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tiple cranial sutures. Around 30% of craniosynostosis oc-
curs within a characterised craniofacial syndrome (syn-
dromic craniosynostosis) with a genetic cause, whilst the 
majority of non-syndromic cases have a de novo cause 
(non-syndromic craniosynostosis) [Johnson and Wilkie, 
2011]. The molecular basis for craniosynostosis is com-
plex: for example, a genetic cause such as a dominant mu-
tation within one of the fibroblast growth factor receptor 
( FGFR ) 1, 2, and 3 genes are well known; yet, environ-
mental factors, most notably intra-uterine head con-
straint, have also been hypothesised as among the predis-
posing factors to this condition [Muenke et al., 1994, 
1997; Reardon et al., 1994; Johnson and Wilkie, 2011]. 
The phenotypic consequence of craniosynostosis is skull 
shape distortion with secondary sensory-neurological 
deficits through an increase of intracranial pressure 
[Derderian and Seaward, 2012]. Typically,  FGFR  muta-
tions are responsible for the crouzonoid phenotype com-
prising of complex craniosynostosis, midfacial hypopla-
sia, strabismus, and brachycephaly [Johnson and Wilkie, 
2011]. As a result of craniosynostosis, symptoms include 
optic atrophy, blindness, and hearing deficits [Derderian 
and Seaward, 2012]. There is currently no pharmacologi-
cal treatment for craniosynostosis, with repeating surgi-
cal modalities as the primary option to accommodate 
normal brain growth by correcting skull dysmorphology 
and reducing intracranial pressure, a procedure known as 
craniectomy [Johnson and Wilkie, 2011]. Specifically, 
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 Abstract 

 Craniosynostosis is a common craniofacial birth defect. This 
review focusses on the advances that have been achieved 
through studying the pathogenesis of craniosynostosis us-
ing mouse models. Classic methods of gene targeting which 
generate individual gene knockout models have successful-
ly identified numerous genes required for normal develop-
ment of the skull bones and sutures. However, the study of 
syndromic craniosynostosis has largely benefited from the 
production of knockin models that precisely mimic human 
mutations. These have allowed the detailed investigation of 
downstream events at the cellular and molecular level fol-
lowing otherwise unpredictable gain-of-function effects. 
This has greatly enhanced our understanding of the patho-
genesis of this disease and has the potential to translate into 
improvement of the clinical management of this condition 
in the future.  © 2018 S. Karger AG, Basel 

 Craniosynostosis is a common feature of craniofacial 
birth defects, with a prevalence of 1:   2,500 births [Cohen 
and Kreiborg, 1992]. It is characterised by premature fu-
sion of calvarial bones and can occur along single or mul-
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surgical interventions aim to re-open the suture (distrac-
tion osteogenesis) with calvarial remodelling [Park and 
Yoon, 2012].

  Historically, a mutation in the  MSX2  (Msh homeobox 
2) gene was first to be associated with syndromic cranio-
synostosis, eliciting a clinical phenotype known as Boston 
type craniosynostosis [Jabs et al., 1993]. Mutations in 
genes encoding FGFRs were identified later and are per-
haps the most common genes involved in syndromic cra-
niosynostosis [Wilkie, 2005]. The most notable charac-
teristics of craniofacial dysmorphology are often referred 
to as the crouzonoid phenotype, with coronal synostosis 
being the most common type of suture fusion [Wilkie and 
Morriss-Kay, 2001]. This usually results from autosomal 
dominant mutations that constitutively activate the FGF 
receptor and as such can be thought of as gain-of-func-
tion (GOF) mutations [Wilkie, 2005]. A generalisation is 
that the craniofacial spectrum elicited by FGFRs signal-
ling misregulation will depend on the tissue specificity 
and precise allelic mutation within the receptor gene 
[Wilkie, 2005]. Allelic mutations affecting the ligand-
binding domain (S252, P253, C278, and C342) account 
for 80% of all craniosynostosis cases. An interesting ob-
servation first mentioned by Wilkie [2005] is that identi-
cal substitutions across all FGFR paralogues are con-
served at equivalent positions along the gene. For exam-
ple, an amino acid change within the linker region of each 
receptor such as Proline 250 to Arginine (p.Pro250Arg) 
gives rise to either Pfeiffer (FGFR1), Apert (FGFR2), or 
Muenke (FGFR3) syndromes, with coronal synostosis be-
ing a common phenotype of all 3 [Wilkie, 2005]. FGFR1, 
2, and 3 are all expressed along the edges of the calvarial 
bones with FGFR2 predominant in the osteogenic front 
[Iseki et al., 1999; Johnson et al., 2000]. However, the spa-
tial localisation of the various splice forms is not well 
characterised due to their high sequence homology. In-
stead, it is mainly through isoform-specific knockouts in 
mouse models that their individual functions have been 
delineated (see below).

  Undeniably, mouse models have offered a significant 
platform to study human disease progression, and gener-
ating models carrying specific knockin mutations can 
help to address questions concerning the phenotypic di-
versity caused by the various mutations identified in pa-
tients. Whilst a large body of research has focussed on the 
genomic landscape, the biochemical and transcriptomic 
consequences that influence cellular activity in vivo   still 
remains to be fully elucidated. In order to advance trans-
lation to clinical practice, it will be critical to address the 
aberrant mechanisms that lead toward these craniofacial 

abnormalities. In this review, we will provide an overview 
of the currently available mouse models that have been 
associated with various forms of syndromic craniosynos-
tosis ( Table 1 ). Finally, we will draw conclusions about 
the work done so far and make suggestions where future 
research into this area is headed.

  FGF Signalling-Related Mouse Models of Human 

Syndromic Craniosynostosis 

 Fibroblast Growth Factor Receptors 
 FGFR1 
 Mutations in  FGFR1  have been reported in Kallman, 

Jackson-Weiss, Muenke, and Pfeiffer syndromes [Ornitz 
and Itoh, 2015]. In addition to the common craniofacial 
abnormalities, severe Pfeiffer syndrome patients exhibit 
limb and digit abnormalities [Muenke et al., 1994]. Spe-
cifically, these patients have varying degrees of syndac-
tyly, finger truncation, broad digits, and short limbs 
[Muenke et al., 1994]. The GOF p.P252R substitution re-
sponsible for Pfeiffer syndrome was originally identified 
in the early 1990s, affecting exon 5 of  FGFR1 , common to 
both splice forms [Muenke et al., 1994]. The mutation 
was eventually reproduced in the mouse genome, creat-
ing a model for Pfeiffer syndrome ( Fgfr1  P250R/+ ) with bi-
coronal craniosynostosis along with enhanced expression 
of osteogenic genes [Zhou et al., 2000]. Additionally, 
these mice have increased cell proliferation at postnatal 
day 5 in the sutures. On the other hand, loss-of-function 
(LOF) mutations (i.e., G237S, P722H, and N724K) in this 
receptor are more usually associated with hormone dys-
regulation than with skeletal defects and are related to 
Kallman syndrome [Pitteloud et al., 2006].  Fgfr1  is ex-
pressed prominently in the distal limb bud between 
mouse embryonic day (E) 8.5–12.5 and is required for its 
correct initiation and outgrowth [Li et al., 2005; Verhey-
den et al., 2005]. Conditional inactivation of  Fgfr1  –/–  in 
the limb bud mesenchyme ( T  Cre ) do result in long bone 
and digital defects during later stages of development, 
similar to those in Pfeiffer patients [Li et al., 2005; Ver-
heyden et al., 2005]. Therefore, the differential phenotype 
elicited by LOF mutations in humans and knockout mice 
suggests dosage sensitivity of FGFR1 signalling.

  Complete abrogation of FGFR1 signalling is highly po-
tent, and embryonic lethality is consistently reported 
throughout the literature [Deng et al., 1994; Yamaguchi 
et al., 1994]. Multiple strategies have been adopted to 
ameliorate this problem, including generation of hypo-
morphic models by reducing the expression of full length 



 Lee/Stanier/Pauws

 

 Mol Syndromol 2019;10:58–73 
DOI: 10.1159/000491004

60

 FGFR1 , mutating binding sites for FRS2 on  Fgfr1 , or pre-
venting TRK autophosphorylation [Partanen et al., 1998]. 
Additionally, Partanen et al. [1998] have achieved iso-
form-specific knockout to exons 8 (IIIb) and 9 (IIIc) by 

inserting a stop codon into these exons.  Fgfr1b  appears 
to be the major player in axial skeleton development, as 
 Fgfr1b  –/–    mice display vertebrate column truncations and 
limb abnormalities, despite the craniofacial skeleton re-

Table 1.  Overview of mouse models that display features of a syndromic craniosynostosis phenotype

Gene Mutation/transgene allele Human syndrome (OMIM) Affected sutures Mechanism Reference

Fgf9 N143T SYNS3 (612961) coronal LOF Harada et al., 2009
Fgf3 mutagenesis Crouzon (123500) coronal overexpression Carlton et al., 1998
Fgf4 mutagenesis Crouzon (123500) coronal overexpression Carlton et al., 1998

Fgfr1 P250R Pfeiffer (101600) coronal, interfrontal, sagittal GOF Zhou et al., 2000
Fgfr2 C342Y Crouzon (123500) coronal GOF Eswarakumar et al., 2004

W290R Crouzon (123500) coronal GOF Eswarakumar et al., 2004
S252W Apert (101200) coronal, sagittal, lambdoid GOF Wang et al., 2005
S250W Apert (101200) coronal, sagittal, lambdoid GOF Chen et al., 2003
Y394C Beare-Stevenson (123790) coronal GOF Wang et al., 2012

Fgfr2c Fgfr2c–/– NA coronal LOF Eswarakumar et al., 2002
Fgfr2c flox, Fgfr2cflox/– NA coronal LOF Hajihosseini et al., 2001

Fgfr2b Fgfr2b–/– NA squamous temporal-parietal LOF De Moerlooze et al., 2000
Fgfr3 P244R Muenke (602849) coronal GOF Twigg et al., 2009

Twist1 Twist1+/– Saethre-Chotzen (101400) coronal, sagittal, lambdoid LOF Chen, 1995; Behr, 2011

Tcf12 Tcf12flox/–, Twist1+/–, EIIaCRE/+ Saethre-Chotzen (101400) coronal, sagittal, lambdoid LOF Sharma et al., 2013

Id1 Id1+/–, Twist1+/– Saethre-Chotzen (101400) coronal, sagittal, lambdoid LOF Connerney et al., 2008
Id3 Id1+/–, Twist1+/– Saethre-Chotzen (101400) coronal, sagittal, lambdoid LOF Connerney et al., 2008

Msx2 Timp1-P7H Boston-type craniosynostosis (604757) coronal, sagittal, lambdoid GOF Liu et al., 1995
CMV-P7H Boston-type craniosynostosis (604757) coronal, sagittal, lambdoid GOF Liu et al., 1995
CMV-WT Boston-type craniosynostosis (604757) coronal, sagittal, lambdoid overexpression Liu et al., 1995

Jag1 Jag1+/– Alagille (118450) no phenotype LOF Yen et al., 2010
Jag1flox/–, Twist1+/–, Mesp1CRE/+ Alagille (118450) coronal, sagittal, lambdoid LOF Yen et al., 2010

Gli3 Gli3Xt-J/Xt-J Carpenter (201000) lambdoid LOF Hui and Joyner, 1993;
Rice et al., 2010

Rab23 Rab23–/– Carpenter (201000) embryonic lethal LOF Eggenschwiler et al., 2001

Megf8 C193R Carpenter (201000) sutures not analysed LOF Aune et al., 2008

Masp1 Masp1/3+/– (double KO) 3MC (257920) sutures not analysed LOF Takahashi et al., 2008
Masp3 3MC (257920) sutures not analysed LOF Takahashi et al., 2008

Hdac4 Hdac4–/– Brachydactyly mental retardation (600430) sutures not analysed LOF Vega et al., 2004

Tgfbr1 M318R Loeys-Dietz (613795) coronal GOF Gallo et al., 2014
Tgfbr2 G357W Loeys-Dietz (613795) no suture phenotype GOF Gallo et al., 2014

Nell1 WT (CMV) NA coronal, sagittal, posterior frontal overexpression Zhang et al., 2002

Axin2 Axin2–/– NA coronal, interfrontal LOF Yu et al., 2005

Dusp6 exon 3 STOP, Dusp6+/– NA coronal LOF Li et al., 2007
Dusp6–/– NA coronal LOF Li et al., 2007

Gdf6 Gdf–/– NA coronal LOF Settle et al., 2003

Pdgfrα D846V (R26R) NA coronal, interfrontal overexpression Moenning et al., 2009
D842V/+, Meox2CRE/+ NA coronal GOF He and Soriano, 2017
D842V/+, Mesp1CRE/+ NA coronal, lambdoid GOF He and Soriano, 2017

EphA4 EphA4–/– NA coronal LOF Ting et al., 2009
Twist1+/–, EphA4+/– NA coronal LOF Ting et al., 2009

Runx2 Prx1-Runx2 NA pan-synostosis overexpression Maeno et al., 2011

Erf Erf–/– NA no phenotype LOF Papadaki et al., 2007
Erf flox, Erfflox/+ NA no phenotype LOF Twigg et al., 2013
Erf flox, Erfflox/– NA coronal, sagittal, lambdoid LOF Twigg et al., 2013

Frem1 Frameshift (T>C) at intron 25, 
Frem1bat/+

NA posterior frontal hypomorph Smyth et al., 2004

exon 2 deletion, Frem1QBrick/+ NA posterior frontal LOF Vissers et al., 2011

 LOF, loss of function; GOF, gain of function; NA, not associated (with a human syndrome).
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mains largely normal. Thus, the lack of a craniofacial phe-
notype exhibited by FGFR1 LOF implies its role in cra-
niofacial development is minor. However, the  Fgfr1c  
knockout mouse is embryonic lethal, suggesting the im-
portance of the mesodermal isoform in early embryogen-
esis [Partanen et al., 1998].

  FGFR2 
 FGFR2 is a positive regulator for osteoblast differen-

tiation and manipulating this signalling pathway has con-
sequences for osteoblastogenesis. It is well characterised 
that  Runx2 , the master regulator for osteoblast differen-
tiation, is downstream of FGFR2 signalling [Miraoui et 
al., 2009]. Therefore, a substantial proportion of clinical 
syndromes and bone diseases have been related to signal-
ling misregulation caused by this receptor. The role of 
FGFR2 was first characterised using knockout models. 
Several groups have generated  Fgfr2  knockout lines with 
similar phenotypes, yielding a series of gastrulation, pla-
cental and osteogenesis defects [Arman et al., 1998, 1999; 
Xu et al., 1998; Yu et al., 2003]. The first FGFR2 knockout 
was generated by targeted disruption to the kinase do-
main of the receptor, preventing autophosphorylation 
[Arman et al., 1998]. Other  Fgfr2  knockouts followed, by 
disrupting immunoglobulin loops along the receptor 
gene [Xu et al., 1998]. Xu et al. [1998] generated a knock-
out by removing exons encoding the IgIII loop respon-
sible for ligand specificity. Despite homozygous lethality 
at E10.5, this study was the first to gain insights into the 
role of FGFR2 in limb development as these mutants fail 
to develop limb buds due to a loss of paracrine signalling 
that is responsible for tissue outgrowth [Xu et al., 1998]. 
It was later discovered from the  Fgfr2b  –/–  model that the 
IIIb isoform is critical for limb outgrowth as these mice 
have a complete loss of the appendicular skeleton [De 
Moerlooze et al., 2000; Revest et al., 2001]. FGF10 is a 
likely binding partner for FGFR2b as  Fgf10  –/–  mice ex-
hibit striking similarities to  Fgfr2  –/–  mice   [Min et al., 1998; 
Sekine et al., 1999]. On the other hand,  Fgfr2c  –/–  mice il-
lustrate that this isoform is required for normal craniofa-
cial development as bi-coronal synostosis and underde-
velopment of the auditory bulla were reported character-
istics [Eswarakumar et al., 2002]. Others have also 
generated conditional  Fgfr2  knockouts to study tissue-
specific effects: conditional knockout in the mesenchyme 
using  Dermo1  Cre  leads to defects in both axial and cranio-
facial skeleton [Yu et al., 2003]. Specifically, these mice 
have decreased bone density, truncated femurs owing to 
insufficient chondrocyte and osteoblast proliferation, 
brachycephaly, and dwarfism [Yu et al., 2003].

  A large cohort of characterised craniofacial syndromes 
is commonly associated with  FGFR2  germline mutations 
[Wilkie, 2005]. GOF mutations in the  FGFR2  gene are 
characteristic of Apert, Crouzon, and Beare-Stevenson 
syndromes [Wilkie, 2005] and establish that FGFR2 sig-
nalling is a key player in craniofacial development. Crou-
zon syndrome is most commonly caused by a substitution 
mutation in  FGFR2c  (FGFR2c-p.C342Y; at the DIII Ig 
loop) and is autosomal dominant [Reardon et al., 1994]. 
The substitution of a cysteine to a tyrosine residue results 
in the stabilisation of intermolecular disulphide bonds at 
the receptor extracellular domains, leading to constitu-
tive activation [Eswarakumar et al., 2005]. The pheno-
types associated with the IIIc isoform in Crouzon syn-
drome are mainly craniofacial, whilst the p.S252W mu-
tation found in Apert syndrome is associated with 
additional limb phenotypes such as truncation and syn-
dactyly, since the mutation affects both FGFR2 splice 
variants [Johnson and Wilkie, 2011]. Mouse models are 
available for the most common FGFR2 craniofacial syn-
dromes:  Fgfr2c  C342Y/+  (Crouzon),  Fgfr2c  W290R/+    (Crou-
zon), and  Fgfr2  S250W/+  (Apert) [Chen et al., 2003; Eswa-
rakumar et al., 2004; Wang et al., 2005; Mai et al., 2010]. 
A common characteristic in these models are shortened 
midface, brachycephaly, and coronal suture obliteration, 
which mimicks the human disease phenotype. Interest-
ingly, none of these models, including Apert mice, display 
a limb phenotype. On a cellular level, these mutations af-
fect FGFR2 function by altering osteoblast proliferation, 
differentiation, and apoptosis in the suture. Eswarasku-
mar et al. [2004] reported around E13.5 an early increase 
in cellular activity at the osteogenic front that is respon-
sible for suture obliteration in  Fgfr2c  C342Y/+ . Chen et al. 
[2003], however, reported increased apoptosis as being a 
key player for coronal synostosis development in a sepa-
rate mouse model for Apert syndrome ( Fgfr2  S250W/+ ).

  It is not well understood how a separate allelic muta-
tion, also affecting the transmembrane domain of FGFR2, 
gives rise to Beare-Stevenson syndrome ( Fgfr2  Y394C/+ ) 
[Wang et al., 2012]. Similar to the C342Y mutation, FG-
FR2-Y394C stabilises intermolecular bonds of unpaired 
cysteine residues leading towards constitutive activation. 
However, despite showing craniofacial similarities, 
Beare-Stevenson patients have additional skin abnormal-
ities including cutis gyrate (thickened scalp) and acantho-
sis nigricans (hyper pigmentation) [Wang et al., 2012]. A 
mouse model has been generated to study this mutation 
( Fgfr2  Y394C/+ ), but the pathogenic origin of the cutaneous 
phenotype still remains unclear [Wang et al., 2012]. In 
addition to introducing GOF mutations, increasing gene 
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dosage also allows the identification of novel phenotypes 
in animal models. For example, a detailed analysis of 
 Fgfr2c  C342Y/C342Y  homozygotes identified exencephaly, 
overt cleft of the secondary palate, and a series of segmen-
tation defects along the axial skeleton [Peskett et al., 2017].

  Due to a common craniofacial phenotype elicited in 
animal models for syndromic synostosis, a robust plat-
form to test novel therapeutic approaches and evaluate 
the safety of potential clinical treatments is provided. For 
instance, Shukla et al. [2007] attempted to rescue the 
coronal suture in  Fgfr2  S252W/+  mice through knockdown 
of the RAS-MAPK pathway with short-hairpin RNA 
(shRNA) or MEK-ERK inhibition using U0126 treat-
ment. Despite some rescue of the suture, longitudinal 
evaluation of these mice revealed growth restriction in a 
proportion of treated animals along with spontaneous 
unexplained death in others [Shukla et al., 2007]. Indeed, 
the activating nature of FGFR2 has led to the assumption 
that attenuation of downstream signalling is sufficient to 
rescue craniofacial malformations [Shukla et al., 2007; 
Pfaff et al., 2016]. Several studies were able to demon-
strate this in vivo: Firstly, craniofacial morphology was 
rescued when a mutant  Frs2α  allele was introduced onto 
the  Fgfr2c  C342Y/+  mouse, which prevented activation of 
the downstream RAS-MAPK pathway [Eswarakumar et 
al., 2006]. Secondly, systematic MAPK knockdown using 
shRNA or U0126 treatment was also sufficient to rescue 
craniosynostosis in  Fgfr2  S252W/+  [Shukla et al., 2007]. 
However, the idea of simply dampening the signal as a 
potential therapy may well be over-simplistic given the 
complexity of pathogenic FGFR2 signalling. Snyder-
Warwick et al. [2010] examined the nature of FGF signal-
ling output in the palates of the Crouzon mouse model. 
The authors found that  Spry2 ,  Spry4 ,  Etv5 ,   and  Dusp6 , all 
direct targets of FGF signalling, were downregulated at 
multiple developmental stages [Snyder-Warwick et al., 
2010]. At the cellular level, these embryos had reduced 
cellular proliferation that resulted in a delay to palatal 
shelf elevation. Moreover, isoform-specific knockout of 
 Fgfr2c  ( Fgfr2c  –/– ) was sufficient to phenocopy the effects 
of  Fgfr2c  C342Y/+  with apparent coronal synostosis [Eswar-
akumar et al., 2002]. The paradoxical nature of FGFR2c 
signalling remains to be elucidated, but it is generally ac-
cepted that an intricate balance of signalling activity is 
required for normal development.

  FGFR3 
 FGFR3 is a negative regulator for bone formation 

[Deng et al., 1996]. A number of  Fgfr3  knockout lines us-
ing different targeting methodologies have been report-

ed, all showing consistent bone overgrowth phenotypes 
[Colvin et al., 1996; Deng et al., 1996; Eswarakumar and 
Schlessinger, 2007]. The most notable characteristic is 
that these mice are larger in size as a consequence of ec-
topic chondrogenesis [Colvin et al., 1996; Deng et al., 
1996]. Despite this, their bones have increased porosity, 
most likely due to a reduction in bone mineralisation. 
Analysis of isoform-specific knockouts revealed that the 
 Fgfr3c  isoform is responsible for the hyperplastic pheno-
type [Eswarakumar and Schlessinger, 2007]. In turn, an 
actived FGFR3 pathway through GOF mutations in 
 FGFR3  leads to an increased negative regulation of endo-
chondral bone formation and is associated with short-
limbed dwarfism caused by skeletal dysplasias such as 
achondroplasia and thanatophoric dysplasia [Rousseau 
et al., 1994, Shiang et al., 1994, Bellus et al., 1995]. The first 
missense mutation for achondroplasia was identified as a 
glycine 380 to arginine substitution (FGFR3-p.G380R) 
within the transmembrane domain of FGFR3 [Shiang et 
al., 1994; Bellus et al., 1995]. This mutation decreases re-
ceptor trafficking from the membrane, resulting in in-
creased levels of phosphorylation during exposures to 
FGF ligands and signalling activation [Monsonego-Or-
nan et al., 2000]. Histological analysis reveals a saturation 
of FGFR3 at mutant mouse growth plates, coincided with 
fewer chondrocytes in growth plates and hypertrophic 
zones [Monsonego-Ornan et al., 2000; Segev et al., 2000]. 
Several mouse models have been made for achondropla-
sia such as  Fgfr3  G374R/+    and  Fgfr3  G369C/+ , which also affect 
the transmembrane domain [Chen et al., 1999; Wang et 
al., 1999]. Other models integrated a transgene contain-
ing the human FGFR3-p.G380R cDNA into the mouse 
genome, phenocopying the human disease [Segev et al., 
2000; Lee et al., 2017]. In addition to the dwarfism phe-
notype, these mice also display brachycephaly and brain 
distortion [Wang et al., 1999]. Thanatophoric dysplasia is 
the most severe form of dwarfism [Tavormina et al., 
1995]. The genetic differences that separate acondropla-
sia and thanatophoric dysplasia can be explained by dif-
ferent modes of receptor activation. Mutations that result 
in achondroplasia are caused by ligand-dependent recep-
tor over-activation, whilst mutant FGFR3 for thanato-
phoric dysplasia are constitutively active [Ornitz and 
Itoh, 2015]. Mutations responsible for thanatophoric 
dysplasia stabilises intramolecular bonds of FGFR3 at ei-
ther the transmembrane domain ( Fgfr3  S365C/+ ) or the li-
gand-specific domain ( Fgfr3  Y367C/+ ) [Chen et al., 2001; 
Pannier et al., 2009; Ornitz and Itoh, 2015]. In humans, 
a further mutation affecting the TRK domain, e.g., 
FGFR3-p.K650E, was identified, but a mouse model is 
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not yet available, perhaps owing to the potency of muta-
tions affecting the kinase domain [Ornitz and Itoh, 2015]. 
There have been reports linking craniosynostosis to 
achondroplasia and thanatophoric dysplasia in the litera-
ture, but these links are not yet well established. For ex-
ample, some patients with thanatophoric dysplasia exhib-
it a cloverleaf skull, suggestive of severe craniosynostosis 
[Tavormina et al., 1995], another mutation for achondro-
plasia (FGFR3-p.A391E) has been identified in Beare-
Stevenson patients [Meyers et al., 1995] and similarly in 
the mouse, where an isolated study reports coronal syn-
ostosis in  Fgfr3  G380R/+  [Lee et al., 2017].

  The p.P250R mutation is the most common mutation 
identified in all 3 FGFR paralogues [Wilkie, 2005]. In 
FGFR3, this leads to Muenke syndrome, where unilateral 
or bilateral coronal synostosis is an apparent characteris-
tic [Muenke et al., 1994]. The p.P250R mutation affects 
both FGFR3 isoforms and results in increased affinity for 
FGF ligands [Muenke et al., 1994; Wu et al., 2009]. A 
knockin of this mutation in the mouse recapitulated 
Muenke syndrome ( Fgfr3  P244R/+ ) [Twigg et al., 2009]. 
However, the craniofacial phenotype was incompletely 
penetrant due to background differences between mouse 
strains. Despite the variability observed in the general 
craniofacial skeleton, it has been a useful mouse model for 
studying inner ear development [Mansour et al., 2009, 
Mansour and Urness, 2013]. Muenke individuals were re-
ported to have poor sensory reception towards the low 
end of the auditory spectrum [Mansour et al., 2009]. 
Analysis of the  Fgfr3  P244R/+  mouse identified multiple dis-
ruptions to the cochlear duct cytoarchitecture with alter-
ations to the overall balance of support cells, with bias 
towards Dieter cell fate differentiation [Mansour et al., 
2009; Mansour and Urness, 2013]. This change of fate was 
largely due to the mutation causing the receptor-losing 
ligand specificity, allowing ligands to bind promiscuous-
ly to both FGFR3b and FGFR3c isoforms [Mansour and 
Urness, 2013]. Genetic rescue of the ear phenotype can be 
achieved by reducing expression of  Fgf10 , a ligand spe-
cific to both the FGFR3b isoform, in compound mutants 
( Fgfr3  P244R/+ ;  Fgf10  +/– ) [Mansour and Urness, 2013]. Per-
haps this study offers a useful insight into the reason why 
craniosynostosis does not develop in the Muenke mouse 
model, since in addition to background strain effects, 
available ligands in the coronal suture can act as limiting 
factors to the proposed phenotype.

  FGF Ligands 
 The embryonic coronal suture expresses a repertoire of 

FGF ligands [Hajihosseini and Heath, 2002]. However, it 

is not known how FGF ligands coordinate craniofacial de-
velopment or regulate suture patency. The question is 
complex largely due to FGF ligands having multiple af-
finities toward different FGF receptors [Zhang et al., 
2006]. Therefore, abrogation of FGF genes in vivo is like-
ly to result in a redundant phenotype [Wright and Man-
sour, 2003; Zhang et al., 2006; Barak et al., 2012]. In light 
of this, determining whether a phenotype is a consequence 
of a single FGF ligand or a combination working synergis-
tically remains a challenge. FGF ligands are abundant dur-
ing development, and any genetic perturbation will most 
likely result in defects to organogenesis. One of the main 
purposes of FGF signalling in development is to mediate 
cross talks between the mesenchyme and epithelium [Or-
nitz and Itoh, 2015]. The most common FGF ligands in-
volved in this process include epithelially expressed FGF9 
and FGF10 in the mesenchyme, each signalling recipro-
cally to their tissue-specific FGFR isoforms [Ornitz and 
Itoh, 2015]. An example of tissue-specific interaction can 
be seen in the developing limb bud, which institutes a pos-
itive feedback loop regulating its outgrowth [Revest et al., 
2001; Li et al., 2007]. Thus, genetically disrupting the tight 
coordination results in a series of skeletal dysplasias in the 
axial skeleton, largely affecting bone mass, densities, and 
stunted growth [De Moerlooze et al., 2000; Revest et al., 
2001; Eswarakumar et al., 2002, 2004]. In addition to ge-
netic approaches, surgical bead implantations soaked in 
different FGF ligands have been fundamental to under-
standing osteogenesis in vivo [Iseki et al., 1999]. Explicitly, 
this classical embryology approach is well characterised to 
investigate the impact of specific ligands on the calvaria, 
e.g. FGF2, to investigate ectopic osteogenesis [Iseki et al., 
1999]. All the FGF ligands are expressed in the coronal 
suture with the exception of FGF3 and FGF4 [Hajihosse-
ini and Heath, 2002]. To date, there has not been a report 
of syndromic craniosynostosis associated with ligand 
function other than FGF9, although mutations in  FGF3 , 
 FGF8 , and  FGF10  are sufficient to disrupt overall cranio-
facial development [Ornitz and Itoh, 2015].

  Multiple synostoses syndrome 3 (SYNS3) is character-
ised by multiple fusion of synovial joints in the axial skel-
eton [Wu et al., 2009]. It is autosomal dominant and is 
caused by a missense mutation in FGF9 (FGF9-p.S99N) 
[Wu et al., 2009]. A phenotype closely resembling mul-
tiple synostoses syndrome in the mouse, with fusions of 
the elbow and knee, has been reported in the  Fgf9  N143T/+  
mouse [Harada et al., 2009]. In addition to elbow-knee 
synostoses, these mice exhibit coronal synostosis. The 
consequence of the mutation has led to an LOF for FGF9-
heparin binding, which affects overall FGFR signalling 
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potency. This protein interaction impairment resulted in 
hyper-diffusibility of the ligand in the extracellular ma-
trix, encroaching into the joint and suture mesenchyme 
to induce synostosis. Additionally, mouse mutants carry-
ing the missense mutation have ectopic expression of 
multiple osteoblast precursor markers such as  Runx2  and 
 Osteopontin  in the coronal suture mesenchyme at E16.5 
[Harada et al., 2009]. FGF9 has high affinity towards the 
IIIc isoforms, in particular to FGFR3c [Zhang et al., 2006]. 
Thus, coronal synostosis for Muenke syndrome is indi-
rectly linked to FGF9, as the FGFR3-p.P250R mutation 
causing Muenke syndrome affects the affinity of FGFR3c 
to FGF9 [Muenke et al., 1997; Harada et al., 2009].

  Due to the promiscuity of ligand-receptor interaction, 
it is possible that ectopic expression of FGF ligands can 
also drive tissue-specific phenotypes, provided the recep-
tors are expressed in the right tissue. In this scenario, 
Carlton et al. [1998] successfully phenocopied the Crou-
zon mouse model ( Fgfr2c  C342Y/+ ) by disrupting the inter-
genic regions of  Fgf3  and  Fgf4 , normally absent from the 
wild-type suture, with midfacial hypoplasia, brachyceph-
aly, and bi-coronal synostosis [Carlton et al., 1998]. Phe-
notypic redundancy is a consequence of ligand compen-
sation. For example, in respect to FGF9, a fully penetrant 
urogenital tract defect is only observed when both  Fgf9  
and  Fgf20  are knocked out [Barak et al., 2012]. This is 
similar during cardiovascular morphogenesis, with par-
tial penetrance when single deletions to  Fgf3  and  Fgf10 
 occurred together [Urness et al., 2011].

Together  , the relatively small number of syndromic 
craniosynostosis cases associated with mutations in FGF 
ligands is likely due to ligand redundancies, especially 
given that the coronal suture expresses 20 of the 22 FGF 
ligands [Hajihosseini and Heath, 2002]. The spatial-tem-
poral dynamics of FGF signalling, along with the diver-
sity of FGF ligands functioning synergistically, makes bi-
ological data difficult to interpret. As biological signals 
are conveyed through the receptors, targeting FGFRs ap-
pear to yield more substantial phenotypes compared to 
those observed when targetting ligands while allowing di-
rect interpretation to its function.

  Other Mouse Models of Human Syndromic 

Craniosynostosis 

 Twist1 
 The Twist gene family encodes 2 basic-helix-loop-he-

lix transcription factors:  Twist1  and  Twist2  (also known 
as  Dermo1 ) [Qin et al., 2012]. Originally,  Twist1  was dem-

onstrated to be required for neural tube morphogenesis, 
while  Twist2  was involved in regulating cytokine gene ex-
pression [Chen and Behringer, 1995; Šošić et al., 2003]. 
 Twist1  plays a variety of roles in mesoderm development 
focussing mainly in mesenchymal tissue and is expressed 
in the cranial mesenchyme [Bildsoe et al., 2013].  Twist1  
is expressed prominently in the suture mesenchyme, and 
its inactivation in mice results in coronal synostosis 
[Carver et al., 2002; Behr et al., 2011]. This is due to  Twist1  
acting as a negative regulator of bone formation where it 
prevents osteoblast differentiation through  Runx2  inhibi-
tion [Bialek et al., 2004].  Runx2 -deficient mice display de-
layed osteogenic activity in vivo, but introducing a copy 
of the  Twist1  null allele into  Runx2  +/–  ( Runx2  +/– ,  Twist1  +/– ) 
was sufficient to rescue a hypoplastic phenotype [Komo-
ri et al., 1997; Bialek et al., 2004]. Conversely, in vitro 
analysis of  Twist1  knockdown revealed decreased  Runx2  
expression with increased apoptosis [Maestro et al., 1999; 
Yousfi et al., 2001]. Additionally, mutant  Twist1  drives 
increased expression of Fgfr2 in vitro and in vivo, perhaps 
as a compensatory effect, to upregulate the sensitivity of 
FGF signalling for cellular survival [Connerney et al., 
2008; Miraoui et al., 2010]. With regard to disease patho-
genesis, autosomal inheritance of LOF mutations in 
 TWIST1  results in Saethre-Chotzen syndrome [el Ghouzzi 
et al., 1997; Howard et al., 1997]. Saethre-Chotzen pa-
tients display complex suture abolishment most notably 
coronal, posterior frontal, and lambdoid sutures with dig-
it duplication [el Ghouzzi et al., 1997; Howard et al., 
1997]. The first  Twist1  mouse mutant constructed by sub-
stituting exon 1 with a neo-cassette was described in 1995 
in a study of cranial neural tube closure [Chen and Beh-
ringer, 1995]. However, these  Twist1  homozygotes were 
embryonic lethal by E11.5.  Twist1  +/–    mice   were viable 
with partial penetrance of limb and craniofacial pheno-
types that replicated human disease according to the ge-
netic background of the animals [Bourgeois et al., 1998]. 
In addition to  Twist1  being a negative regulator for osteo-
genesis, it also functions to inhibit chondrocyte differen-
tiation.  Twist1  +/–  demonstrates enhanced chondrocytic 
activity in the coronal suture mesenchyme with upregula-
tion of chondrocyte markers such as  Sox9 ,  Collagen II , 
and  Collagen X , but its significance is currently elusive 
[Behr et al., 2011]. Contact inhibition may also play an 
important role in mediating Saethre-Chotzen syndrome, 
as both the Notch ligand Jagged1 ( Jag1 ) and the ephrin 
receptor ( EphA4 ) are downstream of  Twist1 . Conditional 
knockout of either  Jag1  or  EphA4  on a  Twist1  +/–  back-
ground augments the craniosynostosis phenotype, whilst 
removal of either  Jag1  or  EphA4  is not sufficient to drive 
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this pathogenesis [Ting et al., 2009; Yen et al., 2010]. Both 
of these studies stress the importance of contact inhibi-
tion in controlling osteoblast differentiation in the mes-
enchyme, since conditional removal leads to mis-specifi-
cation, and loss of positional information in specifying 
the suture boundary. Additionally, LOF mutations in 
 JAG1  in humans are associated with Alagille syndrome, 
linking the pathogenesis of this syndrome to Saethre-
Chotzen syndrome [Yen et al., 2010]. bHLH proteins un-
dergo a plethora of roles during development and tend to 
function as either hetero- or homodimers. bHLH pro-
teins are classified by its tissue distribution, ability to di-
merize, and DNA-binding specificities. Class I bHLH 
proteins are known as E proteins and are abundant in 
multiple tissue types, whilst Class II, e.g., Twist, have 
more restricted expression domains. Both Class I and 
Class II HLH proteins contain the basic domain and are 
DNA binding. Conversely, Class III proteins, which in-
clude Id, facilitate dimerization with E proteins and per-
turb formation of heterodimers between ClassI/II pro-
teins [Massari and Murre, 2000]. The degree of  Twist1  
syndromic craniosynostosis is related to their binding 
partners and the dimers they form. For example, a severe 
craniosynostosis phenotype is caused by a frameshift in 
 Tcf12  in a  Twist1  background ( EIIa  CRE/+ ,  Tcf12  flox/– ,  
Twist1  +/+ ) [Sharma et al., 2013].  Tcf12  is an E protein, and 
the inability to form the Twist1-Tcf12 heterodimer re-
sults in a severe phenotype. The same scenario occurs to 
LOF of bHLH inhibitors  Id1  and  Id3  under a  Twist1  het-
erozygous background, with the former showing greater 
penetrance ( Id1  +/– ,  Twist1  +/– ) [Connerney et al., 2008].

  Msx2 
 Mutations in  MSX2  are associated with Boston type 

craniosynostosis [Jabs et al., 1993]. Substitution of a his-
tidine 148 to a proline (p.His148Pro) increases the bind-
ing affinity of MSX2 to its target DNA sequence [Ma et 
al., 1996].  Msx2  is expressed in the sagittal and lambdoid 
sutures of the mouse, and its overexpression, which can 
be either of a wild-type allele or through a GOF mutation 
( Msx2  P7H/+ ), leads to narrowing of the sagittal suture and 
abnormal bone overgrowth, particularly to the parietal 
bone [Liu et al., 1995]. In contrast,  MSX2  haploinsuffi-
ciency in humans leads to an ectopic calvarial foramen 
and delayed suture closure, due to the loss of binding af-
finity to target DNA [Wilkie et al., 2000]. A similar obser-
vation is reported upon knockout of  Msx1  and  Msx2  in 
vivo [Roybal et al., 2010]. The ectopic foramen was not a 
consequence of an embryonic patterning defect, but rath-
er a mitotic decrease in the bone, likely from the ossifica-

tion centre [Ishii et al., 2003; Roybal et al., 2010].  Msx2  
and  Twist1  interact to coordinate cellular proliferation 
and differentiation: firstly, haploinsufficiency of both 
genes leads to ectopic frontal foramen formation and sec-
ondly, knockout of both alleles results in increased phe-
notypic severity [Ishii et al., 2003]. Analysis of embryos 
between E12.5 and E14.5 revealed that the pathogenesis 
is mainly a reduction of osteoblast differentiation at 
E12.5. It is interesting to note that the transcripts of these 
genes do not display the same expression pattern embry-
onically, but do lead to the same phenotypic outcome. 
Therefore, this suggests these transcription factors may 
work synergistically as a co-factor to derive the same phe-
notype at the protein level [Ishii et al., 2003].

  Hedgehog-Related Genes 
  Gli3  LOF is associated with Greig cephalopolysyndac-

tyly (GCP). GCP is an autosomal dominant disorder af-
fecting both limb and craniofacial development [Hui and 
Joyner, 1993]. The most notable characteristic includes 
supernumeric fingers (polydactyly), macrocephaly, and a 
broad forehead with an additional phenotype being lamb-
doid synostosis [Rice et al., 2010]. Gli3 is primarily a re-
pressor of Hedgehog signalling, which its LOF exacer-
bates, resulting in GCP. Specifically, GCP is caused by 
deletions to 7p13 in the human chromosome and is also 
mapped to the same region in the mouse genome [Hui 
and Joyner, 1993]. Johnson [1967] developed the first 
mouse model “Xtra Toes”,  Gli3  Xt-J/Xt-J  (Xt-J), carrying an 
intragenic deletion of  Gli3  [Johnson, 1967; Hui and 
Joyner, 1993]. Augmented Hedgehog signalling is related 
to Carpenter syndrome, through LOF to  RAB23  (Ras-
related protein Rab23) – a separate negative regulator of 
Hedgehog signalling preventing signalling transduction 
through Gli2 repression [Eggenschwiler et al., 2006; Jen-
kins et al., 2007]. Carpenter syndrome patients display 
pan synostosis, but  Rab23  –/–  mice do not recapitulate this 
phenotype and are embryonically lethal [Eggenschwiler 
et al., 2001]. Thus, the  Gli3  Xt-J/Xt-J    was used to study 
Hedgehog misregulation in craniosynostosis instead 
[Rice et al., 2010]. Further analysis of  Gli3  Xt-J/Xt-J    reveals 
ectopic osteoblast differentiation in the lambdoid su-
tures, which leads to early suture abolishment. Lambdoid 
synostosis can be rescued through augmentation of FGF 
signalling, which upregulates expression of  Twist1  [Rice 
et al., 2000; 2010]. Interestingly, missense mutations in 
human  MEGF8  (multiple EGF like domain 8) phenocop-
ies features observed in Carpenter Syndrome [Twigg et 
al., 2012]. Additionally left-right asymmetry and cardiac 
defects were also reported in a mouse mutant ( Megf-
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8  C193R/+ ) generated as a result of a large-scale mutagenesis 
screen [Aune et al., 2008; Zhang et al., 2009]. However, 
craniofacial or skeletal defects were not analysed in this 
study. It is unclear as to the role of  Megf8  during develop-
ment, but the close resemblance between  MEGF8  and 
Carpenter syndrome suggests the mechanism responsi-
ble is highly similar. One might speculate effects on early 
development, and given by the abnormalities in left-right 
asymmetry, it is likely to affect both Nodal and Hedgehog 
signalling. This is supported by the recent demonstration 
that  Megf8  dampens Hedgehog signalling in the primary 
cilia and that could explain the phenotypic similarities to 
Carpenter syndrome caused by  RAB23  mutation [Pusa-
pati et al., 2018].

  Masp1 and Colec11 
  Masp1  (mannose-associated serine protease 1),  Colec-

10 ,   and  Colec11  (Collectin subfamily 10 and 11) are com-
ponents of the lectin pathway that is associated with in-
flammation. Mutations in these genes contribute to the 
pathogenesis of 3MC syndrome [Rooryck et al., 2011; 
Urquhart et al., 2016; Munye et al., 2017] which is the 
collective term for multiple related syndromes (Car-
nevale, Mingarelli, Malpuech, and Michels syndromes) 
[Titomanlio et al., 2005]. Common clinical features in-
clude craniosynostosis, cleft palate, hypertelorism, hear-
ing deficits, growth deficiencies, and heart defects [Tito-
manlio et al., 2005], which are consequently suggested to 
be affected during development by abrogation to cyto-
kine signalling [Newton and Dixit, 2012]. Multiple ami-
no acid changes in  MASP1  and  COLEC11  have been 
identified in human patients, predominantly resulting in 
a frameshift and LOF of the mature protein [Rooryck et 
al., 2011]. There is no mouse model that describes 3MC 
at present. However, a double knockout of  Masp1  and 
 Masp3  ( Masp1/3  +/– ) is reported in the literature without 
describing any obvious role in craniofacial development 
[Takahashi et al., 2008].

  Hdac4 
 Histone deacetylases (HDAC) modulate gene expres-

sion by altering chromatin structure and repressing tran-
scription factors. Brachydactyly mental retardation syn-
drome occurs as a consequence of LOF of  HDAC4  [Wil-
liams et al., 2010], commonly due to deletion of the 
Chr2q37 region that includes the  HDAC4  gene. Clinical 
presentation of this syndrome includes craniofacial dys-
morphology with craniosynostosis, developmental delay, 
obesity, and mental deficit on the autistic spectrum [Wil-
liams et al., 2010]. HDAC4 can bind to the  Runx2  pro-

moter and as such is a regulator of the rate of ossification 
[Vega et al., 2004].  Hdac4  –/–  mice show premature ossifi-
cation of endochondral structures, whilst overexpression 
of  Hdac4  in the chondrocytic lineage ( Col2a1 - Hdac4 ) re-
sults in cartilage dysplasia [Vega et al., 2004]. However, 
the authors did not report any craniofacial abnormalities 
in the  Hdac4  knockouts. The contribution of the role of 
(endochondral) cartilage in the process of suture abolish-
ment remains elusive, despite a recent study showing that 
ectopic chondrocytes invading the suture mesenchyme 
lead to endochondral ossification in a PDGFRα mutant 
[He and Soriano, 2017].

  TGF Signalling Misregulation 
 TGFβ signalling misregulation is associated with Mar-

fan syndrome, a rare disorder occurring in approximate-
ly 1:   5,000 individuals [Judge and Dietz, 2005]. Marfan 
syndrome is a complex disease affecting multiple systems, 
including craniofacial and skeletal dysmorphology, car-
diovascular abnormalities, tissue fibrosis, ocular, and 
mental deficits [Judge and Dietz, 2005]. Loeys-Dietz dis-
ease and Shprintzen-Goldberg syndrome have a varying 
phenotypic spectrum of the described marfanoid pheno-
type [Judge and Dietz, 2005; Loeys et al., 2005; Carmignac 
et al., 2012; MacCarrick et al., 2014]. In particular, pa-
tients with marfanoid phenotype and craniosynostosis 
are commonly referred to as Shprintzen-Goldberg syn-
drome. Missense mutations in the extracellular matrix 
protein Fibrillin 1 ( FBN1 ) was first identified to be associ-
ated with Marfan syndrome and has been implicated in 
craniosynostosis [Dietz et al., 1991; Sood et al., 1996]. 
However, multiple knockin models have been described 
in the mouse without recapitulating craniosynostosis 
[Pereira et al., 1999; Judge et al., 2004; Ng et al., 2004; 
Carta et al., 2006]. Mutations causing LOF of the TGF 
signalling repressor,  SKI , are associated with Shprintzen-
Goldberg syndrome, indicating a potential role for this 
signalling pathway in craniosynostosis [Carmignac et 
al., 2012; Doyle et al., 2012]. Mutations in  TGFBR1  and 
 TGFBR2  were identified as the cause of Loeys-Dietz dis-
ease [Loeys et al., 2005], a condition that typically pres-
ents with cardio-ventricular and outflow tract abnormal-
ities, cleft palate, hypertelorism, and occasionally cranio-
synostosis [Loeys et al., 2005]. Substitution mutations in 
 TGFBR1  and  TGFBR2  augment TGF signalling activity, 
as shown by an increase of the pSMAD readout, and are 
therefore considered as GOF mutations [Loeys et al., 
2005]. Craniosynostosis of varying severity has been re-
ported in mice with mutations in both of these receptors 
( Tgfbr1  M318R/+  and  Tgfbr2  G357W/+ ) [Gallo et al., 2014]. In 
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particular,  Tgfbr1  M318R/+  has partial coronal synostosis 
with additional kyphosis in the thoracic region [Gallo et 
al., 2014].

  Mouse Models Indirectly Associated with Human 

Syndromic Craniosynostosis 

 The previous sections described mouse mutants that 
model human mutations causing syndromic craniosyn-
ostosis. In addition, there are numerous mouse mutants 
that are not based on human genetic mutations (i.e., 
knockin mutants) that also exhibit craniosynostosis. A 
substantial number of these mutants are related to growth 
factor signalling misregulation. Further to  Fgfr2  C342Y/+ , 
isoform-specific knockouts such as  Fgfr2b  –/–  and  Fgfr2c  –/–  
also display a craniosynostosis phenotype [De Moerlooze 
et al., 2000; Eswarakumar et al., 2002]. In particular, 
 Fgfr2c  –/–  mice show coronal synostosis that phenocopies 
the  Fgfr2c  C342Y/+  mutant   [Eswarakumar et al., 2002]. The 
main difference between both models lies within the dis-
ease progression, where the latter shows an accelerated 
phenotype during early embryogenesis [Eswarakumar et 
al., 2002, 2004].  Fgfr2b  –/–    displays a subtle form of cranio-
synostosis, with fusion of the parietal and squamous tem-
poral bones [De Moerlooze et al., 2000]. It is well estab-
lished that a hallmark of craniosyostosis is the upregula-
tion of the MAPK/ERK pathway. Indeed, knockout of 
( Dusp6  –/– ) a negative regulator of ERK results in coronal 
synostosis [Li et al., 2007]. Similarly, LOF mutations of 
the Ets2 repressor factor ( ERF ) are also implicated in 
compound craniosynostosis to the coronal and sagittal 
sutures [Twigg et al., 2013]. ERF is responsible for the ex-
port of active ERK from the nucleus in order to attenuate 
its transcriptional activation activities, and conditional 
knockout of ERF ( Erf   flox/– ) recapitulates the phenotype 
observed in patients with LOF mutations [Twigg et al., 
2013].

  Although not commonly associated with human cra-
niosynostosis, platelet-derived growth factor (PDGF) sig-
nalling has also been related to craniofacial malforma-
tions and coronal synostosis [Soriano, 1997; Moenning et 
al., 2009; He and Soriano, 2017]. This is most likely due 
to the conserved nature of growth factor signalling down-
stream of the receptor. Signalling misregulation in an iso-
form of the platelet-derived growth factor receptor 
PDGFRα, is implicated in midline defects and a split face 
( Pdgfrα  –/– ) [Soriano, 1997]. Moreover, οver-activation of 
PDGFRα ( Pdgfrα  D842V/+ ) drives ectopic chondrogenesis 
eliciting coronal and lambdoid synostosis through the 

P13K-AKT cascade [He and Soriano, 2017]. A similar 
phenotype is replicated in a transgenic overexpression 
model located at the  Rosa26  locus ( R26R  Pdgfrα-D842V/+ ) 
[Moenning et al., 2009].

  In addition to the already mentioned growth factors, 
Wnt/β-catenin signalling is also a key player in regulating 
osteoblast proliferation and differentiation [Yu et al., 
2005]. In the absence of signalling activation, β-catenin is 
prevented from being translocated to the nucleus through 
degradation. Therefore, Wnt signalling modulators are 
critical to modulate signalling sensitivity. Axin serves as 
a scaffold for formation of a β-catenin degradation com-
plex, and its degradation is therefore Axin dependent 
[Logan and Nusse, 2004]. Augmentation of Wnt signal-
ling by  Axin2  –/–  results in coronal and interfrontal synos-
tosis [Yu et al., 2005]. Similarly, overexpression of the 
Nel-like type 1 molecule ( NELL1 ) elicits posterior frontal 
suture craniosynostosis, along with the partial closure of 
sagittal and coronal sutures [Zhang et al., 2002].  NELL1  
was originally isolated from samples obtained from uni-
lateral (non-syndromic) coronal synostosis patients and 
is expressed in the mesenchyme and osteogenic fronts 
[Ting et al., 1999].  NELL1  expression is upregulated in 
sutures undergoing premature fusion, and is believed to 
augment Wnt/β-catenin signalling, through interactions 
with β-integrins in osteoblasts [Ting et al., 1999; James et 
al., 2015].

  There are a number of other craniosynostosis mutants 
reported in the literature. Growth differentiation factor 6 
( Gdf6 ) is a secreted morphogen associated with the BMP 
signalling pathway [Ducy and Karsenty, 2000]. Mutants 
lacking both alleles of  Gdf6  ( Gdf6  –/– ) display coronal syn-
ostosis and appendicular skeleton abnormalities, with fu-
sion of the tarsals and carpals [Settle et al., 2003].  Runx2  
is indispensable for osteoblast differentiation, and over-
expression of  Runx2  in the mesenchyme, driven under 
the endogenous promoter  Prx1  ( Prx1-Runx2 ), elicits 
multiple synostosis inclusive of multiple joint fusions in 
the appendicular skeleton [Maeno et al., 2011]. Metopic 
suture synostosis is caused by LOF mutations in Fras1 
related extracellular related gene 1 ( FREM1)  and is a 
cause of trigonocephaly in humans [Vissers et al., 2011]. 
 Frem1  encodes a protein secreted by mesenchymal cells 
that aids extracellular matrix remodelling [Smyth et al., 
2004]. In the mouse,  Frem1  is expressed along the periph-
ery of the frontal bone, immediately adjacent to the in-
terfrontal suture (metopic eqivalent) [Vissers et al., 
2011]. The original mouse model ENU by mutagenesis 
 Frem1  Bat/+  is a hypomorph caused by exon skipping 
[Smyth et al., 2004], and an exon 2 knockout mouse is also 
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available,  Frem1  qbrick/+  [Kiyozumi et al., 2006; Vissers et 
al., 2011]. Both models harbour interfrontal synostosis, 
with the latter mutant possessing a stronger phenotype 
[Vissers et al., 2011].

  Conclusion and Future Directions 

 Mouse models have been critical to the study of human 
disease. Together with lineage tracing reporters, the phe-
notypes caused by knockin mutations have been critical 
to understand the pathways required for craniofacial de-
velopment. Furthermore, mouse models provide a plat-
form to test novel therapeutic strategies and management 
techniques [Perlyn et al., 2006; Wang et al., 2015; Maru-
yama et al., 2016; Rachwalski et al., this issue]. However, 
it is well understood in the murine research community 
that mouse models of human disease sometimes exhibit 
differences in phenotypic end points, which might simply 
be due to species differences. These can be the result of 
differing genetic redundancies and sensitivities. An ex-
ample of this can be seen for a  RAB23  mutation respon-
sible for human Carpenter syndrome [Eggenschwiler et 
al., 2001; Jenkins et al., 2007]. LOF of the mammalian 
homologue of  RAB23  in the mouse results in exencepha-
ly and early embryonic lethality implicating dosage de-
pendency of the phenotype [Eggenschwiler et al., 2001]. 
Other examples include the Ets domain-containing tran-
scription factor ( ERF ), where craniosynostosis is only ob-
served in a mouse model harbouring a conditional allele 
( Erf  Δ/– ) reducing the expression level to about 30% in 
contrast to that of a heterozygote null allele ( Erf   dl1/– ), 
where the reduction would be 50% [Papadaki et al., 2007; 
Twigg et al., 2013]. Similar can be said of those mouse 
models related to Marfan syndrome that do not recapitu-
late a craniofacial phenotype [Judge et al., 2004; Ng et al., 
2004; Pereira et al., 1999; Gallo et al., 2014].

  The ability to generate gene knockout models has been 
pivotal in our understanding of gene function, and this in 
turn is dependent upon successful and accurate targeting 
of the specific allele of interest. Therefore, it makes sense 
that the overall design of a targeting vector is vital to re-
produce a consistent phenotype. However, there are in-
stances in the literature where a wide phenotypic spec-
trum can be produced. Examples of this can be seen in the 
 Fgfr2  knockouts as the receptor protein has multiple 
functionalities [Yu et al., 2003; Molotkov et al., 2017]. A 
common strategy to generate an  Fgfr2  knockout is through 
the removal of the ligand-binding domain (exons 8–9, IgI 
loop3). However, this mutant does not result in the com-

plete removal of the FGFR2, but instead yields a truncat-
ed, albeit non-functional, receptor. On the other hand, 
removal of exon 5, common to both  Fgfr2b  and  Fgfr2c  
isoforms, did not lead to the expression of a truncated re-
ceptor [Yu et al., 2003; Molotkov et al., 2017]. In fact, 
there are slight phenotypic differences too between these 
knockouts, with the latter  Fgfr2c  knockout appearing less 
severe [Yu et al., 2003; Molotkov et al., 2017]. Targeting 
constructs recombined between intragenic regions also 
have an effect on gene expression. Here, removal of exon 
9 encoding  Fgfr2c  is able to cause a splice switch that re-
sults in ectopic  Fgfr2b  expression [Hajihosseini et al., 
2001]. LoxP sites were inserted into intergenic regions of 
 Fgfr2  exons 8–10, and conditional removal through re-
combination seems to have increased susceptibility to al-
ternative splicing alterations [Hajihosseini et al., 2001]. 
The upregulation of  Fgfr2b  subsequently shifted the phe-
notype from a Crouzon spectrum to that of Apert [Haji-
hosseini et al., 2001]. Nonetheless, the successful target-
ing of specific genes has been vital to determine gene 
function contributing towards human disease.

  The advancement of CRISPR-CAS9 will increase effi-
ciency of generating novel mouse models for human dis-
ease [Singh et al., 2015]. Conventional techniques gener-
ating mouse models with recombination technology has 
been slow and expensive, and the use of genome editing 
technologies could overcome these issues. This could be 
particularly useful in systematic phenotypic screens for 
mouse embryos [Adams et al., 2013]. There is an interna-
tional effort to delineate the phenotypes of knockout mice 
generated from the International Knockout Mouse Con-
sortium (IKMC). The International Mouse Phenotyp-
ing Consortium (IMPC) (http://www.mousephenotype.
org/), as it became known, aims to phenotypically screen 
20,000 knockouts in 10 years [Adams et al., 2013]. The 
importance of screening phenotypes allows the corrobo-
ration between genotype to phenotype and especially in 
the case of embryonic lethal models that helps to pinpoint 
critical pathways for development. There are several 
methods for analysis, with emphasis on 3D imaging such 
as μCT, optical projection tomography, and high-resolu-
tion episcopic microscopy. The ultimate aim is to utilise 
these tools to generate data widely available to research-
ers. A similar platform is also available specifically aimed 
for craniofacial development called “FaceBase” (http://
www.facebase.org), which has a wide range of curated da-
tasets available online, both phenotypic and omics, for 
craniofacial research across multiple organisms. Several 
groups have contributed to this consortium by generating 
transcriptomic atlases of calvarial sutures acquired using 
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laser capture microdissection on several mouse models of 
craniosynostosis including Apert and Saethre-Choetzen 
syndromes. 

Despite the plethora of mouse models generated for 
craniofacial syndromes, few studies have characterised 
the downstream signalling misregulation that must con-
tribute to the phenotype. Further disruption of down-
stream effectors will undoubtedly help to delineate the 
complex relationship between signal transduction and 
gene expression. This could be achieved by generating 
mouse models specifically targeting those signalling in-
termediates. A comprehensive review of these mouse 
models has been listed in a recent paper by Dinsmore and 
Soriano [2018]. As growth factor signalling, such as FGF, 
is critical for craniofacial development, it would also be 
ideal to adopt mouse models that are designed to study 
cancer progression into birth defects research. This is 
because mouse models such as  Braf  V6ooE/+  or  Kras  G12D/+  
have mutations that specifically disrupt multiple levels of 
a signalling cascade (i.e., MAPK/ERK) [Tuveson et al., 
2004; Mercer et al., 2005]. Future studies will need to ad-
dress the impact of the mutation on cascade activation at 
the level of the receptor in vivo. For example, it has been 
demonstrated by Miraoui et al. [2009] that the Apert mu-
tation (FGFR2-p.S252W) preferentially activates the 
PLC-PKC cascade for osteogenesis in vitro [Miraoui et 
al., 2009]. There have been attempts in the past to eluci-
date this by mutating binding domains on the catalytic 
domains of PDGFRs in the mouse [Klinghoffer et al., 
2001, 2002; Fantauzzo and Soriano, 2016]. As generating 

a mouse mutant for individual binding domain is time 
consuming, technologies such as CRISPR-CAS9 will no 
doubt assist with this endeavour.

  In conclusion, mouse models offer a robust platform 
to study craniofacial birth defects. This is in particular to 
clinical syndromes, where a majority of knockin mice 
carrying a human mutation recapitulates the human dis-
ease phenotype. Together with conditional mouse mod-
els, significant progress has been made to dissect the mo-
lecular basis for delineating craniofacial birth defects. 
With the dawn of genome-editing technologies, there are 
exciting opportunities over the horizon, and it is doubt-
less that mouse models will continue to play a central part 
in biomedical science.
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