
Modified Wilcoxon-Mann-Whitney Test and Power against Strong 
Null

Youyi Fong* and Ying Huang
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center

Abstract

The Wilcoxon-Mann-Whitney (WMW) test is a popular rank-based two-sample testing procedure 

for the strong null hypothesis that the two samples come from the same distribution. A modified 

WMW test, the Fligner-Policello (FP) test, has been proposed for comparing the medians of two 

populations. A fact that may be underappreciated among some practitioners is that the FP test can 

also be used to test the strong null like the WMW. In this paper we compare the power of the 

WMW and FP tests for testing the strong null. Our results show that neither test is uniformly better 

than the other and that there can be substantial differences in power between the two choices. We 

propose a new, modified WMW test that combines the WMW and FP tests. Monte Carlo studies 

show that the combined test has good power compared to either the WMW and FP test. We 

provide a fast implementation of the proposed test in an open-source software. Supplementary 

materials are available online.
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1 Introduction

The two-sample location problem is a common one in many applied areas. Rank-based two-

sample comparison procedures are popular because they make no assumptions about the 

distributions of data within each sample and because they are relatively powerful across a 

spectrum of scenarios (e.g. Blair and Higgins, 1980; van der Vaart, 2000, p. 198). One of the 

best known rank-based two-sample tests is the Wilcoxon-Mann-Whitney (WMW) test 

(Wilcoxon, 1945; Mann and Whitney, 1947). The test is based on the following statistic. 

Suppose that we have m independent and identically distributed (i.i.d.) observations X1,

…,Xm from population 1, and n i.i.d. observations Y1,…, Yn from population 2, and that the 

two sets of samples are independent of each other. Further assume the distributions of X and 

Y are continuous so that there are no ties in the data; this assumption can be easily relaxed, 

but it helps streamline the exposition of the main ideas of the paper. The WMW test statistic 
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can be represented either by the sum of the ranks assigned to the Y’s in the combined 

samples or the U-statistic representation:

U = 1
mn ∑

i = 1

m
∑
j − 1

n
I (Xi < Y j) . (1)

The rank sum representation and the U-statistic representation are mathematically equivalent 

up to some constants (Hollander et al., 2013, equation 4.16). While the former lends itself to 

more efficient computation, the latter makes explicit the nature of the WMW statistic. As 

Equation (1) shows, U is an estimate, in fact a consistent, minimum variance unbiased 

estimate (Lehmann, 1951), of the probability that a randomly chosen Y is greater than a 

randomly chosen X. This measure, to be denoted by θ, has been called the relative marginal 

effect (Brunner et al., 2002) and probabilistic index (Acion et al., 2006). In the biomarker 

evaluation literature (Pepe, 2003; Zhou et al., 2002; Saha and Heagerty, 2010) it is known as 

the area under the receiver operating characteristic curve (AUC) and is a key classification 

performance criterion. More generally, θ is a measure of stochastic ordering.

One reason for the popularity of the WMW test is its distribution-free property. Under the 

strong null hypothesis that the distributions of X and Y are equal, the sampling distribution 

of U only depends on the sample sizes and has mean 1/2 and variance Vmn = {1/m + 1/n 
+ 1/(mn)}/12, regardless of the distributions of X and Y. The p-value of the WMW test can 

be determined by comparing the observed value of U to its exact distribution. Alternatively, 

as the sample sizes increase, the sampling distribution of (U − 1/2)/ Vmn can be well 

approximated by the standard normal distribution (e.g. Hollander et al., 2013, Sec. 4.1).

In addition to the strong null, in many applications it makes sense to consider the weak null 

hypothesis, which states that the relative marginal effect θ = 1/2. The WMW test does not 

have the correct size for testing the weak null because the sampling distribution of U is not 

distribution-free under the weak null (e.g. Chung and Romano, 2016; Chung et al., 2013). 

Towards this end, Fligner and Policello (1981) proposed a modified WMW test, the Fligner-

Policello (FP) test, that incorporates an estimate of the variance of U from the data. Let Pi be 

the number of Y ’s less than Xi and Sj be the number of X’s less than Yj . Denote the 

average of Pi by P̄ and the average of Sj by S̄. 

V̂
∗ = {∑ j = 1

n (S j − S̄)2 + ∑i = 1
m (Pi − P̄)2 + P̄S̄}/(mn)2 is then a consistent estimator of the 

variance of U. The test statistic of the Fligner-Policello test is (U − 1/2)/ V̂
∗
 and the 

reference distribution can be either N (0,1), in the normal approximation, or the permutation 

distribution (e.g. Hollander et al., 2013, Sec. 4.4). Under the additional assumption that the 

distributions of X and Y are symmetric, the weak null is equivalent to testing the equality of 

the medians of the two populations.

For rank-based two-sample location tests, as for two-sample t-tests, whether or not the 

variances of the two samples are considered equal affects the appropriate choice of testing 

procedures. There are two ways variance equality affects the choice of rank-based testing 
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procedures: (1) For testing the weak null, under which the variances are not assumed equal, 

it is well recognized that the FP test instead of the WMW test should be used (e.g. Siegel 

and Castellan, 1988; Zumbo and Coulombe, 1997; Mickelson, 2013). (2) For testing the 

strong null, under which the variances are assumed equal, both the WMW and FP tests can 

be used, but one may be more powerful than the other and we have a choice to make. The 

second scenario is understudied in the literature in our opinion and is the focus of this paper.

Our goals in this paper are three-fold: (1) to investigate the relationship between the variance 

of U and the distributions of X and Y, (2) to study the power trade-off between the WMW 

and FP tests for testing the strong null, and (3) to propose a new, modified WMW test that 

combines the WMW and FP tests to improve the overall power for testing the strong null.

2 Variance of the U statistic

Let the distribution functions of X and Y be denoted by F (x) and G (y). It is a useful fact to 

note that the relative marginal effect can be expressed in terms of F and G: θ = EY{F (Y)} = 

1 − EX{G (X)}, where EX and EY are the notations for taking an average over the 

populations of X and Y, respectively. It can be shown through straightforward computation 

(supplementary materials Sec. A) that

Var(U) = (1 − 1/n)Var{G(X)}/m + (1 − 1/m)Var{F(Y)}/n + Var{I(X < Y)}/(mn) . (2)

To the first order of approximation, this can be simplified to

Var(U) ≈ Var{G(X)}/m + Var F(Y) /n . (3)

To estimate the variance of U based on either (2) or (3), we can estimate Var {G (X)} by the 

sample variance of Ĝ(Xi), where Ĝ is the empirical distribution function of the observed Y’s; 

estimate Var {F (Y)} by the sample variance of F̂(Y j), where F̂ is the empirical distribution 

function of the observed X’s; and estimate Var {I (X < Y)} by θ̂ (1 − θ̂ ), where θ̂  equals U, 

the sample average of I (Xi < Yj).

To check the performance of the variance estimation, we simulate X’s from Logistic(μx, sx), 

a logistic distribution with mean μx and scale sx, and Y’s from Logistic(μy, sy). We compute 

the true variance of U by numerical integration and compare the mean of the variance 

estimates based on formula (2) and (3), as well the original formula from Fligner and 

Policello (1981) to the theoretical value. The percent biases of the estimated variances from 

10,000 replicates for μx = μy = 0, sx = 1, and sy ∈ {1, 2, 0.5} are summarized in Table 1. The 

results show that as the sample sizes increase, variance estimates based on all the formulae 

provide good estimates of the actual variance, whether or not sx and sy are equal. When the 

sample sizes m and n reach 30, the relative biases fall below 5%. We repeat the experiment 

with μy = 1 and obtain similar results (supplementary materials Table D.8); we also repeat 

the experiments using normal instead of logistic distributions and observe similar results 

(supplementary materials Table D.1 and D.9).

Fong and Huang Page 3

Am Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We now examine the relationship between the variance of U and the distributions of X and 

Y, conditional on the ratio between the two sample sizes. Again we simulate X’s and Y’s 

from Logistic (0, 1) and Logistic (0, sy), respectively, and vary sy from 1/3 to 3. Three sets of 

(m, n) are explored: (50, 50), (50, 100) and (100, 50). Figure 1 shows that when m = n, the 

functional relationship between Var (U) and sy is U-shaped. This changes when m ≠ n. 

When m < n, Var (U) decreases as sy increases; and when m > n, we have the opposite trend. 

This sample ratio-dependent relationship has to do with the fact that the two components of 

Var (U) in formula (3) move in the opposite direction as sy changes. As sy increases, Var {F 
(Y)} increases, but Var {G (X)} decreases because G, the distribution function of Y, 

becomes flatter. These two trends are of similar magnitude, but when there are more Y’s 

than X’s (m = 50, n = 100), the decrease in m−1 Var {G (X)} dominates the increase in n−1 

Var {F (Y)}, leading to a net effect of decreasing Var (U).

The relationship observed above can be summarized as when the sample with greater sample 

size also has greater variance, the variance of U tends to drop below Vmn. It is important to 

note that this pattern only reflects a snapshot of a potentially more complicated relationship 

between Var (U) and the distributions of X and Y. In particular, the two samples in this 

experiment have the same location. The same relationship may not hold if the locations of 

the two samples differ by a large amount.

3 Trade-off between the WMW and FP tests

Under the strong null hypothesis, the FP test based on the normal approximation should 

have the correct type 1 error rates when the sample sizes are large enough. When the sample 

sizes are small, a permutation-based method for determining significance may control the 

type 1 error rate better. To obtain the permutation distribution, we enumerate all possible 

ways of reshuffling the labels among the m + n samples, and compute a test statistic for each 

possibility. The number of ways to choose m out of m + n samples grows quickly with m 
and n, and if it is computationally infeasible to exhaustively compute the test statistic, a 

Monte Carlo method can be applied to obtain a large number, say 104, of random reshuffles.

To examine the sizes of the FP tests, we simulate both X’s and Y’s from a logistic 

distribution with mean 0 and scale 1. Three ratios of m : n, 1:1, 1:2 and 1:4, are considered. 

Results from 10,000 Monte Carlo replicates are summarized in Table 2. The results show 

that when both sample sizes reach 30, the type 1 error rates of the normal approximation-

based FP tests are fairly close to the nominal value. Of the three FP tests, the one using the 

variance estimator based on formula (2) has a slight advantage over the other two. That this 

test performs better than the test based on the variance formula (3) is somewhat surprising 

given that we see earlier in Table 1 the variance estimate based on formula (3) is a little less 

biased. This is because the main driver for the deviation from the nominal type 1 error rate is 

inadequacy of the normal approximation, which leads to a more liberal test. As the variance 

estimated from formula (3) tends to be smaller than the variance estimated from formula (2), 

it rejects more, leading the type 1 error rate further away from the nominal level. The type 1 

error rates of the permutation-based FP tests appear to be close to the nominal level even 

when there are only five observations from each population. We repeat this experiment using 

normally distributed data (Table D.2) and arrive at the same conclusions. From here on, we 

Fong and Huang Page 4

Am Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will use the variance estimator based on formula (2), denoted by V̂, exclusively for the FP 

test.

The WMW test does not suffer from inflated type 1 error rates when the sample sizes are 

small. But when the sample sizes are very small, e.g. m = n = 5, both the permutation-based 

and the normal approximation-based WMW tests are somewhat conservative, which is a 

consequence of the discreteness of the tail distributions of the statistic U at very small 

sample sizes (Mann and Whitney, 1947, Table 1).

To compare the power of the WMW and FP tests, we simulate the X’s and Y’s from 

Logistic(0,1) and Logistic (μy, sy), respectively, and examine three levels of sy: 1, 2 and 1/2. 

At m = 30, the μy’s are set to 1, 1.2 and 0.8 at the three levels of sy so that the power is in the 

same general range across the different sy’s. At m = 10, the μy’s are set to 2, 2.4 and 1.6, 

respectively. We look at three different m to n ratios: 1:1, 1:2 and 1:4. For determining the 

significance of the WMW test, we follow a common practice, e.g. as implemented in the R 

wilcox.test function, and use the N (0,1) reference distribution when either m or n is 50 or 

greater and the exact reference distribution otherwise. For determining the significance of 

the FP test, we look at both normal approximation and permutation at m = 30 and 

permutation only at m = 10.

Results from 10,000 Monte Carlo replicates are summarized in Table 3. The WMW and FP 

tests have similar power when sy = 1 = sx or m = n, but not when sx = sy and m = n, and the 

difference in power increases as sample sizes become more unbalanced between the two 

samples. There is a trade-off between the WMW and FP tests. When n > m, the FP test is 

more powerful when sy > sx and less powerful when sy < sx. In other words, the FP test is 

more powerful when the sample with a bigger sample size has a greater variance, and less 

powerful otherwise.

A connection can be made between the power study in this section and the variance study in 

the previous section. Figure 1 shows that under the scenario n > m, when sy is greater than 

sx, the variance of U drops below Vmn. Thus (U − 1/2)/ V̂ will tend to be greater than 

(U − 1/2)/ Vmn. When the p-values are determined by comparing to the standard normal 

distribution, the FP test will reject the null more often than the WMW test.

4 Combining the WMW and FP tests

That there is a trade-off between the WMW and FP tests should not come as a surprise. It is 

only natural that the power depends on the underlying distribution of the data. To improve 

the overall power, we propose a simple and effective way to combine the WMW and FP tests 

in a way that adapts to the underlying distribution (e.g. van der Vaart, 2000, p. 223). The 

idea is to divide U − 1/2 by the square root of min V̂ , Vmn , the lesser value between V̂, the 

estimated variance of U based on the data and Vmn, the theoretical variance of U under the 

null hypothesis.

If the N (0,1) reference distribution is used, the combined test would produce a statistic that 

is always the greater between the WMW and FP test statistics, and the test will reject the 
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null when either the WMW or FP test rejects. A potential pitfall with such an approach is the 

possible inflation of the type 1 error rate when the normal reference distribution is used 

because min V̂ , Vmn  is downward biased in finite samples (supplementary materials Figure 

D.4); the degree of inflation should tend to 0, however, as the sample sizes increase, because 

min V̂ , Vmn  is a consistent estimate of Vmn as shown in the following theorem.

Theorem 1

Under the strong null hypothesis, as m and n go to infinity,

min V̂ , Vmn − Vmn p 0,

and

U − 1/2
min V̂ , Vmn

d N (0, 1) .

The proof of the theorem is given in the supplementary materials Section 2. If the 

permutation reference distribution is used, the type 1 error rate should not be affected 

because the permutation reference distribution adapts to the combined test statistic.

We study the size of the combined test by repeating the size study from Section 3. The 

results are summarized in Table 4. The type 1 error rates of the normal approximation-based 

combined test are indeed slightly higher than the FP test when n > m, but the type 1 rates of 

both tests rapidly approach the nominal rate as the sample size increases. When using the 

permutation reference distribution, the type 1 error rates of the FP and combined tests show 

no systematic differences.

To study the power of the combined test, we repeat the power study from Section 3. For 

comparison, we include the van der Waerden test (Van der Waerden, 1952), which is also 

known as a normal scores test. Like the WMW test, the van der Waerden test is also rank-

based, and it is of special interest because its Pitman asymptotic relative efficiency versus 

the Student’s t test is 1 if both samples are normally distributed. The results for sx ≠ sy and n 
= 4m are presented in Table 5. The results show that at m = 30, the combined tests using 

both the normal approximation and the permutation distribution perform as well as the 

winner between WMW and FP. At m = 10, when sy = 2, the permutation-based combined 

test performs nearly as well as the FP test, which outperforms the WMW test; when sy = 0.5, 

its performance is appreciably better than the FP test although not as good as the WMW test.

To examine the power of the proposed test further, we repeat the comparison study using 

normal distributions, lognormal distributions, and gamma distributions (supplementary 

materials Table D.5, D.6 and D.7). Although the difference in power between the WMW and 

FP tests varies across the various scenarios, the power of the combined test is almost always 

closer, and often quite close, to the winner of the two.
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The relative efficiency of the van der Waerden test versus the WMW test may be greater 

than or less than 1 depending on the distributions (Hollander et al., 2013, p. 150). This is 

confirmed in our simulation studies. For example, the WMW test performs better than the 

van der Waerden test when the data are generated from lognormal distributions and n = m 
(supplementary materials Table D.6), while the van der Waerden test performs better when 

the data are generated from gamma distributions and n = 4m (supplementary materials Table 

D.7).

5 Data examples

In this section we use three data examples to illustrate the application of the combined test. 

The first example comes from a study of the immunological biomarkers that are associated 

with mother-to-child transmission (MTCT) of HIV-1 (Permar et al., 2015). The study 

population is U.S. non-breastfeeding, HIV-1-infected, mother-infant pairs enrolled in the 

Women and Infants Transmission Study prior to the availability of antiretroviral prophylaxis 

(Rich et al., 2000). There are 55 caesarean section births in this dataset, 17 of which resulted 

in vertical transmission while 38 did not. The biomarker V3_BioV3B measures the 

abundance of binding antibodies in the serum that recognize the V3 region at the surface of 

the HIV envelope protein. Figure 2(a) gives a boxplot of the biomarker measurement by 

transmission status; the variance of V3_BioV3B appears smaller in the non-transmitters than 

in the transmitters. Since the sample size 17 borders on whether the normal approximation 

can be safely applied, we try both the normal approximation and the permutation distribution 

to determine statistical significance. Table 6 shows that regardless of the method, both the 

WMW and combined tests reject the strong null at level 0.05, but the FP test does not. These 

results suggest that the amount of V3-specific binding antibodies may be associated with 

HIV-1 mother-to-child transmission in this population.

The second and third examples come from the New York City air quality measurements 

dataset (Chambers, 1983). It contains around 30 observations for each month between May 

and September of 1973. For our illustration we focus on May and August. For the second 

example, we compare the ozone readings from the first 7 days in May and the first 21 days 

in August. For our third example, we compare the ozone readings from the first 21 days in 

May and the first 7 days in August. The data are shown in Figure 2(b) and 2(c). The August 

observations appear to have a greater variability than the May observations. Since the 

number of observations in one of the samples is under 20, we use the permutation 

distribution in both examples. Table 6 shows that in the second example both the FP and 

combined tests reject the strong null at level 0.05, but the WMW test does not. In the third 

example, all three tests reject the strong null; however, the p-value from the combined test is 

closer to the FP test rather than the WMW test, and the latter is more significant. The third 

example reminds us of a lesson from the simulation studies that when the sample size is 

small, the combined test does not always match the power of the winner between WMW and 

FP. These results indicate that the ozone level in the New York City is different between 

May and September in 1973.
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6 Discussion

Both the Wilcoxon-Mann-Whitney test and the Fligner-Policello test can be used to test the 

strong null hypothesis that two samples come from the same distribution. Motivated by the 

observation that neither test is uniformly more powerful than the other under all scenarios, 

we propose a new, modified WMW test that combines the WMW and FP tests. The 

combined test has the right size asymptotically, and Monte Carlo studies show that it has the 

right type 1 error rate when using the permutation reference distribution and only slightly 

inflated type 1 error rate when using the normal approximation. In the power study the 

combined test is as powerful as the winner between WMW and FP under a series of 

simulation scenarios when the sample size is high enough to warrant the normal 

approximation. When the sample size is smaller, the combined test sometimes matches the 

power of the winner between WMW and FP and sometimes falls in between. Taken 

altogether, the combined test offers the best overall solution for testing the strong null 

hypothesis.

When ties exist, both the WMW and FP tests can be adjusted accordingly. For completeness 

sake, we list the adjustments in the supplementary materials Section C. The definition of the 

combined test remains unchanged.

We provide an implementation of the combined test in the robustrank R package hosted at 

the Comprehensive R Archive Network. Computation of the test statistic as well as the 

permutation distribution are performed in C to gain speed. The implementation handles 

continuity correction and ties, as well as one- and two-sided alternatives.

While our proposed test is based on the WMW test, the underlying approach of 

studentization-and-combination is not limited to the WMW test and can have broader 

applications to the many other reasonable and interesting rank-based two-sample tests, 

including the van der Waerden test. Further research is required to investigate in detail the 

tradeoffs of such modifications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relationship between Var(U) and sy. X ~ Logistic(0, 1), Y ~ Logistic(0, sy). The horizontal 

lines have heights Vmn, the theoretical variance of U when sy = 1.
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Figure 2. 
Boxplots for the data examples.
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Table 6

P-values for the data examples. For the WMW test, the p-value is determined by the normal approximation 

when either m or n exceeds 50 and by exact distribution otherwise; for the FP or combined (C) test, the p-

value is determined by the method indicated for MTCT, and by permutation for air quality.

WMW FP C

MTCT (normal approx.) 0.0396 0.0661 0.0405

MTCT (permutation) 0.0396 0.0707 0.0467

Air Quality 1 0.0711 0.0420 0.0422

Air Quality 2 0.0181 0.0333 0.0333
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