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Abstract

Modifications of histone proteins are fundamental to the regulation of epigenetic phenotypes. 

Dysregulations of histone modifications have been linked to the pathogenesis of diverse human 

diseases. However, identifying differential histone modifications in patients with immune-

mediated diseases has been challenging, in part due to the lack of a powerful analytic platform to 

study histone modifications in the complex human immune system. We recently developed a 

highly multiplexed platform, Epigenetic landscape profiling using cytometry by Time-Of-Flight 

(EpiTOF), to analyze the global levels of a broad array of histone modifications in single cells 

using mass cytometry. In this review, we summarize the development of EpiTOF and discuss its 

potential applications in biomedical research. We anticipate that this platform will provide new 

insights into the roles of epigenetic regulation in hematopoiesis, immune cell functions and 

immune system aging, and reveal aberrant epigenetic patterns associated with immune-mediated 

diseases.
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Introduction

The field of epigenetics, which studies the links between genotypes and phenotypes, has 

emerged to be key to our understanding of cellular development and functions1. With the 

exception of antigen receptor loci in lymphocytes, all cells in the human immune system, 

from hematopoietic stem cells to terminally differentiated immune cells, share identical 

genomic content. Nevertheless, the diverse immune cell subtypes (e.g. B, T, NK cells and 

monocytes) and their distinct functional subgroups (e.g. naïve and memory, helper and 

cytotoxic T cells) best exemplify the degree of phenotypic variations that can be derived 

from the same genome. At the individual level, rich data from twin-based studies have found 

a large collection of human traits, including susceptibility to autoimmune diseases 2, 

discordant between genetically identical twins 3, suggesting the importance of molecular 

mechanisms other than genetics underlying the heterogeneity of these human traits.

In recent years, epigenetics often refers to research on chromatin-based events that regulate 

DNA-templated biological processes4. Chromatin, the nuclear structure containing nucleic 

acids wrapped around core histone proteins, is the physiologically relevant template atop of 

which DNA-based biological processes, such as transcription, replication, and 

recombination, occur. Compaction of chromatin into higher-order structure precludes DNA-

binding of transcription factors and other trans-acting regulators to loci that are rendered 

inaccessible. The extent to which chromatin is packaged and the accessibility of the 

underlying DNA can thus influence transcription programs and other biological functions, 

leading to diverse phenotypes without altering DNA sequence. Post-translational 

modifications of histone proteins (chromatin marks) are fundamental to the regulation of 

chromatin dynamics5. For instance, covalent modifications of histone proteins such as 

acetylation and phosphorylation modulate chromatin packaging through disruption of DNA-

histone electrostatic interactions 5. Further, these chromatin marks create unique docking 

sites for modification-dependent protein-protein interactions at chromatin 6, which stabilize 

chromatin binding of protein complexes mediating chromatin remodeling or other unique 

DNA-templated biological functions. Finally, distinct sequences and modification patterns of 

histone variants relative to their canonical counterparts alter chromatin structure, 

nucleosome stability and interactions with chromatin-binding proteins 7. Together, histone 

modifications act in concert with other molecular mechanisms such as cytosine methylation 

and noncoding RNAs to regulate chromatin dynamics and, therefore, epigenetic phenotypes.

Until recently, studying the regulatory roles of chromatin marks in hematopoiesis and 

immune functions has been hindered by technical difficulties associated with conventional 

experimental methods. Chromatin immunoprecipitation (ChIP) and Western blotting require 

a large number of cells and only generate averaged snapshots of cell populations that are 

potentially heterogeneous. The results fall short of demonstrating the individuality of 

immune cells and taking into account the heterogeneity within a population of cells. On the 

other hand, although immunofluorescence and immunohistochemistry allow single-cell 

measurements of chromatin marks, the low throughput and labor-intensive protocols prevent 

the assays from being widely applied to immunology research. To overcome these 

limitations, we leveraged the multiplexing capacity and single-cell resolution of mass 

cytometry to develop a new analytical platform, Epigenetic landscape profiling using 
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cytometry by Time-Of-Flight (EpiTOF), for profiling the cellular levels of a diverse array of 

chromatin marks in single immune cells. In this review, we first summarize the design of 

EpiTOF and the methods to construct antibody panels for analyzing chromatin marks. We 

describe the selection and validation of antibodies, sample processing, and data pre-

processing, normalization, analysis and visualization. We discuss how EpiTOF data will 

enrich our understanding of chromatin-based regulation of epigenetic phenotypes, in the 

contexts of hematopoietic development, immune responses against pathogens and/or 

external stimuli and the pathobiology of immune-mediated diseases.

EpiTOF assay design

The landmark invention of mass cytometry (i.e. Cytometry by Time-Of-Flight or CyTOF) 

has revolutionized the fields of cytometry and single-cell phenotypic and functional analyses 
8. Staining cells with lanthanide-labeled antibodies followed by detection using mass 

spectrometry greatly increases the number of parameters that can be extracted from 

individual cells 9,10. This is a significant advancement in comparison with the conventional 

fluorescence-based flow cytometry, which is inevitably limited by spectral overlap between 

fluorochromes. The latest generation of mass cytometer is tuned to detect atomic mass 

between 75 and 209. Thirty-five lanthanides are readily available commercially (Fluidigm, 

CA) to construct customized antibody panels. To establish antibody panels for EpiTOF, 35 

lanthanide channels are assigned to conjugate to three categories of antibodies: i) antibodies 

targeting chromatin marks; ii) antibodies recognizing total histones in a modification-

independent fashion; iii) antibodies against immunophenotypic markers to reveal immune 

cell identity.

The sensitivity of mass cytometry to detect signals from different lanthanide channels is not 

uniformly distributed across the mass window. Thulium (Tm)-169 yields the greatest signal, 

and the sensitivity declines for atomic mass with increasing distance from Tm-169. For this 

reason, a recommendation has been to assign channels surrounding Tm-169 for the detection 

of low-abundance markers 11. We generally place chromatin marks in the center of the mass 

window where maximal sensitivity can be achieved. However, chromatin marks known to be 

present at high levels in cells, for instance, di-methylation of H4 at lysine 20 (H4K20me2) 

that has been shown to mark up to 85% of all H4 molecules 12, may be detected using 

channels with less-than-optimal sensitivity. Similarly, well-characterized immunophenotypic 

markers such as lineage-specific CD3, CD14, CD19 and CD56 may be detected using 

atomic mass distant from Tm-169. It is important to note that methanol-based 

permeabilization is used in EpiTOF to achieve maximal permeabilization in order to reveal 

epitopes in nuclei. However, epitopes of many cell surface markers are sensitive to 

methanol, and hence the selection of antibodies against immunophenotypic markers needs to 

be carefully validated.

Further, we incorporate several methods in EpiTOF to ensure that high-quality data are 

collected and that accurate comparisons are made between biological samples. First, we 

employ pulse treatment with the DNA-intercalating drug cisplatin to distinguish live cells 

from dead cells with compromised plasma membranes 13. This viability staining is 

especially crucial for cryopreserved clinical samples, where the viability of cells can vary 
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greatly due to sample processing and long-term storage. Second, we perform intracellular 

staining of chromatin marks in a single tube where cells from independent samples are 

labeled with palladium barcodes 14,15. Sample barcoding is essential for EpiTOF in order to 

minimize technical variability and to eliminate doublet events during data collection. Third, 

we integrate two antibodies recognizing bulk histone proteins independent of modifications 

in EpiTOF panels to serve as controls for single-cell variations in total histone content, 

nuclear epitope accessibility and background signals proportional to proteome size and 

complexity. Lastly, we preferably select monoclonal antibodies (over polyclonal antibodies) 

for EpiTOF to enhance long-term assay reproducibility.

Selection and validation of affinity reagents targeting chromatin marks

Post-translational modifications (PTMs) of histone proteins have been extensively studied, 

with greater than 130 modifications detected at over 60 sites on histones 16. Nucleosomes 

containing non-canonical histone variants with unique PTM patterns further expand the 

diversity of chromatin modifications 17. We prioritize and select chromatin marks for 

EpiTOF based on the following criteria: i) involved in the regulation of pivotal cellular 

and/or physiological functions; ii) known to be dysregulated or associated with human 

diseases; iii) generated and removed by known chromatin-modifying enzymes; iv) that can 

be pharmacologically manipulated by approved or investigational drugs; and v) against 

which highly specific affinity reagents are available (Figure 1A).

The next critical steps in early EpiTOF development include the identification and validation 

of chromatin mark-specific antibodies. We adopt several strategies to test the specificity of 

commercially available antibodies against chromatin marks and their compatibility with 

cytometry-based assays. Only antibodies capable of detecting known changes in chromatin 

marks in flow and/or mass cytometry assays are selected.

Pharmacological inhibition of chromatin-modifying enzymes

The highly druggable characteristics of chromatin-modifying enzymes and the reversible 

nature of chromatin-based epigenetic phenomena led to the development of many FDA-

approved drugs and drug candidates at various stages of clinical trials 18. For instance, a 

potent lysine methyltransferase EZH2 inhibitor, Tazemetostat (EPZ-6438), has demonstrated 

promising efficacy in treating various forms of hematological malignancies and solid tumors 
19,20. Inhibition of EZH2 by Tazemetostat reduces the levels of all three degrees of 

methylation on histone H3 at lysine 27 (H3K27me1/2/3). While several clones of 

monoclonal antibodies can detect Tazemetostat-induced H3K27me reduction using western 

blotting (Figure 1B), we found that clone MABI 0323 not only accurately detects repressed 

H3K27me3 levels in Tazemetostat-treated cells but also demonstrates the best signal-to-

noise dynamic range in CyTOF (Figure 1C). Based on the results, MABI 0323 was chosen 

for EpiTOF.

Manipulation of the expression of chromatin-modifying enzymes

During antibody validation, we altered the levels of enzymes that catalyze the generation or 

removal of chromatin marks to create cells with differential chromatin marks. Transient 
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transfection of the deubiquitinases USP21 or USP49 reduces ubiquitination of H2A at lysine 

119 (H2AK119ub) or H2B at lysine 120 (H2BK120ub), respectively 21,22. Ectopic 

overexpression of the lysine demethylase KDM4A/JMJD2A removes di- and tri-methylation 

of H3 at lysines 9 and 36 (H3K9me2/3 and H3K36me2/3), resulting in the accumulation of 

the mono-methylated species at these residues (H3K9me1 and H3K36me1) 23. Similarly, 

overexpression of KDM4D/JMJD2D leads to decreased H3K9me2 and H3K9me3 in cells 
23. Lysine methyltransferases SUV420H1 and SUV420H2 catalyze di- and tri-methylation 

of H4 at lysine 20 (H4K20me2/3) using mono-methylated H4K20 residues as a substrate 12. 

Cells overexpressing SUV420H1 and SUV420H2 show elevated H4K20me2/3 and 

decreased mono-methylation (H4K20me1) levels. Using these cellular systems where the 

expression of chromatin-modifying enzymes is experimentally increased, we selected highly 

specific monoclonal antibodies for EpiTOF.

Additionally, RNAi- or CRISPR-mediated depletion of key regulators of chromatin marks 

may be employed to manipulate global levels of chromatin marks. For instance, knocking 

down the expression of WDR5, an essential component of several protein complexes that 

catalyze H3 methylation at lysine 4 (H3K4me), by RNAi reduces the bulk of di- and tri-

methylation of H3K4. Similarly, RNAi-mediated depletion of lysine methyltransferase 

SETD2 specifically reduces tri-methylation of H3 at lysine 36 (H3K36me3) 24. CRISPR-

mediated deletion of arginine methyltransferase PRMT1, which generates over 90% of 

asymmetric di-methylarginine (ADMA) in cells 25, results in accumulation of mono-

methylarginine (MMA). Deletion of the allele of lysine methyltransferase NSD2/MMSET/

WHSC1 overexpressed in multiple myeloma cells carrying t(4;14) chromosomal 

translocation reduces di-methylation of H3 at lysine 36 (H3K36me2). Using these 

experimental systems, we identified additional monoclonal antibodies suitable for EpiTOF.

Induction of differential chromatin marks by external stimuli

Many chromatin marks are known to be induced in response to external stimuli or under 

specific growth conditions. Genotoxic stress such as neocarzinostatin (NCS) treatment 

induces phosphorylation of H2AX at serine 139 (γ-H2AX), which then recruits DNA 

damage repair machinery to double-strand break sites 26. The chemotherapy agent etoposide 

induces an apoptosis marker, phosphorylation of H2B at serine 14 (H2BS14ph), in acute 

promyelocytic leukemia cells 27. We identified monoclonal antibodies recognizing γ-H2AX 

or H2BS14ph for EpiTOF using NCS- or etoposide-treated cells, respectively. To find 

affinity reagents recognizing crotonylation marks, we cultured cells in media containing 

high concentrations of crotonate, increasing intracellular crotonyl-CoA concentrations and 

promoting protein crotonylation 28. This system allowed the identification of an anti-

crotonylated lysine antibody for EpiTOF.

Cell cycle-dependent changes in chromatin marks

Elevated phosphorylation of histones, in particular at several residues of H3, is a signature of 

mitosis 29. Co-staining of cycling cells with antibodies recognizing phosphorylated histones 

and reagents measuring DNA content allows us to test if antibodies specifically mark mitotic 

cells with duplicated DNA content. We adopted this strategy to identify antibodies against 

H3 phosphorylated at serine 10 (H3S10ph) 30 and H3.3 phosphorylated at serine 31 
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(H3.3S31ph) 31. Tozasertib, which inhibits H3S10ph-catalyzing Aurora kinases, abolishes 

the positive staining 32. The same experimental system may be used to validate other mitotic 

markers such as H3 phosphorylation at threonine 3 (H3T3ph) 33 and serine 28 (H3S28ph) 
34. Additionally, histones that are newly-synthesized during S phase are marked with H4 

acetylation at lysine 5 (H4K5ac) 35. We selected the antibody clone that can optimally detect 

this enrichment in cells undergoing DNA replication for EpiTOF.

Despite an extensive search for affinity reagents against several physiologically and 

pathologically important chromatin marks for EpiTOF, we were unable to identify 

antibodies that can accurately detect differential levels of several chromatin marks by 

CyTOF. For instance, inhibition of lysine methyltransferase DOT1L by Pinometostat 

reduces the bulk of H3 methylation at lysine 79 (H3K79me) 36. Several monoclonal 

antibodies can identify reduced H3K79me in Pinometostat-treated cells by western blotting 

under denaturing conditions (Figure 1D). However, none is able to detect similar changes in 

mass cytometry assays, where chromatin structure is maintained in the native state (Figure 

1E). Similarly, we were unable to find affinity reagents, either monoclonal antibodies or 

modification-recognizing protein modules (e.g. methyl-CpG-binding domains (MBDs)) 37, 

to detect azacytidine (DNA methyltransferase inhibitor)-induced reduction in DNA 

methylation by CyTOF 38. Given the critical functions of these chromatin marks in normal 

physiological functions and in human diseases, and that potent inhibitors modulating these 

modifications are available and have been used in treating human patients, it is important in 

future studies to identify or develop monoclonal antibodies against these chromatin marks 

with high specificity and are compatible with CyTOF.

Data pre-processing and normalization

For peripheral blood mononuclear cells (PBMCs) samples, approximately 1e05 cells are 

required to obtain sufficient events for rare immune cells such as circulating dendritic cells 

and hematopoietic progenitors. After identifying cells from individual samples using 

palladium barcodes, the immune cell subtype of each event is determined using 

immunophenotypic markers, generating a dataset containing the levels of a broad spectrum 

of chromatin marks in millions of individual single cells.

A regression model has been successfully employed to correct for morphological variations 

between biological samples of flow cytometry data 39. Analysis of EpiTOF datasets 

comparing doublet with singlet events shows approximately two-fold signals in doublets 

across all chromatin marks and total histones, indicating the linear nature of these 

measurements. We therefore applied a linear regression model utilizing signals from total 

histones as predictor variables to obtain normalized chromatin mark levels independent of 

the variations in total histones. Using cells with differential levels of chromatin marks, 

including Tezametostat-treated cells with reduced H3K27me3 and multiple myeloma cells 

carrying a t(4;14) chromosomal translocation with elevated H3K36me2 (Figure 2A), the 

residuals after correction by linear model (normalized mark levels) are near normally 

distributed (Figure 2B). This suggests that our data analysis fully corrects the signals 

captured by antibodies against total histones. This approach allows us to compare the levels 

of chromatin marks between cells and between samples, while taking into account the 
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variability in histones expression and non-specific signals shared by all antibodies (Figure 

2C).

EpiTOF data analysis and visualization

Typically, an EpiTOF dataset comprises billions of data points derived from over 100,000 

immune cells from each barcoded biological sample. Over 70 parameters, including 

chromatin marks, immunophenotypic markers, viability staining and sample barcodes, are 

collected from individual cells. The complexity of the dataset requires extensive 

bioinformatic and biostatistical analyses.

An overview of chromatin modification profiles of various immune cell populations

We utilize multi-dimension heatmaps to present a global view of a typical EpiTOF dataset. 

Using EpiTOF analysis of three leukemia and lymphoma cell lines, U937, Jurkat and OCI-

Ly8, as an example (Figure 3A), averages of normalized chromatin mark levels (residuals 

after correction by linear model) are computed for individual chromatin marks in each cell 

line and are represented by the color in the heatmap. Signals from each chromatin mark are 

rescaled, with 0 representing the average across all three cell lines. Warm colors indicate 

higher-than-average levels of chromatin marks, whereas cold colors show levels lower than 

the average. Chromatin marks and the three cell lines are shown at the x- and y-axes, 

respectively, which are both ordered based on unsupervised clustering. Site-specific 

proteolytic cleavage of histone H3 at threonine 22 (Thr22) is observed at a higher level in 

U937 cells in comparison with Jurkat and OCI-Ly8 cells. The differential levels of cleaved 

H3 Thr22 are validated by western blotting on whole cell extracts from these three cell lines 

(unpublished data). When multiple biological samples are analyzed and the heatmap color 

represents the averages of chromatin marks across several donors or patients, we use circle 

size to demonstrate the biological heterogeneity using Simpson’s diversity index. This data 

visualization method allows us to gain a rapid and high-level view on the chromatin 

modification profiles of individual immune cell subtypes and to compare differential levels 

of chromatin marks between immune cell subsets.

Single-cell chromatin modification profiles

At the single-cell level, dimensionality reduction algorithms such as principal component 

analysis (PCA) 40 are employed to visualize the variance in chromatin modification profiles 

between and within immune cell subtypes. Each principal component is a linear combination 

of several chromatin marks that account for the maximal variance in chromatin modification 

profile in the dataset. We can then plot single cells in a reduced-dimension space (2D or 3D) 

where the first two to three principal components explain as much variance in the dataset as 

possible. Each data point represents a single cell, which is color-coded based on the immune 

cell subtype. For instance, using the dataset described in Figure 3A, single cells from the 

three cell lines, painted with distinct colors, are situated in a three-dimension space where 

each dimension (principal component) is calculated based on different combinations of 

chromatin marks (Figure 3B). Despite the fact that all cells are immortal, single cells from 

the three cell lines are clustered by cell lines, suggesting that they remain distinct at the 

epigenetic level. Other visualization tools can also be employed. For example, t-Distributed 

Cheung et al. Page 7

Clin Immunol. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stochastic Neighbor Embedding (t-SNE) is a powerful dimensionality reduction technique 

for identifying non-linear relationships between single cells 41, which can be overlooked in 

PCA due to the linear transformation of variables. t-SNE analysis of single cells from the 

three cell lines described above reveals closer relationships between B cell lymphoma OCI-

Ly8 and T cell leukemia Jurkat cells, relative to their distances from the myeloid lymphoma 

cells U937 (Figure 3C). We have used both PCA and t-SNE to visualize the segregations of 

single cells between immune cell subtypes or biological samples based on their chromatin 

modification profiles. Importantly, this analysis has the potential to find previously 

uncharacterized immune cell subsets defined by chromatin marks.

Clustering and segregation of biological samples based on epigenetic markers

We used PCA to visualize the variance in chromatin modification profiles between samples 

from different subjects or patients. For instance, Figure 3D shows the PCA of an EpiTOF 

dataset containing the levels of 40 chromatin marks in 11 immune cell subtypes (440 data 

points) from five healthy donors. The first principal component, which explains 64.7% of the 

variance of the dataset, separates donors with cytomegalovirus (CMV) infection from others 

who are CMV-seronegative. Investigating the variables selected by PCA from the 440 

parameters allows us to identify specific chromatin marks that best contribute to the 

separation of subjects by the first principal component. For EpiTOF datasets containing 

different groups of biological samples, such as immune cells purified from healthy donors or 

patients with rheumatic diseases, or clinical trial samples from placebo-controlled or 

treatment arms, we performed PCA to find epigenetic signatures shared by individual groups 

of samples and to identify chromatin marks segregating one group from another. Markers 

representing individual samples on PCA plots can be labeled with different colors, shapes 

and sizes to present additional layers of clinical information available for the samples, such 

as disease severity scores, treatment groups, sex and disease subtypes. Notably, batch effect 

should be carefully addressed when samples from independent experiments are compared in 

PCA. In experiments where combined processing and staining of all samples are not 

possible due to large sample numbers, we employed an empirical Bayes framework to 

correct for batch effects prior to PCA 42.

Comparative analysis between biological samples

For comparative analysis, we compute effect sizes between different groups of samples as a 

robust and reliable measurement of mean differences between groups 43–45. In Figure 3E, we 

used a heatmap to visualize the effect sizes of the 440 data points computed between CMV-

seropositive and -seronegative blood donors shown in Figure 3D. Warm colors represents 

chromatin marks elevated in specific cell types in the experimental group (CMV-

seropositive) versus the control group (CMV-seronegative), and the cold colors indicate the 

repressed chromatin marks in the experimental group. Both x and y-axes are ordered based 

on unsupervised hierarchical clustering to facilitate data interpretation. The heatmap 

provides a useful summary of the comparative analysis results and allows us to find the 

following: i) Chromatin marks altered in multiple or unique immune cell subsets. The 

immune cell subsets where differential levels of chromatin marks are observed provide 

insights into the hematopoietic stage at which alterations of chromatin marks may have 

occurred. For instance, changes across multiple immune cell subsets are likely due to 
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reprogramming of chromatin marks upstream in hematopoietic stem cells, whereas some 

changes may be restricted to specific hematopoietic lineages or cell subtypes. ii) Concurrent 

change of functionally related chromatin marks. An open chromatin state is generally 

associated with acetylated histones and methylation of H3 at lysine 4 (H3K4me) and 36 

(H3K36me), whereas condensed and inaccessible chromatin is marked with tri-methylation 

of H3 at lysines 9 (H3K9me3) or 27 (H3K27me3) or H4 at lysine 20 (H4K20me3). 

Systematic alterations of several of these chromatin marks indicate global changes in 

chromatin accessibility, which may be experimentally tested utilizing Assay for 

Transposase-Accessible Chromatin using sequencing (ATAC-seq) 46. iii) Chromatin marks 

regulated by the same groups of chromatin-modifying enzymes. The homeostasis of 

chromatin marks is dynamically maintained by enzymes that generate or remove chromatin 

marks. For instance, differential levels of H3K27 di- and tri-methylation may suggest altered 

activities of lysine methyltransferases EZH1 and/or EZH2, the enzymatic subunits of 

polycomb repressive complex 2 (PRC2). In contrast, changes in mono-methylation and/or 

acetylation of H3K27 suggest altered activities of KDM6A/UTX and/or KDM6B/JMJD3, 

two lysine demethylases that catalyze the removal of H3K27me3 and conversion to a lower 

degree of methylation. Ideally, studies where EpiTOF and transcription profiling datasets are 

available from the same sample will allow us to identify differential chromatin marks in 

addition to the altered expression of the corresponding chromatin-modifying enzymes. 

Experimental manipulations of chromatin-modifying enzymes can provide direct evidence 

for the involvement of the corresponding chromatin marks in the phenotypes of interest.

Applications of EpiTOF to biomedical research

EpiTOF is a powerful platform that allows highly multiplexed analysis of chromatin 

modifications in single cells and facilitates the identification of global changes of chromatin 

marks between biological samples. We envision that it may be broadly employed to help us 

better understand the roles of epigenetic mechanisms in the regulation of hematopoietic 

differentiation and immune cell physiological functions. Changes of chromatin marks can be 

studied in the context of lineage commitment (e.g. lymphoid versus myeloid), maintenance 

of cell identity (e.g. FOXP3+ regulatory T cells), activation in response to stimulations such 

as cytokines and pathogens (e.g. changes at chromatin along with gene expression changes 

in these settings), aging of the immune system 47, and other fundamental areas of 

immunology research. Importantly, EpiTOF can be employed to identify chromatin marks 

dysregulated in immune-mediated diseases, as the etiology of many autoimmune and 

autoinflammatory disorders remain largely unknown, and the discordance of disease 

incidence between genetically identical monozygotic twins suggests a key role for 

epigenetic mechanisms in their pathogenesis and disease progression 2. Additionally, the use 

of EpiTOF to study the impacts of pathogens on the host epigenome in infectious disease 

patients, the involvement of epigenetic mechanisms in asthma and allergic diseases 48, 

epigenetic changes associated with treatment response, and single-cell heterogeneity in 

chromatin modification profiles in hematological malignancies will provide an 

unprecedented opportunity to discover new therapeutic targets and biomarkers.
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Conclusions

Epigenetics has emerged as a fast-moving area on many fronts of biomedical research in 

recent years. However, understanding the physiological roles of chromatin-related 

mechanisms in the human immune system is still in its infancy. The development of new 

single-cell analytic platforms, such as bisulfite sequencing to measure DNA methylation 
49,50, ATAC-seq to measure chromatin accessibility 51,52, chromosome conformation capture 

(3C) to measure chromatin spatial organization 53, and now EpiTOF to measure global levels 

of chromatin marks 47, allow interrogation of epigenetic mechanisms that regulate immune 

functions and identification of the dysregulation of these mechanism in the context of human 

diseases. Between genetically unrelated individuals, over 99% of the genetic code is 

identical 54. It is almost certain that all morphological and phenotypic heterogeneity is at 

least in part explained by variations in epigenetics or chromatin-based regulation. The same 

concept also applies to the variability in aging-dependent deteriorations of immune 

functions, disease susceptibility, and responses to treatments and vaccines. We anticipate 

that in the near future, an increasing number of epigenetic markers will be identified to 

explain functionally-important variations in the human immune system 55.
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Figure 1. Selection and Validation of Affinity Reagents for EpiTOF.
(A) Overview of EpiTOF platform.

(B) Validation of H3K27me3 antibodies under denaturing condition. Western blotting 

analysis of whole-cell extract from Jurkat cells cultured in the absence or presence of EZH2 

inhibitor Tazemetostat using the indicated monoclonal antibodies. Control, DMSO-treated 

cells.

(C) Validation of H3K27me3 antibodies under native condition. Mass cytometry analysis of 

the cells as in (B) using the indicated monoclonal antibodies. Contour plots: x-axis, 

antibodies against total histone H3; y-axis, antibodies against H3K27me3. Percentage of 

cells in each quadrant is shown.

(D) Validation of H3K79me antibodies under denaturing condition. Western blotting 

analysis of whole-cell extract from Jurkat cells cultured in the absence or presence of 
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DOT1L inhibitor Pinometostat using the indicated monoclonal antibodies. Control, DMSO-

treated cells.

(E) Validation of H3K79me antibodies under native condition. Mass cytometry analysis of 

the cells as in (D) using the indicated monoclonal antibodies. Contour plots: x-axis, 

antibodies against total histone H3; y-axis, antibodies against H3K79me. Percentage of cells 

in each quadrant is shown.
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Figure 2. Normalization of EpiTOF Data.
(A) Raw EpiTOF data. Mass cytometry analysis of control (DMSO) and Tazemetostat-

treated Jurkat cells (top) or KMS11 and TKO1 cells (bottom) using the indicated antibodies. 

Contour plots: x-axis, antibodies against total histone H3; y-axis, antibodies against 

H3K27me3 (top) or H3K36me2 (bottom). Percentage of cells in each quadrant is shown.

(B) Distributions of linear regression residuals of EpiTOF data. Histograms of linear 

regression residuals of the data in (A). x-axis, residual levels; y-axis, numbers of cells with 

given residual levels; top, H3K27me3 in DMSO (left)- or Tazemetostat (right)-treated Jurkat 

cells; bottom, H3K36me2 in KMS11 (left) or TKO1 (right) cells.

(C) Normalized EpiTOF data. Box plots show the normalized H3K27me3 (top) or 

H3K36me2 (bottom) levels of the cells in (B). y-axis, normalized chromatin mark levels 

(residuals of a linear model using total H3 as predictor variable).
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Figure 3. Data analysis and visualization of EpiTOF Data.
(A) Distinct chromatin modification profiles of immune cell subtypes. Heatmap 

representation of the normalized levels of 40 chromatin marks (x-axis) in three leukemia and 

lymphoma cell lines (y-axis). Color, normalized chromatin mark levels. Means of individual 

samples are used for plotting and are centered around the mean across all three samples. 

Warm colors, higher than the mean of all samples; cold color, lower than the means of all 

samples. Dendrograms, unsupervised clustering.

(B and C) Segregations of single cells based on chromatin modification profiles. PCA (B) or 

t-SNE (C) analysis of EpiTOF data as in (A). Each dot represents a single cell. Color 

represents the sample to which individual cell belongs (red, U937; yellow, Jurkat; blue, OCI-

Ly8). The first three principal components (B) or two t-SNE axes (C) computed from 20 

chromatin marks are used to visualize the data.
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(D) Segregation of blood donors based on chromatin modification profiles. PCA of EpiTOF 

data collected from 5 healthy subjects. Each dot represents a single donor with label 

depicting the demographics. Principal components are calculated based on the levels of 40 

chromatin marks in 11 immune cell subtypes (440 data points) from individual donors. The 

percentage of variance each principal component explains is shown.

(D) Differential chromatin marks between CMV-seropositive and CMV-seronegative blood 

donors. Heatmap representation of the effect sizes of the levels of the indicated chromatin 

mark (x-axis) and immune cell subtype (y-axis) pairs in CMV-seropositive over CMV-

seronegative donors. Dendrograms, unsupervised clusterings.
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