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ABSTRACT The chaperone-usher (CU) pathway is a conserved secretion system dedicated
to the assembly of a superfamily of virulence-associated surface structures by a wide
range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two
specialized assembly components: a dedicated periplasmic chaperone and an integral
outer membrane assembly and secretion platform termed the usher. The CU pathway
assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like
organelles. Pili typically act as adhesins and function as virulence factors that mediate
contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical
for early stages of infection, allowing bacteria to establish a foothold within the host.
Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into
host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and
thus represent attractive targets for the development of antivirulence therapeutics. Such
therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a
means to combat antibiotic resistance and treat infection while preserving the beneficial
microbiota. A number of strategies have been taken to develop antipilus therapeutics,
including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion,
and small molecules that disrupt pilus biogenesis. Here we provide an overview of the
function and assembly of CU pili and describe current efforts aimed at interfering with
these critical virulence structures.

INTRODUCTION
The chaperone-usher (CU) pathway is dedicated to the biogenesis of surface
structures termed pili or fimbriae that play indispensable roles in the path-
ogenesis of a wide range of bacteria (1–4). Pili are hair-like fibers composed of
multiple different subunit proteins. They are typically involved in adhesion,
allowing bacteria to establish a foothold within the host. Following attach-
ment, pili modulate host cell signaling pathways, promote or inhibit host cell
invasion, and mediate bacterium-bacterium interactions leading to formation
of community structures such as biofilms (5, 6). Gram-negative bacteria
express multiple CU pili that contribute to their ability to colonize diverse
environmental niches (1, 7–10). Pili thus function at the host-pathogen in-
terface to both initiate and sustain infection and represent attractive thera-
peutic targets.
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PILUS FUNCTION
The most extensively characterized CU pili are type 1 pili,
found in members of the Enterobacteriaceae, and P pili,
found in uropathogenic Escherichia coli (UPEC). Both
pili are key virulence factors for UPEC colonization of the
urinary tract and the establishment of urinary tract in-
fections (UTI) (Fig. 1). Type 1 pili bind to mannosylated
proteins in the bladder, leading to cystitis, and P pili bind
to di-galactose-containing moieties in kidney glycolip-
ids, leading to pyelonephritis (11–13). Bacterial binding
via type 1 pili also activates host cell pathways that lead
to actin cytoskeletal rearrangements and subsequent bac-
terial invasion into the host cells via a zipper-like mech-
anism (14, 15). Type 1 pili contribute to the formation of
extracellular biofilms (16), as well as intracellular biofilm-
like communities (IBCs) by UPEC during bladder infec-
tion (Fig. 1) (17). Bacteria within these IBCs are protected
from antibiotics and immune surveillance (18, 19).

Type 1 and P pili expressed by UPEC are considered
classical pili, which are heteropolymers of different pro-

tein subunits that form rigid, helical rods. Similarly, en-
terotoxigenic E. coli (ETEC) employs a large group of
rigid pili, termed colonization factor antigen (CFA) or
coli surface antigen (CS) pili, to adhere to the small in-
testine, facilitating toxin delivery into the gut lumen (20).
Another group of pili assembled by the CU pathway
comprises thin, flexible fibers that in some cases form
amorphous, capsular-like or “afimbrial” structures (3).
Examples of these are the Afa/Dr pili (21–23), expressed
by various pathogenic E. coli strains, and the F1 capsular
antigen of Yersinia pestis (24, 25), which forms a dense
coating around the bacteria and is involved in preventing
uptake by macrophages (Fig. 1) (25, 26).

CU pili are remarkably adapted to colonization of spe-
cific environmental niches. To mediate colonization of
the urinary tract, type 1 pili must be able to withstand the
shear forces generated by the flow of urine. The FimH
adhesin utilizes a catch bond mechanism to switch be-
tween low- and high-affinity binding conformations, fa-
cilitating migration (rolling) and receptor sampling in the

Figure 1 Ultrastructure and function of CU pili. Electron micrographs of E. coli expressing type 1 pili (A) and Y. pestis expressing F1 capsule (B).
Scale bars = 500 nm. (C) Cartoon for pilus-mediated bacterial interactions in the bladder. (i) Type 1-piliated UPEC binds to superficial umbrella
cells that line the lumen of the bladder. (ii) Pilus-receptor interactions induce a signaling cascade that promotes internalization of adherent bacteria
via a membrane zippering mechanism. (iii) Within bladder epithelial cells, UPEC are trafficked to membrane-bound, acidic compartments similar
to lysosomes. (iv) In the superficial umbrella cells, UPEC break into the cytosol and rapidly multiply, forming intracellular biofilm-like
communities. (v) Bladder cells containing large numbers of UPEC exfoliate, providing a mechanism for bacterial clearance by the flow of urine.
(vi) This, however, leaves the underlying layers of immature bladder epithelial cells exposed. UPEC can invade these immature urothelial cells and
persist in a quiescent stage in late endosome-like compartments, avoiding detection by immunosurveillance mechanisms. (D) The Y. pestis F1
capsule plays an antiphagocytic role by preventing opsonizing antibodies from binding to the bacterial surface, blocking Fc receptor phagocytosis.
More generally, expression of the F1 capsule can mask bacterial adhesins and other surface structures, preventing interactions that lead to
internalization into host cells.
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absence of urinary flow and attachment (sticking) during
periods of turbulence (27–29). The helical pilus rod ex-
hibits properties of compliance and flexibility, which is
also important for resistance to shear forces and allows
bacteria to regain proximity to host cells after exposure to
turbulence (30–32).

PILUS ASSEMBLY
The CU pathway harnesses protein-protein interactions
to drive pilus fiber assembly and secretion in the absence
of an external energy source such as ATP, which is not
available in the bacterial periplasm (33, 34). Newly syn-
thesized pilus subunits in the cytoplasm contain an N-
terminal signal sequence that directs them to the SecYEG
translocon in the inner membrane for translocation into
theperiplasm (Fig. 2). In theperiplasm, the signal sequence
is cleaved and the subunits undergo disulfide bond for-
mation in a process catalyzed by the oxidoreductase DsbA
(33, 35). The subunits then form binary complexes with
chaperone proteins (FimC for type 1 pili and PapD for P
pili). The chaperone recognizes only unfolded subunits
that have already undergone disulfide bond formation.
This serves an important quality control role, ensuring that
only oxidized, mechanically stable subunits are incorpo-
rated into the pilus (36–38). The chaperone donates a
β-strand to complete the immunoglobulin-like fold of the
subunits in a mechanism termed donor strand comple-
mentation (DSC) (39, 40). This process allows subunit
folding and inhibits premature subunit-subunit interac-
tions. In the absence of the chaperone, subunits misfold,
aggregate, and are degraded by the DegP periplasmic
protease (41, 42).

Periplasmic chaperone-subunit complexes interact with
the outer membrane (OM) usher (FimD for type 1 pili
and PapC for P pili) (Fig. 2), which catalyzes the exchange
of chaperone-subunit for subunit-subunit interactions in
a process termed donor strand exchange (DSE) (43–47).
In DSE, the N-terminal extension of an incoming pilus
subunit displaces the β-strand donated by the chaperone
to release the chaperone and form a subunit-subunit in-
teraction. This interaction is energetically favorable and
initiates at a binding pocket on the subunit, termed the
P5 pocket, which is left vacant by the chaperone donor
strand (43–46). The correct ordering of subunits in the
pilus fiber is determined by the differential affinities of
chaperone-subunit complexes for the usher and the rate
of DSE between different subunit-subunit pairs, as well as

the periplasmic concentrations of different subunits (47–
51). The usher thus promotes ordered polymerization of
the pilus fiber and provides the channel for secretion of
the pilus fiber to the cell surface.

The usher comprises a 24-stranded β-barrel channel do-
main, a plug domain that serves as a channel gate, an N-
terminal periplasmic domain (NTD), and two C-terminal
domains (CTD1 and CTD2) (52–55). In the resting (apo)
usher, the plug domain occludes the channel pore and
masks the usher C domains (56, 57). In the type 1 pilus
system, the usher is activated by binding of a FimC-FimH
chaperone-adhesin complex to the usher NTD (52). FimC-
FimH binding results in plug expulsion from the lumen
of the usher channel, which also frees the CTDs (55, 57)
(Fig. 2). FimC-FimH is then delivered from the usher
NTD to the CTDs, in a handover process likely driven by
differential affinity and direct domain-domain interac-
tions (57–60). This frees the usher NTD for recruiting the
next chaperone-subunit complex (FimC-FimG for type 1
pili) from the periplasm. The newly recruited complex
bound to the usher NTD is oriented perfectly to undergo
DSE with the previously recruited complex bound at the
usher CTDs (55) (Fig. 2). This displaces the chaperone
from the subunit bound at the CTDs, forming the first
link in the pilus fiber. The newly incorporated chaperone-
subunit is then handed over from the usher NTD to the
CTDs to reset the system for a new round of subunit
recruitment and incorporation, which continues con-
comitantly with translocation of the nascent pilus fiber
through the usher channel to the cell surface. The pilus
fiber is thus assembled and secreted in a top-down man-
ner, with the pilus rod adopting its final helical quaternary
structure upon exiting the usher pore. The helical rod is
stabilized by extensive polar interactions between the pilus
rod subunits, providing a remarkable level of flexibility
that is important for resistance to shear stress. Shear stress
can disrupt these polar interactions, linearizing the pilus
rod without breaking the strong hydrophobic interac-
tions that mediate subunit polymerization (61–63). Each
of these steps along the CU assembly pathway offers
targets for the development of therapeutic inhibitors.

PILUS-DIRECTED THERAPEUTIC APPROACHES
The ever-increasing rate of antibiotic resistance among
pathogenic bacteria is necessitating a hard look into al-
ternative methods for treatment (64, 65). Antivirulence
therapeutics that specifically target pilus function or
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assembly represent one such alternative approach to tra-
ditional antibiotics. In contrast to traditional antibiotics
that nonspecifically interfere with essential biological
processes, antivirulence therapeutics disrupt systems only
required for bacterial pathogens to cause disease within
the host, thus limiting detrimental side effects on com-
mensal bacteria and the selective pressure that leads to
antibiotic resistance (66–69).

The indispensable roles that CU pili play in bacterial path-
ogenesis make them attractive targets for directed thera-
peutic intervention. A number of approaches have been
taken to develop antipilus therapeutics, including vac-
cines against pilus proteins, inhibitors of pilus-mediated
adhesion, and small molecules that disrupt pilus biogen-
esis (Fig. 2). CU pili are prevalent among the Entero-
bacteriaceae and their structure, function, and mechanism

Figure 2 CU pilus assembly pathway and targets for therapeutic intervention. The fim gene cluster coding for type 1 pili, along with names and
functions of encoded proteins, is shown at the bottom. Upon entering the periplasm via the SecYEG general secretory machinery, nascent pilus
subunits form binary complexes with the pilus chaperone (FimC), which facilitates subunit folding by DSC, completing the Ig fold of the subunit’s
pilin domain. The adhesin subunit (FimH, red) is depicted with an additional N-terminal lectin domain, which contains the receptor-binding site.
Chaperone-subunit complexes then interact with the OM usher (FimD), which comprises a β-barrel channel domain, a plug domain, an N-
terminal periplasmic domain (NTD), and two C terminal domains (CTD1 and CTD2). (a) In the resting usher, the plug domain occludes the
channel pore and masks the CTDs. (b and c) The usher is activated by binding of a FimC-FimH chaperone-adhesin complex to the usher NTD.
This results in displacement of the plug from the channel and handoff of FimC-FimH to the usher CTDs, freeing the NTD to recruit the next
chaperone-subunit complex (FimC-FimG). (d) The newly recruited complex bound to the NTD is oriented perfectly to undergo DSE with the
previously recruited complex bound to the CTDs, forming the first link in the pilus fiber. The newly incorporated chaperone-subunit is then
handed over from the NTD to the CTDs. (e) Repeated rounds of this process result in assembly and secretion of the pilus fiber. Different steps
along this pathway are targets for antipilus therapeutics. (i) Vaccination using a full-length or truncated adhesin subunit inhibits pilus-mediated
bacterial adhesion and pathogenesis. (ii) Small-molecule receptor analogs occupy the pilus adhesin binding site, preventing pili from adhering to
host receptors. (iii) Pilicides inhibit pilus assembly via different mechanisms, such as interfering with chaperone-subunit or subunit-subunit
interactions, interfering with binding of chaperone-subunit complexes to the usher, or inhibiting proper folding of the usher in the bacterial OM.
(iv) Coilicides inhibit uncoiling and recoiling of the pilus rod, thus impairing resilience of the fibers during fluid flow.
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of assembly are conserved, suggesting that pilus-targeting
therapeutics may have activity against a broad range of
bacterial pathogens.

Vaccination Strategies
Because of their important roles in bacterial virulence, pili
have received considerable attention in vaccine develop-
ment programs. Vaccination with whole pili has proven
unsuccessful, mainly due to factors such as phase-variable
expression and antigenic variation (70, 71). Moreover, in
the case of monoadhesive pili such as type 1 and P pili,
which have a single distal adhesin subunit, this approach
may bias the immune system towards structural pilus
subunits that are present in much higher copy than the
adhesin, thus failing to inhibit pilus function (6). In con-
trast, vaccination with the adhesin subunit FimH (type 1
pili) or PapG (P pili) confers substantial protection against
UPEC in both murine and primate infection models,
without affecting the commensal E. coli in the gut (72–
76). Vaccination with a truncated form of the mannose-
resistant Proteus-like fimbriae (MR/P) tip adhesin MrpH,
fused to FliC from Salmonella enterica serovar Typhimu-
rium as an adjuvant, was also found to confer protection
against UTI caused by Proteus mirabilis (77). Moreover, in
a recent human clinical trial, oral administration of anti-
bodies raised against the colonization factor I (CFA/I) pilus
tip adhesin CfaE conferred substantial protection against
ETEC colonization (78).

The catch-bond behavior of pilus adhesins poses some
challenges to vaccination. In some cases, antibody bind-
ing to FimH stabilizes its high-affinity state and thereby
enhances rather than inhibits binding of the adhesin to its
receptor (79). Moreover, by shifting from the high- to the
low-affinity state, FimH may shed bound antibodies (79).
Novel approaches have been taken to overcome these is-
sues. For example, a new type of antibody that binds to a
single loop within the binding pocket of FimH can dis-
place bound ligand. This parasteric antibody is potent not
only in inhibiting but also in reversing bacterial adhesion,
dissolving surface-adherent biofilms and conferring pro-
tection against cystitis in mice (80).

Small-Molecule Receptor Analogs
For type 1 pili, soluble receptor analogs, termed manno-
sides, are being developed as antiadhesives by occupying
the FimH receptor binding site. Mouse model studies have
shown that these compounds can prophylactically prevent
bacterial bladder colonization, with efficacy against estab-

lished UTI as well as catheter-associated UTI (81–84). In a
recent study, mannosides were found to selectively deplete
intestinal UPEC reservoirs without altering the gut mic-
robiota, which may have implications for reducing the rate
of recurrent UTIs (85). Furthermore, by shifting the UPEC
niche primarily to the extracellular milieu, mannosides
may exhibit synergy with traditional antibiotics (86).

A variety of approaches are being taken to develop man-
nosides with improved or novel properties. FimH an-
tagonist efficacy has traditionally been evaluated using a
truncated FimH construct locked in a single conformation.
New approaches taking into consideration the dynamic
nature of FimH binding have led to the development of
biphenyl mannosides that have excellent affinities for
all physiologically relevant FimH conformations and ex-
hibit increased potency compared to conventional FimH
antagonists (87). Thiomannosides are reported to have
improved metabolic stability and oral bioavailability (88).
Galabiose-based soluble receptor analogs are also being
developed to target P pilus adhesion (89). A similar strat-
egy is being employed to develop receptor-mimicking ga-
lactosides that target the F9 pilus adhesin FmlH. Lead
FmlH antagonists significantly reduce bacterial burdens
in the bladders and kidneys of infected mice (90). Thia-
zolylmannosides and heptylmannoside-based glycocom-
pounds, a new class of FimH antagonists with greater
stability at low pH, have shown efficacy against adherent-
invasive E. coli, which plays a key role in the gut in-
flammation of patients with Crohn’s disease (91–94).
Finally, multivalent inhibitors that function as potent
anti-adhesives by cross-linking bacteria have also been
developed by coupling FimH antagonists on synthetic
scaffolds (95–97).

Small-Molecule Pilicides
Another class of small-molecule CU pilus inhibitors,
known as pilicides, inhibit the pilus assembly and secre-
tion process. The original pilicides consist of molecules
with a 2-pyridine scaffold (98, 99). These molecules bind to
the periplasmic chaperone and interfere with chaperone-
subunit interactions or the binding of chaperone-subunit
complexes to the usher. These compounds have demon-
strated efficacy against pilus-mediated adhesion and bio-
film formation (99–101). New synthetic approaches have
resulted in the development of new classes of pilicides with
improved potency (102, 103). In a recent study, pilicide
ec240 was found to disrupt assembly of type 1, P, and S
pili, as well as flagellar motility. In addition to interfering
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with pilus assembly, ec240 induces fimS-mediated phase
off variation, downregulating type 1 pilus gene expression.
Treatment of UPEC with ec240 reduced biofilm forma-
tion and bacterial colonization in the mouse UTI model
(104).

Computational screening for compounds with comple-
mentarity to the FimH P5 binding pocket led to identi-
fication of the small-molecule AL1, which inhibits pilus
subunit polymerization by disrupting the DSE reaction
between the FimH and FimG subunits (105). By disrupting
type 1 pilus biogenesis, AL1 reduces biofilm formation and
bacterial adhesion to human bladder epithelial cells. An-
other small-molecule compound, nitazoxanide (NTZ), was
shown to inhibit biofilm formation by enteroaggregative
E. coli by disrupting the assembly of AAF CU pili (106).
Further analysis demonstrated that NTZ also inhibits type
1 and P pilus assembly via a novel mechanism of action, by
interfering with proper folding of the usher protein in the
OM (107).

Other Approaches
A novel approach to target bacterial adhesion is the use of
coilicides, a recently developed class of antipilus inhibitors
that act by impairing compliance of the CU pilus rod.
In a proof-of-principle experiment, it was shown that
purified PapD chaperone binds to uncoiled P pilus rods
and prevents their recoiling, thus decreasing their abil-
ity to withstand shear forces caused by fluid flow (108).
Similarly, polyclonal anti-PapA antibodies were found
to reduce the elastic properties of P pili (109). Bivalent
polyclonal antibodies have also been used to diminish
the compliance of CFA/I and coli surface antigen 2 (CS2)
pili, which play essential roles in ETEC pathogenesis.
These antibodies, which recognize major pilin subunits,
decrease pilus resilience during fluid flow by clamping
together layers of the helical fiber or two individual pili,
thereby increasing their stiffness and entangling them
(110, 111). The salivary peptide histatin-5 was also found
to bind to and stiffen CFA/I pili, inhibiting ETEC colo-
nization in the gastrointestinal tract (112).

Another strategy that is being explored is the engineering
of an avirulent asymptomatic bacteriuria strain, 83972,
to synthesize a surface-located oligosaccharide P pilus re-
ceptor mimic. This strain can bind virulent P-piliated
UPEC, impairing its adhesion to kidney epithelial cells
(113, 114). In an alternate approach, a recombinant strain
83972 that expresses type 1 pili can interfere with uri-

nary catheter biofilm formation by virulent enterococci
(115).

CONCLUSIONS
Pili assembled by the CU pathway function as virulence
factors for a range of Gram-negative pathogenic bacteria.
Pili are attractive targets for therapeutic intervention, as
they are required both for early stages of colonization in
the host andmaintenance of infection. Therapeutic agents
that target CU pili such as vaccines, adhesin receptor
analogs, and small molecules show promise in selectively
disrupting host-pathogen interactions that are crucial for
disease. Such agents offer alternatives to traditional anti-
biotics and a pathway forward to combat the rising threat
of antibiotic resistance. Additional knowledge gained re-
garding the assembly, structure, and function of CU pili
will provide new opportunities for the development of
novel anti-infective therapeutics.
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