pathways (12) by down-regulating EGFR (21). First, PANC-1
VC and N1 cells were incubated in the presence and absence of
the ligand EGF (10 ng/ml) for 2, 5, and 10 min (Fig. 1A). Exam-
ining NDRG1 expression in VC cells, two endogenous NDRG1
bands were apparent at 41 and 46 kDa that did not significantly
alter upon incubation with EGF relative to the control. The
densitometry of NDRG1 shown in Fig. 1A represents the total
of all bands. These bands are consistent with the different iso-
forms of NDRG1 reported previously that may be the result of
NDRG1 processing, cleavage, or differential phosphorylation
(43, 44). The overexpression of NDRG1 in the N1 clone resulted
in a third exogenous band at 48 kDa that was above the endog-
enous 41- and 46-kDa bands (Fig. 1A), which corresponds to
NDRG1 with its FLAG-tag (12). The expression of total
NDRG1 in the N1 clone was significantly (p �0.001) greater
than that of VC cells at all incubation times (Fig. 1A).

Total EGFR levels in PANC-1 VC cells were slightly
decreased by the addition of EGF as a function of incubation
time relative to the control (Fig. 1A). Overexpression of
NDRG1 in control PANC-1 N1 cells resulted in a significant (p
�0.01) decrease in EGFR compared with the VC control. This
decrease in EGFR expression in N1 cells relative to its VC coun-
terparts became more apparent as a function of incubation time
with EGF, in agreement with our previous studies (21). In con-
trast, EGFR mRNA levels were not affected by NDRG1 overex-
pression in the absence and presence of EGF, as demonstrated
using two different NDRG1-overexpressing clones, namely N1
and N2 cells (Fig. S1B). Relative to the effect observed with
NDRG1 overexpression, silencing this molecule resulted in
up-regulation of EGFR in PANC-1 cells (Fig. S1C), as we also
demonstrated in CFPAC-1 cells (21). Furthermore, silencing
NDRG1 in HT-29 colon cancer cells also resulted in a similar
up-regulation of EGFR (Fig. S1C).

In terms of the effect of NDRG1 expression on EGFR activa-
tion, treatment of VC cells with EGF caused pronounced and
significant (p �0.001) increase in pEGFR levels at Tyr-1068 at
incubations from 2 to 10 min relative to the 0 min time point
(Fig. 1A). Of note, the pEGFR phosphorylation at Tyr-1068 has
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been demonstrated to activate the Ras/mitogen activated pro-
tein kinase signaling pathway, which is implicated in uncon-
trolled cancer growth (45).

The pEGFR (Tyr-1068) levels were also significantly (p
�0.001– 0.01) increased in N1 cells upon incubation with EGF
relative to the 0 min control time point (Fig. 1A). This was

Figure 1. A and B, NDRG1 overexpression enhances MIG6 levels (A), with this effect being reversed (B) when NDRG1 is silenced. C, NDRG1’s effect on the
decreasing activated EGFR and up-regulating MIG6 is reversed in the presence of the lysosomotropic agents NH4Cl and CH3NH2. PANC-1 vector control (VC)
and NDRG1-overexpressing (N1) cells were (A) incubated in the presence and absence of the ligand EGF (10 ng/ml) for 2, 5, and 10 min at 37 °C, and (C) with
NH4Cl and CH3NH2, and in combination with EGF in the last 10 min of treatment at 37 °C. B, PANC-1, CFPAC-1, and AsPC-1 VC cells were transiently transfected
with NDRG1 siRNA (siNDRG1) or nonspecific control siRNA (siControl) under the conditions described in “Materials and Methods.” Total cell protein was
extracted and electrophoresed on a 10% SDS-PAGE gel followed by Western blot analysis to detect (A) and (C) NDRG1, EGFR, pEGFR (Tyr-1068), and MIG6
expression, and (B) NDRG1 and MIG6 expression. �-actin was used as a protein-loading control. Results are mean � S.D. (n � 3). A and C, *, p �0.05; **, p �0.01;
***, p �0.001 denotes statistical significance comparing NDRG1 overexpressing cells relative to VC cells. #, p �0.05; ##, p �0.01; ###, p �0.001 denote statistical
significance comparing the cells to their respective control within VC or N1 cells. ∧, p �0.05; ∧∧, p �0.01; ∧∧∧, p �0.001 denote statistical significance
comparing the control cells to EGF-treated cells. B, *, p �0.05; **, p �0.01; ***, p �0.001 denotes statistical significance comparing siControl cells relative to
siNDRG1 cells.

NDRG1 up-regulates MIG6 to inhibit EGFR expression

J. Biol. Chem. (2019) 294(11) 4045–4064 4047



significantly (p �0.01– 0.05) less marked relative to that
observed in VC cells at all time points. In addition, the ratio of
pEGFR to total EGFR was markedly and significantly (p �0.01)
increased with increasing EGF incubation time relative to the 0
min control for both VC and N1 cells (Fig. 1A). However, there was
no (p �0.05) significant difference in these ratios at each incuba-
tion time when comparing VC to N1 cells. This is in agreement
with our previous investigation (21), whereby NDRG1 was able to
decrease pEGFR by reducing total EGFR levels, rather than specif-
ically decreasing EGFR phosphorylation.

Examining MIG6 expression in VC cells, incubation with
EGF had no significant (p �0.05) effect relative to the control
(Fig. 1A). Interestingly, NDRG1 expression in N1 cells resulted
in significantly (p �0.01– 0.05) higher levels of MIG6 relative to
the VC at all time points, with EGF having no appreciable effect
relative to the 0 min control. Examination of mRNA levels of
NDRG1 and MIG6, demonstrated that in contrast to the
marked up-regulation of NDRG1 mRNA in N1 cells relative to
VC cells, there was no significant (p �0.05) alteration in MIG6
mRNA levels in the N1 cell type (Fig. S1D). This observation
suggests that the effect of NDRG1 on MIG6 was mediated
by posttranscriptional regulation. Collectively, the ability of
NDRG1 to down-regulate EGFR and decrease pEGFR (Tyr-
1068) could be because of its effect on up-regulating protein
levels of the EGFR inhibitor MIG6.

To confirm the role of NDRG1 in regulating MIG6 protein
levels (Fig. 1A), the effect of NDRG1 silencing (siNDRG1) rela-
tive to its negative control siRNA (siControl) was assessed in
three different pancreatic cancer cell lines, namely PANC-1,
CFPAC-1, and AsPC-1 (Fig. 1B). In all cell types, effective
NDRG1 silencing was observed, resulting in marked and signif-
icant (p �0.001) down-regulation of the NDRG1 46-kDa band,
but not the 41-kDa band (Fig. 1B). This is in good agreement
with previous studies (12, 14, 43), and indicates the presence of
NDRG1 isoforms, with the lower band being consistent with a
long-lived cleaved isoform (43, 44). The upper NDRG1 band
has been suggested to be the active form of the protein for
metastasis suppression, as it is potently up-regulated by drugs
that inhibit tumor growth and block metastasis (16, 35, 43).
Moreover, silencing of the top NDRG1 band prevents the abil-
ity of NDRG1 to act on downstream effectors (e.g. E-cadherin
and �-catenin) (14) involved in preventing the epithelial mes-
enchymal transition and metastasis. The down-regulation of
the upper NDRG1 band by siRNA is important to achieve
experimentally in terms of preventing its downstream anti-on-
cogenic functions. In fact, silencing NDRG1 resulted in a signif-
icant (p �0.001– 0.05) decrease in MIG6 expression in all three
cell types (Fig. 1B). An additional siRNA of NDRG1 was also
examined in PANC-1 cells, resulting in a marked decrease in
MIG6 expression relative to the control (Fig. S1E). Hence, the
regulation of MIG6 occurs through the differential expression
of NDRG1.

Lysosomotropic agents that prevent lysosomal acidification
perturb pEGFR (Tyr-1068) and MIG6 levels

It has been established that a major process by which EGFR
undergoes degradation is through trafficking to lysosomes (29,
33, 46, 47). Considering this, it was important to investigate

whether NDRG1 promoted EGFR processing through this
mechanism. In these studies, PANC-1 cells were treated in the
absence and presence of the well-characterized lysosomotropic
agents ammonium chloride (NH4Cl; 15 mM) or methylamine
(CH3NH2; 15 mM) that inhibit lysosomal acidification and func-
tion (48) for 24 h/37 °C, followed by treatment with EGF (10
ng/ml) for the last 10 min/37 °C of the incubation (Fig. 1C).

For VC or N1 cells, incubation with NH4Cl or CH3NH2 in the
presence or absence of EGF had no significant (p �0.05) effect
on NDRG1 expression relative to the control. However, as
observed for Fig. 1A, N1 cells had significantly (p �0.001– 0.01)
higher levels of NDRG1 compared with VC cells (Fig. 1C).
Examining total EGFR expression, in VC cells, NH4Cl or
CH3NH2 had no significant (p �0.05) effect in the presence or
absence of EGF. Under all incubation conditions in N1 cells,
EGFR expression was significantly (p �0.05) decreased in the
presence and absence of EGF. Treatment of N1 cells with
NH4Cl or CH3NH2 had no significant (p �0.05) effect on EGFR
levels in the presence of EGF relative to the N1 control without
EGF (Fig. 1C).

When assessing the levels of pEGFR (Tyr-1068) in VC cells,
the addition of EGF to VC cells caused a significant (p �0.001–
0.05) increase in the levels pEGFR at Tyr-1068 relative to the
control under all conditions (Fig. 1C), which is expected in this
cell type (21). This response was markedly enhanced when EGF
was added to VC cells incubated with NH4Cl or CH3NH2, there
being a pronounced and significant (p �0.01– 0.05) increase in
pEGFR (Tyr-1068) relative to the VC control (Fig. 1C). The
increase in pEGFR (Tyr-1068) levels after incubation with these
lysosomotropic agents is probably because of inhibition of the
degradation of the phosphorylated receptor, as demonstrated
for these agents by others (49). However, examining N1 cells,
pEGFR (Tyr-1068) levels were lower under all conditions rela-
tive to their VC counterparts (Fig. 1C). Upon incubation of N1
cells with EGF, there was a significant (p �0.001– 0.05) increase
in pEGFR (Tyr-1068) under all conditions relative to N1 cells in
the absence of EGF. As observed for VC cells, incubation of N1
cells with NH4Cl or CH3NH2 significantly (p �0.05) increased
pEGFR (Tyr-1068) in the presence of EGF relative to the EGF
control (Fig. 1C). Again, this could be because of the inhibited
degradation of the phosphorylated receptor by these agents
leading to higher levels (49).

Furthermore, the ratios of pEGFR/EGFR were calculated in
both VC and N1 cells with and without treatment with NH4Cl
or CH3NH2 (Fig. 1C). It was demonstrated that in the absence
of EGF, there was a slight increase in the pEGFR/EGFR ratio
upon incubation of VC cells with the lysosomotropic agents.
Upon the addition of EGF to VC cells, the pEGFR/EGFR ratio
was increased compared with their untreated counterparts (Fig.
1C). Further, the addition of lysosomotropic agents to VC cells
in the presence of EGF caused a marked and significant (p
�0.05) increase in the ratio relative to the EGF-treated control.
Similar to VC cells, the effect of the lysosomotropic agents in
the presence of EGF caused a significant (p �0.05) increase in
the pEGFR/EGFR ratio relative to the control in N1 cells (Fig.
1C). These results demonstrate that inhibiting lysosomal deg-
radation increases pEGFR, which is able to accumulate because
of its inability to be degraded via the lysosome.
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Examination of MIG6 levels demonstrated that VC cells
incubated without or with lysosomotropic agents in the
absence or presence of EGF were not significantly (p �0.05)
altered relative to the controls (Fig. 1C). On the other hand, in
N1 cells in the absence of EGF, MIG6 levels were significantly (p
�0.001– 0.01) enhanced by NDRG1 under all conditions rela-
tive to the respective VC controls. Although NH4Cl and
CH3NH2 had no significant effect on MIG6 expression in the
absence of EGF, these agents significantly (p �0.01– 0.05)
decreased MIG6 in the presence of EGF in N1 cells (Fig. 1C).
Together, these data indicate that the lysosomotropic agents
are perturbing pEGFR (Tyr-1068) and MIG6 levels, suggesting
potential lysosomal processing that was then investigated fur-
ther below.

NDRG1 overexpression increases EGFR internalization and
co-localization with the early endosomal marker EEA1 and the
late endosome/lysosomal marker LAMP2

Considering the lysosomal process that down-regulates
EGFR (50, 51), the results above in Fig. 1C suggest lysosomal
involvement in the role of NDRG1 in decreasing EGFR expres-
sion and activation. To examine this further, PANC-1 VC and
N1 cells were incubated in the presence and absence of EGF (10
ng/ml) for 10 min/37 °C (Fig. 2A). Cells were then assessed by
immunofluorescence using confocal microscopy and stained
for EGFR (red), the well-characterized early endosomal marker,
EEA1 (green) (52) and DAPI (blue) for the nucleus.

Considering first nuclear DAPI staining, some slight, but not
significant, differences in nuclear size were apparent upon close
examination of the images taken. This is probably because
nuclear size does naturally vary depending on the stage of the
cell cycle (53). As expected in VC control cells, EGFR showed
strong red staining on the membrane with some intracellular
staining as well (Fig. 2A). In VC cells incubated with EGF, EGFR
expression was again evident on the plasma membrane and
intracellularly (Fig. 2Ai). In contrast, in control N1 cells over-
expressing NDRG1 in the presence and absence of EGF, EGFR
levels were overall significantly (p �0.01) lower. These findings
are in agreement with the Western blot studies in Fig. 1, A and
C. In addition, N1 cells incubated in the presence or absence of
EGF resulted in greater intracellular clustering of EGFR relative
to VC cells (Fig. 2A). Assessing EEA1 expression in both VC and
N1 cells under all conditions, there was no significant (p �0.05)
alteration in the intensity of this marker, which was uniformly
distributed in the cytoplasm (Fig. 2A).

Quantification of co-localization demonstrated increased
co-localization of EGFR and EEA1 being evident in yellow
puncta in N1 cells treated with EGF (Fig. 2A). This co-localiza-
tion was significantly (p �0.001) greater in the presence of EGF
relative to the VC counterpart treated with EGF (Fig. 2Aii).
Furthermore, examining the extent of this association using
Pearson’s correlation coefficient (r), higher co-localization was
evident in N1 EGF-treated cells (r � 0.699) compared with
EGF-treated VC cells (r � 0.346; Fig. 2A), suggesting a role for
NDRG1 in trafficking and sorting of EGFR into the early endo-
somal compartment.

After being sorted to the endosome, EGFR can be trans-
ported to the lysosome for degradation (51). In order to further

explore the association of NDRG1 with EGFR and the lyso-
some, the localization of these proteins was also examined (Fig.
2B). Similarly to Fig. 2A, PANC-1 VC and N1 cells were incu-
bated with EGF (10 ng/ml)/10 min at 37 °C, and then examined
for the distribution of EGFR, DAPI, and the late endosome/
lysosomal marker LAMP2 (shown in green) (54). Examining
EGFR, similar effects were observed in terms of NDRG1 expres-
sion to that observed in Fig. 2A, with EGFR intensity being
significantly (p �0.05) decreased in N1 cells relative to VC cells
(Fig. 2Bi). Furthermore, intracellular clustering of EGFR was
evident in N1 cells relative to their VC counterparts (Fig. 2B). In
contrast to EEA1 expression (Fig. 2A), LAMP2 distribution
became markedly more clustered in the N1 cells regardless of
EGF and appeared perinuclear (Fig. 2B). However, the overall
intensity of LAMP2 in N1 cells was not significantly (p �0.05)
changed relative to its VC counterparts (Fig. 2Bi), suggesting
altered distribution rather than expression.

In VC cells in the presence and absence of EGF, minimal
co-localization was observed between LAMP2 and EGFR (r �
0.436 – 0.445) (Fig. 2Bii). However, examining N1 cells, there
was an increase in intracellular EGFR and the clustering of
LAMP2-stained late endosomes/lysosomes, as well as co-local-
ization of EGFR and LAMP2 (Fig. 2B). Quantification analysis
showed that in N1 cells, co-localization of EGFR and LAMP2
occurred in the presence and absence of EGF and was signifi-
cantly (p �0.01) higher than that observed in VC cells (Fig.
2Bii). This was further documented by the increased Pearson’s
correlation coefficients calculated in N1 cells (r � 0.768 –
0.813) compared with VC cells (r � 0.436 – 0.445). Together,
these findings in Fig. 2, A and B, indicate the role of NDRG1 in
fostering the trafficking and sorting of EGFR to the early endo-
some, followed by the lysosome. Of note, in contrast to the
marked co-localization between LAMP2 and EGFR observed in
Fig. 2B, no appreciable co-localization was observed between
NDRG1 and EEA1 (r � 0.403– 0.516) (Fig. S2A), NDRG1 and
LAMP2 (r � 0.441– 0.493) (Fig. S2B), MIG6 and EEA1 (r �
0.357– 0.478) (Fig. S2C), or MIG6 and LAMP2 (r � 0.356 –
0.505) (Fig. S2D).

Inhibition of the proteasome by MG132, but not lactacystin,
increases levels of pEGFR (Tyr-1068)

Although the involvement of the proteasome in the degrada-
tion of EGFR is not completely understood, there is evidence to
suggest its role in inhibiting EGFR signaling. To therefore
assess the possible involvement of proteasomal degradation in
the NDRG1-mediated inhibition of EGFR expression and sig-
naling, the well-characterized proteasomal inhibitors, MG132
or lactacystin, were used. PANC-1 cells were incubated with
MG132 (2.5 �M) or lactacystin (5 �M) for 24 h/37 °C, with EGF
(10 ng/ml) being added in the last 10 min of the incubation
(Fig. 3).

Incubation with MG132 resulted in the detection of a
47-kDa NDRG1 band in VC cells which is slightly above the
46-kDa NDRG1 band observed in VC cells in the absence of
MG132 (Fig. 3A). As reported above (Fig. 1A), the 48-kDa
NDRG1 band was prominent in N1 cells (Fig. 3A). Upon
incubation of N1 cells with MG132, there was marked and
significant (p �0.05) potentiation of this 48-kDa NDRG1

NDRG1 up-regulates MIG6 to inhibit EGFR expression

J. Biol. Chem. (2019) 294(11) 4045–4064 4049

http://www.jbc.org/cgi/content/full/RA118.006279/DC1
http://www.jbc.org/cgi/content/full/RA118.006279/DC1
http://www.jbc.org/cgi/content/full/RA118.006279/DC1
http://www.jbc.org/cgi/content/full/RA118.006279/DC1


Figure 2. A and B, NDRG1 increases EGFR internalization and co-localization with (A) the early endosome marker EEA1 in the presence of EGF and (B) the late
endosome/lysosome marker LAMP2 in the absence and presence of EGF in PANC-1 cells. VC or N1 PANC-1 cells were incubated with either control medium or
medium containing EGF (10 ng/ml) for 10 min/37 °C. Immunofluorescence images show staining for EGFR (red), DAPI for nuclei (blue) and (A) EEA1 (green) or
(B) LAMP2 (green). All images were taken with a 63� objective and at the same exposure time using AxioVision™ software. Images are representative from
three experiments performed. A and B, quantification of (Ai) pixel intensity of EGFR or EEA1, (Aii) co-localization of EGFR and EEA1, (Bi) pixel intensity of EGFR
and LAMP2, and (Bii) co-localization of EGFR and LAMP2. The quantification was performed using ImageJ software and expressed as mean � S.D. (three
experiments) where *, p �0.05; **, p �0.01; ***, p �0.001 relative to the respective control. Pixel intensity and co-localization analysis utilized a total of 40 – 65
cells over three experiments. A and B, the scale bar in the bottom right-hand corner of the first image represents 10 �m and is the same across all images, except
the close-up panel, where the scale bar is 5 �m.
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band in the presence and absence of EGF. Total EGFR levels
were again significantly (p �0.05) decreased by NDRG1
expression relative to the VC counterparts (Fig. 3A). Addi-

tionally, EGFR was also slightly decreased by MG132 in both
VC and N1 cells in the presence or absence of EGF relative to
the respective controls.

Figure 3. NDRG1 overexpression increases the association of MIG6 and NDRG1. A and B, PANC-1 VC or N1 cells were incubated with control media or
media containing EGF (10 ng/ml; 10 min/37 °C) and examined via (A) co-immunoprecipitation or (B) immunofluorescence. A, NDRG1 was immunoprecipitated
and then Western blotting performed to detect NDRG1 and MIG6 expression. Input lysates of the total protein were included for comparison with immuno-
precipitated lysates for each sample. Western blots are typical of three independent experiments, with densitometric analysis representing mean � S.D. (n �
3). Relative to untreated vector control cells, *, p �0.05 in the respective condition. B, under the same conditions, immunofluorescence images show staining
for MIG6 (red), NDRG1 (green), and DAPI for nuclei (blue). All images were taken with a 63� objective and at the same exposure time using AxioVision™
software. Images are representative from three experiments performed. Pixel intensity of (Bi) MIG6 and NDRG1 and (Bii) MIG6/NDRG1 co-localization was
calculated using ImageJ Software, whereby ***, p �0.001 denotes significance comparing each condition to control cells. Pixel intensity and co-localization
analysis utilized a total of 30 – 60 cells over three experiments. B, the scale bar in the bottom right-hand corner of the first image represents 10 �m and is the same
across all images, except the close-up panel, where the scale bar is 5 �m.
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When examining pEGFR at Tyr-1068, EGF was able to mark-
edly and significantly (p �0.001– 0.01) increase its levels rela-
tive to the respective controls without EGF in both VC and N1
cells, as expected. In both VC and N1 cells, MG132 was able to
significantly (p �0.05) increase pEGFR (Tyr-1068) levels in the
presence of EGF relative to the control incubated with EGF
alone (Fig. 3A). This was despite the ability of NDRG1 expres-
sion to significantly (p �0.05) reduce pEGFR (Tyr-1068) levels
relative to the respective VC control treated with MG132 in the
presence of EGF (Fig. 3A). Additionally, the ratios of pEGFR to
EGFR were calculated, with MG132 and EGF treatment signif-
icantly (p �0.01) increasing the ratio relative to EGF alone in
VC cells, whereas in N1 cells there was an increase (p �0.05)
with MG132 and EGF (Fig. 3A). Together, these observations
suggest that inhibiting proteasomal activity plays a role in pre-
venting the decrease in pEGFR (Tyr-1068) levels in the pres-
ence and absence of NDRG1 overexpression.

The effect of lactacystin on NDRG1 expression (Fig. 3B) was
similar to that observed for MG132 (Fig. 3A). lactacystin also
had similar effects to MG132 on EGFR (Fig. 3B). However, in
contrast to MG132, incubation with lactacystin only slightly
decreased pEGFR (Tyr-1068) in the presence of EGF in both VC
and N1 cells (Fig. 3B). Additionally, the ratios of pEGFR to
EGFR were calculated, with lactacystin and EGF treatment not
significantly (p �0.05) increasing the ratio relative to EGF alone
in VC or N1 cells (Fig. 3B). As lactacystin has a different pro-
teasomal inhibitory profile to MG132, this may explain the dif-
ference observed between these studies.

Of note, it has been shown that polyubiquitination of EGFR
by the proteasome is needed to allow for lysosomal sorting of
activated EGFR, suggesting the proteasome may, in part, assist
trafficking and/or processing of EGFR. Furthermore, similarly
to our current studies, MG132 has been demonstrated to
increase pEGFR levels in the presence of EGF. Overall, there is
some evidence from this investigation and previous studies
with MG132 to suggest involvement of proteasomal processing
in EGFR trafficking/processing.

Association of MIG6 and NDRG1 as demonstrated by
co-immunoprecipitation and confocal microscopy

Taking into account the effects of NDRG1 on inhibiting
EGFR expression (see Figs. 1, A and C, and 2 and 3), and the role
of MIG6 in promoting EGFR processing by the lysosome (33), it
was important to understand how exactly these proteins affect
each other. In these studies, PANC-1 lysates were immunopre-
cipitated with NDRG1 antibody, and then NDRG1 or MIG6
levels examined by Western blotting (Fig. 3A). When NDRG1
was immunoprecipitated and then assessed for NDRG1 expres-
sion by Western blotting as a control, significantly higher (p
�0.05) levels of NDRG1 were observed in the N1 cells relative
to the VC cells in the presence and absence of EGF (Fig. 3A). Of
note, when using the co-immunoprecipitation protocol, the
46-kDa NDRG1 band was not present or faintly present in
either the input (Western only) or the IP for the N1 overexpres-
sion clone (Fig. 3A). In contrast, for VC cells, the 46-kDa band is
present in both the input and the IP. This was a highly consis-
tent finding throughout many experiments. A similar effect was
also sometimes observed for the Westerns (e.g. Fig. 1, A and C),

where the 46-kDa band is present in VC cells, but less visible in
the N1 clones with high exogenous NDRG1 expression at 48
kDa. Considering this, we speculate that it may be because of
three possible reasons: 1) the high expression of the exogenous
NDRG1 48-kDa band sometimes overshadows the 46-kDa
NDRG1 band, making it less visible; 2) alternatively, there
appears to be some association between the two bands in N1
clones, leading to the appearance of the significantly larger
48-kDa NDRG1 band (Fig. 3A); and/or 3) the high levels of
exogenous NDRG1 somehow influences endogenous 46 kDa
NDRG1. Irrespective of the cause in the shift of the 46-kDa
band, the higher total NDRG1 expression up-regulates MIG6.

Importantly, the NDRG1 immunoprecipitate was also found
to contain substantial MIG6 levels, which was significantly (p
�0.05) increased in N1 cells when compared with VC cells
regardless of EGF treatment (Fig. 3A). These observations sug-
gest a possible association between MIG6 and NDRG1.

To further examine the potential association of NDRG1 with
MIG6, co-localization between these proteins was assessed
using confocal microscopy (Fig. 3B). As this technique images
cells on a single lateral focal plane, only molecules in the same
location are co-localized (55). In the VC control and EGF-
treated samples, MIG6 was mainly distributed in the cytosol as
very fine puncta, whereas NDRG1 was present in both the cyto-
sol and nucleus, again as fine puncta, with little co-localization
being evident (r � 0.549 – 0.646). This distribution agrees with
previous studies assessing the subcellular localization of MIG6
(32) and NDRG1 (15, 43).

Upon NDRG1 overexpression in N1 cells, the overall inten-
sity of both NDRG1 and MIG6 markedly and significantly (p
�0.001) increased, resulting in intense clustering of MIG6
staining predominantly in the cytosol (Fig. 3B). On the other
hand, for NDRG1 expression, in the N1 control and EGF-
treated cells, its distribution was both cytoplasmic and nuclear.
This distribution of NDRG1 and MIG6 upon NDRG1 overex-
pression in the presence and absence of EGF, led to a marked
and significant (p �0.001) increase in co-localization in the
cytoplasm (r � 0.873– 0.881), suggesting increased association
between these proteins. These results in terms of NDRG1 and
MIG6 expression are in agreement with the Western blotting
data (Fig. 1A), whereas the co-localization is concordant with
the co-immunoprecipitation results (Fig. 3A). Together, these
data in Fig. 3, A and B, suggest an association of MIG6 and
NDRG1 in the cytosol of cells that overexpress NDRG1, and
prompted further dissection into the mechanisms involved in
NDRG1’s attenuation of EGFR signaling mediated via MIG6.

EGFR does not directly associate with NDRG1

Overall, the studies above in Fig. 3 indicate MIG6 and
NDRG1 associate to form a potential complex. As an additional
confirmation of this observation, PANC-1 lysates were immu-
noprecipitated with MIG6 antibody, and then MIG6, EGFR, or
NDRG1 levels examined by Western blotting (Fig. 4A). When
MIG6 was immunoprecipitated and then assessed for MIG6
expression by Western blotting as a control, markedly and sig-
nificantly (p �0.001) higher levels of MIG6 were observed in N1
cells relative to the VC cells in the presence and absence of EGF
(Fig. 4A). Assessing EGFR levels in the MIG6 immunoprecipi-
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Figure 4. A–C, EGFR (A and B) does not directly associate with NDRG1, but (C) NDRG1 overexpression increases the half-life of MIG6. PANC-1 VC or N1 cells were
incubated with control media or media containing EGF (10 ng/ml; 10 min/37 °C) and examined via co-immunoprecipitation. MIG6 (A) or NDRG1 (B) was
immunoprecipitated and Western blotting performed to detect MIG6, EGFR, or NDRG1 expression. Input lysates of the total protein were included for
comparison with immunoprecipitated lysates for each sample. Relative to untreated vector control cells: *, p � 0.05; **, p � 0.01 and ***, p � 0.001 in the
respective condition. C, PANC-1 VC and N1 cells were preincubated with cycloheximide (10 �g/ml) for 1 h/37 °C with EGF being added in the last 10 min and
the incubation then continued for 1– 8 h/37 °C. Results are typical blots from three performed and the densitometry is mean � S.D. (three experiments).
#, p �0.05 and ##, p �0.01 are relative to the 0 h time point.
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tate, it was demonstrated to be significantly (p �0.01– 0.05)
up-regulated in N1 cells, both with and without EGF treatment
(Fig. 4A), suggesting an association between these proteins,
particularly in the presence of NDRG1 overexpression. Further,
the MIG6 immunoprecipitate contained substantial NDRG1
levels, which was significantly (p �0.05) increased in N1 cells
(Fig. 5A). Notably, the MIG6 immunoprecipitate contained
predominantly the 46-kDa isoform of NDRG1, which again is
consistent with the active form of NDRG1 that has been shown
to inhibit metastasis (16, 35, 43). Hence, this was further evi-
dence supporting the MIG6 and NDRG1 interaction observed
in Fig. 3A.

Because MIG6 is known to directly bind to EGFR (26, 56), it
can be hypothesized that NDRG1 may also bind to EGFR. To
examine this, PANC-1 lysates were immunoprecipitated with
NDRG1 antibody and NDRG1 and EGFR levels then examined
by Western blotting (Fig. 4B). When NDRG1 was pulled down,
EGFR was not present in the immunoprecipitate. This was
despite the fact that the procedure was successful in immuno-
precipitating MIG6 and also NDRG1 itself (Fig. 3A). Further-
more, immunoprecipitation with the EGFR antibody also
resulted in no detection of NDRG1 (Fig. S4B). Collectively,
these results in Figs. 3, A and B, and 4, A and B, and Fig. S4B
suggest that NDRG1 directly associates with MIG6, but not
EGFR.

To further examine any possible association of NDRG1 with
EGFR, co-localization between these proteins was assessed
using confocal microscopy (Fig. S3). Again, EGFR expression
was significantly (p �0.001– 0.01) decreased by NDRG1 ex-
pression in N1 cells (Fig. S3i). However, little co-localization
was evident between NDRG1 and EGFR (r � 0.428 – 0.487).
Unlike the studies examining MIG6 and NDRG1 association
(Fig. 3B), quantification of co-localization demonstrated no sig-
nificant increase in the merged images in N1 cells relative to VC
cells (Fig. S3ii).

Collectively, these studies in Fig. S3 suggest that there was no
marked association between NDRG1 and EGFR. Considering
this and the results in Figs. 3 and 4B, it can be hypothesized that
NDRG1 may stabilize MIG6 to increase its half-life. Thus, as a
theoretical model, the increased half-life of MIG6 would enable
its binding to EGFR, with NDRG1 then dissociating, resulting
in its not being detected with the EGFR.

NDRG1 overexpression increases MIG6 protein half-life

To assess the hypothesis that NDRG1 stabilizes MIG6 to
increase its half-life, PANC-1 VC and N1 cells were preincu-
bated with cycloheximide (10 �g/ml) for 1 h/37 °C, with EGF
being added in the last 10 min and the incubation then being
continued for 1– 8 h/37 °C, as per standard protein stability
assessment protocols (57, 58). From Fig. 4C, Western blotting
demonstrated the half-life of MIG6 in VC cells was calculated
as 1.6 � 0.2 h (3), which was very similar to previous reports
using another cell type (i.e. 90 –120 min) (59). Interestingly,
compared with VC cells, the half-life of MIG6 was significantly
(p �0.001) increased to 7.9 � 0.4 h (3), which could explain 1)
the significantly higher levels of MIG6 in N1 cells, 2) the post-
transcriptional regulation of MIG6 (Fig. S1D), and 3) the ability

of MIG6 to more markedly down-regulate EGFR expression in
N1 relative to VC cells.

MIG6 is involved in the NDRG1-mediated down-regulation of
EGFR

We have demonstrated previously (21) and herein (Figs.
1–3), that NDRG1 is able to down-regulate EGFR. Further, in
this investigation, we have shown that NDRG1 up-regulates
MIG6 protein levels (Figs. 1A and 3B), and intriguingly there is
an association between NDRG1 and MIG6, but not NDRG1
and EGFR (Figs. 3 and 4 and Fig. S3). To dissect the potential
role of MIG6 in the ability of NDRG1 to down-regulate EGFR,
PANC-1 cells were transiently transfected with MIG6 siRNA
(siMIG6) or nonspecific control siRNA (siControl). Then
MIG6, EGFR, pEGFR (Tyr-1068), and NDRG1 levels were
examined in the presence and absence of EGF by Western blot-
ting (Fig. 5A).

In these studies, effective silencing of MIG6 was achieved,
with a significant (p �0.01) decrease of MIG6 levels in VC and
N1 cells. Additionally, similar to Fig. 1A, MIG6 was significantly
(p �0.05) increased in N1 compared with VC siControl cells.
When examining EGFR levels, NDRG1 expression in N1 cells
resulted in a significant (p �0.01– 0.05) decrease in its levels, in
the presence and absence of EGF. Interestingly, a slight, but
significant increase (p �0.05) of EGFR was observed in VC cells
when MIG6 was silenced (siMIG6) in the presence and absence
of EGF (Fig. 5A). Notably, the effect of siMIG6 was markedly
more pronounced at significantly (p �0.05) increasing EGFR
levels in N1 cells, irrespective of EGF treatment when com-
pared with siControl N1 cells. This finding demonstrates the
importance of MIG6 in the NDRG1-mediated decrease of
EGFR expression.

Assessing pEGFR (Tyr-1068), its levels were also significantly
(p �0.05) enhanced upon MIG6 silencing in both VC and N1
cells (Fig. 5A). However, this effect was less marked in N1 cells,
with NDRG1 overexpression markedly decreasing the overall
pEGFR levels relative to VC cells. This latter finding suggests
the NDRG1-mediated decrease of pEGFR (Tyr-1068) is occur-
ring, at least in part, via MIG6.

Silencing PTEN decreases MIG6 and results in up-regulation of
total EGFR and increased pEGFR (Tyr-1068) levels in the
presence and absence of NDRG1 overexpression

Previous studies have shown that the tumor suppressor
PTEN is able to attenuate EGFR signaling by promoting the
maturation of early to late endosomes (60). To decipher the
involvement of PTEN in the ability of NDRG1 to down-regulate
EGFR via MIG6, PANC-1 cells were transiently transfected
with PTEN siRNA (siPTEN) or nonspecific control siRNA
(siControl), and PTEN, EGFR, pEGFR (Tyr-1068), MIG6, and
NDRG1 levels were examined in the presence and absence of
EGF (Fig. 5B).

Efficient down-regulation of PTEN expression was achieved
by siPTEN, with a significant (p �0.01) decrease of PTEN levels
in both VC and N1 cells. When assessing EGFR levels, NDRG1
expression in N1 cells again significantly (p �0.01– 0.05)
decreased EGFR in the siControl treatment group. However, in
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Figure 5. Silencing of the tumor suppressors MIG6 and PTEN increases total and activated EGFR levels. A and B, PANC-1 VC or N1 cells were transiently
transfected with nonspecific control siRNA (siControl) and (A) MIG6 siRNA (siMIG6) or (B) PTEN siRNA (siPTEN), followed by incubation with control media or this
media containing EGF (10 ng/ml; 10 min/37 °C). Total cell protein was extracted and electrophoresed on a 10% SDS-PAGE gel followed by Western blot analysis
to detect MIG6, NDRG1, EGFR, pEGFR (Tyr-1068), or PTEN expression. �-actin was used as a protein-loading control. Results are mean � S.D. (n � 3). *, p �0.05;
**, p �0.01; ***, p �0.01 denote statistical significance comparing NDRG1 overexpressing cells relative to VC cells. #, p �0.05; ##, p �0.01 denotes statistical
significance comparing siRNA-treated cells to their respective siControl within VC or N1 cells.
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VC cells, siPTEN caused a slight and significant (p �0.05)
increase of EGFR in the presence and absence EGF (Fig. 5B).

Similarly, siPTEN also slightly, but significantly (p �0.01)
increased EGFR in N1 cells, but only with EGF-treatment.
This is consistent with the role of PTEN in enhancing EGFR
degradation (60) and siPTEN decreasing this. Examining
pEGFR (Tyr-1068) levels, siPTEN resulted in a significant (p
�0.05) 2.0- to 2.1-fold increase in its levels only in the pres-
ence of EGF in both VC and N1 cells (Fig. 5B). Although
siPTEN caused a similar -fold increase in both VC and N1
cells, the overall levels of pEGFR (Tyr-1068) were markedly
and significantly (p �0.05) decreased with NDRG1 expres-
sion in N1 cells. Together, these findings suggest PTEN is
also involved, at least in part, in the NDRG1-mediated deg-
radation of EGFR.

Of interest, siPTEN resulted in a significant (p �0.01– 0.05)
decrease in MIG6 expression in both VC and N1 cells relative to
their respective siControls in the presence and absence of EGF
(Fig. 5B). This result indicates that the ability of PTEN to facil-
itate the down-regulation of EGFR (60) could be mediated
through the up-regulation of MIG6. Collectively, these results
suggest a role for PTEN in regulating MIG6.

The novel thiosemicarbazones Dp44mT and DpC up-regulate
NDRG1 and MIG6 and promote their co-localization

As shown herein, NDRG1 is able to promote the degradation
of a master regulator of oncogenic signaling, EGFR, via the up-
regulation of MIG6. Given the demonstrated ability of NDRG1
to suppress metastasis, this makes it a viable therapeutic target
for cancer therapy (10). NDRG1 is potently up-regulated by the
novel DpT class of anti-cancer agents that includes Dp44mT
and DpC (10, 35) (Fig. S1A), the latter of which has entered
clinical trials (40). In this study, the two lead agents, Dp44mT
and DpC, were used in addition to the positive control, DFO
(Fig. S1A), which is a well-known iron chelator used to treat
iron overload disease (61). A negative control, 2-benzoylpyri-
dine 2-methyl-3-thiosemicarbazone (Bp2mT), was also used, as
it is an analog of Dp44mT and DpC, which was specifically
designed not to bind metal ions or show anti-tumor activity
(62). Although the lipophilic and permeable Bp2mT, Dp44mT,
and DpC (10, 35) were examined at 10 �M, DFO was used at 250
�M, because of its greater hydrophilicity, which leads to poor
membrane permeabilization (34, 63).

As demonstrated in previous studies (10, 35), DFO, Dp44mT,
and DpC were all able to markedly and significantly (p �0.001)
up-regulate NDRG1 in PANC-1 cells (Fig. 6A). Both Dp44mT
and DpC also significantly (p �0.001– 0.01) decreased EGFR
expression. Additionally, DpC significantly (p �0.05) de-
creased pEGFR (Tyr-1068), whereas Dp44mT was not as effec-
tive (p �0.05) in reducing its levels (Fig. 6A). As we observed
previously (21), the pEGFR (Tyr-1068)/total EGFR was not sig-
nificantly altered relative to the control by these agents, sug-
gesting the decrease in total EGFR resulted in reduction in its
phosphorylated levels. These agents also potently and signifi-
cantly (p �0.001– 0.05) increased HIF-1� expression, which is
important, as this transcription factor targets MIG6 (42).

In good agreement with the increased HIF-1� levels, MIG6
was also markedly and significantly (p �0.001– 0.01) up-reg-

ulated by these agents, with DFO being less effective than
either Dp44mT or DpC (Fig. 6A). Collectively, these agents
up-regulate MIG6 probably via HIF-1� that induces NDRG1
expression (10), which then decreases EGFR expression and
activation. This is notable, as MIG6 has been demonstrated
to suppress tumor formation (64), and its ability to be har-
nessed by a therapeutic agent has not been investigated
previously.

To further investigate these promising results, the effect of
our novel agents was then assessed using confocal microscopy
to examine the intracellular distribution and co-localization of
MIG6 and NDRG1 in PANC-1 cells incubated for 24 h/37 °C
with our agents (Fig. 6B), under the conditions described above
in Fig. 6A. The expression of MIG6 was predominantly cyto-
plasmic, whereas NDRG1 was both cytoplasmic and nuclear.
The levels of MIG6 and NDRG1 were significantly (p �0.01–
0.001) increased after incubation with DFO, and especially
Dp44mT and DpC (Fig. 6Bi). This result was in good agreement
with the Western blotting data (Fig. 6A). Quantification analy-
sis demonstrated significantly (p �0.001) increased co-localiza-
tion of MIG6 and NDRG1 (i.e. yellow fluorescence) in cytoplas-
mic puncta particularly after incubation with Dp44mT and
DpC, which was accompanied by an increase in the Pearson’s
correlation coefficient from r � 0.516 in the control to r �
0.814 – 0.913 (Fig. 6Bii). It is of interest to note that DFO dem-
onstrated less efficacy than both Dp44mT and DpC at increas-
ing MIG6 expression (Fig. 6A), which led to less co-localization
with NDRG1 (Fig. 6B). This decreased efficacy of DFO is prob-
ably related to its greater hydrophilicity and poorer membrane
permeability relative to the lipophilic and highly membrane-
permeable Dp44mT and DpC (34, 36). Together, these data in
Fig. 6 indicate that the anti-cancer agents Dp44mT and DpC
markedly up-regulate NDRG1 and MIG6, which co-localize
intracellularly.

To demonstrate the mechanism by which the thiosemicar-
bazones up-regulate MIG6, in Fig. S4A we have examined the
effect of the agents used in Fig. 6, A and B, on MIG6 expression
upon NDRG1 silencing after a 24-h/37 °C incubation. In siCon-
trol cells, Dp44mT and DpC robustly increased MIG6 expres-
sion. In contrast, after NDRG1 silencing, both agents were
markedly less effective at up-regulating MIG6 (Fig. S4A). These
results indicate that the up-regulation of MIG6 by Dp44mT and
DpC depends on NDRG1 expression.

DpC and Dp44mT promote EGFR and LAMP2 co-localization

Next, considering the results in Fig. 6 above regarding the
up-regulation of MIG6 and its co-localization in intracellular
vesicles by our agents, studies then assessed if this could result
in degradation of EGFR via the induction of lysosomal pro-
cessing (33). Hence, studies examined the effect of these agents
on inducing EGFR redistribution and co-localization with
LAMP2-stained late endosomes/lysosomes using confocal
microscopy (Fig. 7). In control and Bp2mT- and DFO-treated
PANC-1 cells, EGFR (red) showed distinct plasma membrane
staining with some fine punctate cytosolic staining, whereas the
LAMP2 late endosome/lysosomal marker (green) was finely
distributed in puncta within the cytosol. Upon quantification,
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only limited co-localization (r � 0.228 – 0.426) of the EGFR and
LAMP2 marker was detected in control and Bp2mT- and DFO-
treated cells (Fig. 7ii).

In contrast, treatment of PANC-1 cells with Dp44mT and
DpC resulted in pronounced clustering of EGFR intracellularly
into defined foci. Similarly, LAMP2 staining was also markedly

Figure 6. A and B, the thiosemicarbazones Dp44mT and DpC up-regulate MIG6 expression (A) and increase co-localization (B) between MIG6 and NDRG1.
PANC-1 cells were incubated with either control medium or medium containing Bp2mT (10 �M), DFO (250 �M), Dp44mT (10 �M), or DpC (10 �M) in the presence
of EGF (10 ng/ml) for 24 h/37 °C. A, total cell protein was extracted and electrophoresed on a 10% SDS-PAGE gel followed by Western blot analysis to detect
NDRG1, EGFR, pEGFR (Tyr-1068), HIF-1�, and MIG6 expression. �-actin was used as a protein-loading control. Results are mean � S.D. (n � 3). *, p �0.05; **, p
�0.01; ***, p �0.001 denote comparison to control cells. B, confocal immunofluorescence images show staining for MIG6 (red), NDRG1 (green), and DAPI for
nuclei (blue). All images were taken with a 63� objective and at the same exposure time using AxioVision™ software. Quantification of (Bi) MIG6 and NDRG1
pixel intensity and (Bii) MIG6/NDRG1 co-localization were performed using ImageJ software and these results are mean � S.D. (three experiments). **, p �0.01
and ***, p �0.001 are relative to the control. Pixel intensity and co-localization analysis utilized a total of 30 – 40 cells over three experiments. B, the scale bar in
the bottom right-hand corner of the first image represents 10 �m and is the same across all images, except the close-up panel, where the scale bar is 5 �m.
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altered upon treatment with DpC and Dp44mT, resulting in
clustering into perinuclear foci that co-localized with EGFR.
However, this redistribution of LAMP did not alter its total
levels between conditions, with no significant change in pixel
intensity being observed (Fig. 7i). Notably, there was a signifi-
cant (p �0.001) increase in the co-localization intensity of
EGFR and LAMP2 upon quantification, with a marked increase
in Pearson’s correlation coefficient from r � 0.426 in the con-
trol to r � 0.640 – 0.743 in Dp44mT- and DpC-treated cells
(Fig. 7). Once again, the efficacy of DFO at reducing EGFR
was less marked than that found for Dp44mT and DpC, prob-
ably because of its lower membrane permeability (34, 36, 63). This
resulted in decreased induction of MIG6 expression by DFO rela-
tive to Dp44mT and DpC (Fig. 6, A and B), and thus, no significant
effect on reducing EGFR expression (Figs. 6A and 7). Collectively,
these studies in Fig. 7 demonstrate that the novel anti-cancer

agents Dp44mT and DpC up-regulate MIG6 and promote EGFR
localization to LAMP2-defined late endosomes/lysosomes.

Discussion

Metastasis is the major killer in cancer (65), which remains
the “emperor of all maladies.” Understanding the mechanisms
of action of metastasis suppressor proteins that block metasta-
sis could lead to new therapeutic targets. The metastasis sup-
pressor NDRG1 has demonstrated comprehensive anti-cancer
activity via its ability to inhibit a series of critical oncogenic
signaling pathways that play roles in metastasis and cancer pro-
gression (12, 13, 15, 16, 18). As such, a major question in the
field was how does NDRG1 inhibit the activity of such a broad
range of signaling pathways? Recently, our laboratory has
reported that NDRG1 could effectively do this via its ability to
down-regulate a master regulator of these pathways, namely

Figure 7. Incubation of cells with Dp44mT and DpC decreases EGFR expression and increases EGFR co-localization with the late endosome/lysosomal
marker LAMP2. VC PANC-1 cells were incubated with either control medium or medium containing Bp2mT (10 �M), DFO (250 �M), Dp44mT (10 �M), or DpC (10 �M)
in the presence of EGF (10 ng/ml) for 24 h/37 °C. Immunofluorescence images show staining for EGFR (red), LAMP2 (green), and DAPI for nuclei (blue). All images were
taken with a 63� objective and at the same exposure time using AxioVision™ software. Images are representative from three experiments performed. Quantification
of (i) EGFR and LAMP2 pixel intensity and (ii) EGFR/LAMP2 co-localization were performed using ImageJ software and are mean � S.D. (three experiments). ***, p
�0.001 relative to the control. Pixel intensity and co-localization analysis utilized a total of 30–60 cells over three experiments. The scale bar in the bottom right-hand
corner of the first image represents 10 �m and is the same across all images, except the close-up panel, where the scale bar is 5 �m.
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EGFR (20, 21). In fact, these studies indicated that NDRG1
expression accelerated the loss of EGFR monomers and dimers
relative to control cells in the presence of EGF, suggesting that
NDRG1 facilitated its processing (21). The current study inves-
tigated the mechanisms involved in this effect.

The degradation of EGFR is largely controlled by MIG6 (33),
which is a cytoplasmic protein (32) that down-regulates EGFR
activity by direct inhibition of the EGFR dimer (26) and induces
lysosomal processing (33). We demonstrate that NDRG1
expression markedly increased MIG6 levels, whereas silencing
NDRG1 in multiple cell types decreased MIG6, demonstrating
that NDRG1 is able to regulate this protein. Notably, there is no
evidence in the literature that NDRG1 induces its effects by
acting as a transcription factor, and the up-regulation of MIG6
observed herein was not because of an increase in MIG6 mRNA
levels after up-regulation of NDRG1, suggesting a posttran-
scriptional mechanism of regulation. Indeed, we demonstrate
that NDRG1 markedly extends the protein half-life of MIG6,
suggesting that it functions to stabilize this molecule. An
important finding was that MIG6 became bound to NDRG1,
but not EGFR, in the cytoplasm, as determined using both
co-immunoprecipitation and co-localization using confocal
microscopy. This direct interaction may be key to how NDRG1
enhances the half-life of MIG6.

The well-characterized lysosomotropic agents NH4Cl and
CH3NH2 that inhibit endosomal and lysosomal acidification
(48, 66, 67) were demonstrated to reverse the effects of NDRG1
on decreasing pEGFR (Tyr-1068) and increasing MIG6, sug-
gesting perturbation of the acidic lysosomal pH interferes with
EGFR and MIG6 processing. The increased MIG6 levels
increased EGFR internalization and co-localization of EGFR
with the early endosome marker, EEA1, and the late endosome/
lysosome marker, LAMP2.

From these results, a model of the interaction between these
molecules can be proposed, whereby NDRG1 increases MIG6
expression by a posttranscriptional mechanism, potentially by
binding to it and stabilizing its protein levels. As such, NDRG1
may also facilitate MIG6 binding to EGFR, resulting in its
inhibition and the late endosomal/lysosomal processing of
EGFR (Fig. 8). As discussed above, relative to the strong co-
localization between LAMP2 and EGFR, no appreciable co-
localization was observed between LAMP2 and NDRG1, or
LAMP2 and MIG6. This suggests that the effect of NDRG1
and MIG6 on increasing EGFR processing via the lysosome
could occur prior to its internalization into the lysosomal
compartment (Fig. 8).

Supporting evidence for this model comes from studies
where MIG6 silencing reversed the inhibitory effect of NDRG1
on EGFR expression (Fig. 5A), suggesting a role for MIG6 in the
NDRG1-mediated down-regulation of the EGFR. Importantly,
the direct binding of MIG6 to EGFR was also significantly
increased in NDRG1 overexpressing cells, further demonstrat-
ing that NDRG1 is enhancing the formation of the MIG6 –
EGFR complex. Silencing PTEN, which is known to augment
early to late endosome maturation (60), decreased MIG6 in the
presence and absence of NDRG1 overexpression, with a con-
current increase in EGFR and pEGFR (Tyr-1068) levels. Hence,
the PTEN-mediated trafficking of endosomes to lysosomes (60)

may play a role in MIG6-directed processing of EGFR and
pEGFR.

Of note, NDRG1 silencing in epithelial cells was previously
reported to decrease the uptake of low-density lipoprotein (68),
which suggests a potential shared, and more general, role for
this metastasis suppressor in receptor internalization and
vesicular trafficking. However, the direct interaction of NDRG1
with MIG6 and the formation of an MIG6 –NDRG1 complex
probably accounts for the increased levels and stability of MIG6
(Fig. 4C), which facilitates EGFR processing by the lysosome.

Unlike most metastasis suppressors that are yet to be tar-
geted by pharmacological interventions, it has been demon-
strated that novel anti-cancer agents of the DpT class, namely
Dp44mT and DpC (22, 34, 36), can up-regulate NDRG1 expres-
sion (10, 35). This effect of these agents is known to occur
through both HIF-1�– dependent and –independent processes
(10). The mechanism of this induction of NDRG1 is mediated
by the pronounced iron chelation efficacy of Dp44mT and DpC
(34, 36), which inhibits the activity of prolyl hydroxylase that
requires iron in its active site and is critical for HIF-1� degra-
dation (69). The inhibition of prolyl hydroxylase results in
increased HIF-1� levels (Fig. 6A) that then lead to increased
transcription of its downstream targets, which include NDRG1
(10). This effect of HIF-1� could be responsible for the marked
up-regulation of MIG6 observed after incubation of cells with
DpC and Dp44mT (Fig. 6A), as MIG6 is a known transcrip-
tional target of HIF-1� (42). Relevant to this, the up-regulation
of MIG6 was demonstrated after incubation of cancer cells with
several well-characterized iron chelators (41). Furthermore, the
concurrent up-regulation of both NDRG1 and MIG6 via HIF-1�
could then lead to stabilization of MIG6 through its binding to
NDRG1, as shown herein. In fact, silencing of NDRG1 prevented
the ability of Dp44mT and DpC to markedly up-regulate the EGFR
inhibitor MIG6. Hence, the potent effects of Dp44mT and DpC
are, at least in part, because of the up-regulation of NDRG1 and its
effects on increasing MIG6 levels.

Importantly, the effect of these pharmacological agents on
up-regulating both NDRG1 and MIG6 expression was very
similar to that observed by genetic overexpression of NDRG1,
with the following being observed: NDRG1 co-localization
being demonstrated with MIG6 in the cytosol (cf. Figs. 3B and
6B), decreased total and activated EGFR levels (cf. Figs. 1A and
7), and redistribution of EGFR to LAMP2-stained late endo-
somes/lysosomes (cf. Figs. 2B and 7). Moreover, both Dp44mT
and DpC also markedly inhibit PANC-1 pancreatic tumor
xenograft growth in vivo, demonstrating their potent activity
(10, 35). In fact, DpC was demonstrated to show greater activity
than a “gold standard” agent for pancreatic cancer treatment,
namely gemcitabine, with DpC totally inhibiting PANC-1
tumor xenograft growth (10, 35).

In conclusion, the clinical trial DpT group of agents can
down-regulate a “master switch” of oncogenic signaling,
namely EGFR, via an entirely different molecular mechanism
currently employed to target this tyrosine kinase. That is, by
up-regulating NDRG1 to increase MIG6 expression via
enhancing its half-life. As such, the DpT compounds provide an
innovative strategy for treating cancer, with these agents being
capable of 1) potently inhibiting the growth and metastasis in
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vivo of a variety of aggressive cancers (16, 21, 22, 34 –38, 70) and
2) markedly inhibiting multiple oncogenic signaling pathways
(12–15, 21, 30, 71–73).

Materials and methods

Cell culture

Human pancreatic cancer cell types, namely PANC-1,
CFPAC-1, and AsPC-1, were purchased from the American
Type Culture Collection (Manassas, VA). These cell types were
authenticated based on viability, recovery, growth, morphol-
ogy, and also cytogenetic analysis, antigen expression, DNA
profile, and iso-enzymology by the provider. The cells were
maintained in DMEM with 10% fetal calf serum (Life Technol-
ogies) and cultured by standard procedures (14) for less than 3
months after resuscitation. Two PANC-1 clones stably trans-
fected to overexpress NDRG1 (N1 and N2) were compared

with PANC1 cells transfected with the empty vector (VC), as
described previously (12, 14).

siRNA

Two specific siRNAs for NDRG1 were used, namely siN-
DRG1 (Cat. # s20336; Life Technologies) and siNDRG1II (Cat.
# s20334; Life Technologies), and also an siRNA against MIG6
(siMIG6; Cat. # AM16708; Ambion), and these were compared
with nontargeting negative control siRNA (siControl; Life
Technologies). The siRNA was transiently transfected into
PANC-1 cells using Lipofectamine 2000 (Life Technologies)
and incubated for 72 h/37 °C. Western blotting was then per-
formed. We demonstrated a high positive correlation (r2 �
0.82– 0.83) between NDRG1 down-regulation via siNDRG1
and the decrease in MIG6 expression in all three cell types used
(i.e. PANC-1, CFPAC-1, AsPC-1) (data not shown). This dem-

Figure 8. Schematic illustrating the role of NDRG1 and MIG6 in facilitating EGFR processing by the lysosomal compartment. EGF binds to EGFR, inducing its
internalization via endocytosis into the cell leading to EGFR in early endosomes and lysosomes. The tumor suppressor PTEN has been demonstrated to play a role in
the trafficking of early endosomes to lysosomes (60). The novel di-2-pyridylketone thiosemicarbazones Dp44mT and DpC bind and deplete cellular iron (10, 34, 35),
which inhibits prolyl hydroxylase activity and results in up-regulation of NDRG1 via HIF-1�–dependent and –independent mechanisms (10). Depletion of cellular iron
also up-regulates MIG6 potentially via HIF-1� (41). Subsequently, MIG6 down-regulates EGFR by directly binding to it and inhibiting the EGFR dimer (26) and inducing
EGFR internalization and processing by the lysosome (33). Notably, MIG6 binds to NDRG1 in the cytosol, with increased stabilization of MIG6 being observed in NDRG1
overexpressing cells. This increased half-life of MIG6 probably increases the access of MIG6 to EGFR to ensure down-regulation. However, NDRG1 does not bind to
EGFR, with no association of MIG6 or NDRG1 being demonstrated with the late endosome/lysosomal marker, LAMP2. In contrast, NDRG1 expression increases the
co-localization of EGFR with EEA1 and LAMP2. In summary, NDRG1 overexpression increases expression of the EGFR inhibitor MIG6 by stabilizing it, resulting in an
MIG6-NDRG1 complex that potentiates EGFR down-regulation by enhanced lysosomal processing of EGFR.
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onstrates that there is a dose escalation effect between NDRG1
and MIG6 expression. The siRNA specific for PTEN (siPTEN)
was also compared with siControl but was transiently trans-
fected using RNAiMax (Life Technologies) and incubated for
72 h/37 °C.

Cell treatments

EGF (Cat. # 8916; Cell Signaling Technology, Danvers, MA)
was used at 10 ng/ml diluted in 1% FCS-containing media and
incubated with cells for 10 min/37 °C. This concentration and
time point was implemented based on preliminary studies
examining the efficacy of EGF in vitro and following that used
by previous studies (21, 74). Prior to treatment with EGF, cells
were serum-starved in media containing 1% FCS for 24 h/37 °C
(75). DFO (Fig. S1A) was purchased from Sigma-Aldrich. The
thiosemicarbazones Dp44mT and DpC and the negative con-
trol compound Bp2mT were synthesized and characterized
using standard methods (36, 62, 76). We utilized concentra-
tions of 10 �M for Dp44mT, DpC, and Bp2mT and 250 �M for
DFO in 10% FBS-supplemented medium. The greater concen-
tration of DFO was implemented because of its limited ability to
permeate the cell membrane (63). Both Dp44mT and DpC were
utilized at lower concentrations because these agents show far
higher membrane permeability and demonstrate marked iron
chelation efficacy (34 –36). Bp2mT, Dp44mT, and DpC were
freshly dissolved in dimethyl sulfoxide (DMSO) and diluted in
culture media (final [DMSO] � 0.1%).

Protein extraction and Western blotting

Total protein was extracted using standard procedures in our
laboratory (14). Western blot analysis was performed as
described previously (77). The primary antibodies used were
against human NDRG1 (1:2000 dilution) (Cat. # ab37897;
Abcam Inc., Cambridge, MA), EGFR (Cat. # 2085), pEGFR
(Tyr-1068) (Cat. # 3777), PTEN (Cat. # 9188), MIG6 (Cat. #
2440), HIF-1� (1:1000 dilution) (Cat. # ab82832; Abcam); �-ac-
tin (1:10,000 dilution) (Sigma-Aldrich). The secondary anti-
bodies implemented were anti-goat, anti-rabbit, and anti-
mouse (Sigma-Aldrich), each at a dilution of 1:10,000. All
antibody dilutions were performed according to the manufa-
cturer’s instructions. EGFR, pEGFR(Tyr-1068), PTEN, and
MIG6 antibodies were all from Cell Signaling.

Immunofluorescence and confocal microscopy

Immunofluorescence was performed as described (14).
Images were captured using a Zeiss LSM 510 Meta Spectral
Confocal Microscope (63�) (Zeiss, Jena, Germany). Raw
images were analyzed using AxioVision software (Carl Zeiss,
Australia). The primary antibodies used were EEA1 (Cat. #
ab2900; Abcam), LAMP2 (Cat. # 25631), NDRG1 (Cat. #
WH0010397M3; Sigma-Aldrich), and MIG6 (Cat. # PA660708;
Thermo Fisher Scientific).

Co-immunoprecipitation

Co-immunoprecipitation was performed using Dynabeads Pro-
tein G (Life Technologies) following the manufacturer’s instruc-
tions. Briefly, cells were washed with ice-cold PBS and lysed using
the IP Lysis Buffer (Pierce) containing protease inhibitors (Roche

Diagnostics). Protein (400 �g) was incubated with either mono-
clonal NDRG1 antibody (1:2000 dilution) (Cat. # ab37897;
Abcam), EGFR antibody (Cat. # 2085; Cell Signaling Technology),
or MIG6 antibody (Cat. # 2440; Cell Signaling Technology) over-
night at 4 °C. This mixture was added to 30 �l of Dynabeads Pro-
tein G and incubated for 3 h at 4 °C. The beads were then washed
three times with ice-cold PBS, and the protein was eluted using
the LDS Loading Buffer. Samples were then heated at 95 °C
for 5 min and placed on a magnet, and equal amounts of
supernatant were loaded and separated on a 10% SDS-PAGE
gel. Then NDRG1, MIG6, or EGFR were detected by West-
ern blotting. Notably, control IP experiments using an IgG
isotype control antibody (Cat. # 3900; Cell Signaling Tech-
nology) were performed under the same conditions. No pull-
down was observed when lysates were incubated with the
IgG control antibody (Fig. S5). This demonstrates that there
was no nonspecific binding to the antibody.

RT-PCR and mRNA analysis

mRNA was isolated using TRIzol® (Thermo Fisher) and semi-
quantitative RT-PCR performed using primers for NDRG1
(forward, 5�-GGATCAGTTGGCTGAAAT-3�; reverse, 5�-ATC-
TTGAGTAGGGTGGTCTT-3�) (size: 513 bp), MIG6 (forward,
5�-AGGCACAATGTCAATAGC A-3�; reverse, 5�-AATCT-
TCGGTGGGTCTG-3�) (size: 550 bp), EGFR (forward, 5�-TGG-
AGGGTGAGCCAAGGG-3�; reverse, 5�-CCAGCAGCAAGAG-
GAGGG-3�) (size: 404 bp), and �-actin (forward, 5�-CCCGCCG-
CCAGCTCACCATGG-3�; reverse, 5�-AAGGTCTCAAACA-
TGATCTGGGTC-3�) (size: 397 bp) by standard procedures (78).
RT-PCR was semi-quantitative, as demonstrated by an optimiza-
tion protocol showing it was in the log-phase of amplification.
�-actin was used as a loading control.

Densitometry

Densitometry was performed using Quantity One software
(Bio-Rad) and normalized using the relative �-actin loading
control for protein.

Statistics

Data are mean � S.D. (number of experiments) and were
compared using Student’s t test. Results were considered signif-
icant when p �0.05.
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