
Neuro-Oncology
21(4), 474–485, 2019 | doi:10.1093/neuonc/noz001 | Advance Access date 4 January 2019

 474

Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2019.  
This work is written by (a) US Government employee(s) and is in the public domain in the US.

Abstract_Last=Text_First=Abstract_Last1=Text_First1
Figure=Figure_Above_Space=Figure=FigCapt
XText_1=XText_1=XText_1=XText_12

Radiation-induced astrocyte senescence is rescued by 
Δ133p53

Casmir Turnquist,*,  Jessica A. Beck,* Izumi Horikawa, Ifeyinwa E. Obiorah, Natalia von Muhlinen, 
Borivoj Vojtesek, David P. Lane, Christopher Grunseich, Joeffrey J. Chahine, Heather M. Ames, 
DeeDee Smart, Brent T. Harris,† and Curtis C. Harris†

Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of 
Health, Bethesda, Maryland, USA (C.T., J.B., I.H., N.V.M., C.H.); Department of Pathology, Georgetown University 
Medical Center, Washington, DC, USA (I.O., B.H., J.C.); Regional Centre for Applied Molecular Oncology, Masaryk 
Memorial Cancer Institute, Brno, Czech Republic (B.V.); p53 Laboratory, Biomedical Sciences Institutes (A*STAR), 
Singapore (D.L.); Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes 
of Health, Bethesda, Maryland, USA (C.G.); Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 
USA (H.A.); Department of Pathology, University of Maryland, Baltimore, Maryland, USA (H.A.); Radiation Oncology 
Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 
USA (D.S.); Department of Neurology, Georgetown University Medical Center, Washington, DC, USA (B.H.)

Corresponding Authors: Brent T. Harris, Georgetown University Medical Center, 4000 Reservoir Rd, NW, Bldg D, Room 207, 
Washington, DC 20057 (bth@georgetown.edu), and Curtis C. Harris, 37 Convent Dr, Rm 3068A, Bethesda, MD 20892 (Curtis_Harris@
nih.gov).

*These authors contributed equally to this work as first authors.
†These authors contributed equally to this work as senior authors.

Abstract
Background.  Cellular senescence and the senescence-associated secretory phenotype (SASP) may  contribute 
to the development of radiation therapy–associated side effects in the lung and blood vessels by promoting 
chronic inflammation. In the brain, inflammation contributes to the development of neurologic disease, including 
Alzheimer’s disease. In this study, we investigated the roles of cellular senescence and Δ133p53, an inhibitory iso-
form of p53, in radiation-induced brain injury.
Methods.  Senescent cell types in irradiated human brain were identified with immunohistochemical labeling 
of senescence-associated proteins p16INK4A and heterochromatin protein Hp1γ in 13 patient cases, including 7 
irradiated samples. To investigate the impact of radiation on astrocytes specifically, primary human astrocytes 
were irradiated and examined for expression of Δ133p53 and induction of SASP. Lentiviral expression of ∆133p53 
was performed to investigate its role in regulating radiation-induced cellular senescence and astrocyte-mediated 
neuroinflammation.
Results.  Astrocytes expressing p16INK4A and Hp1γ were identified in all irradiated tissues, were increased in num-
ber in irradiated compared with untreated cancer patient tissues, and had higher labeling intensity in irradiated 
tissues compared with age-matched controls. Human astrocytes irradiated in vitro also experience induction of 
cellular senescence, have diminished Δ133p53, and adopt a neurotoxic phenotype as demonstrated by increased 
senescence-associated beta-galactosidase activity, p16INK4A, and interleukin (IL)-6. In human astrocytes, Δ133p53 
inhibits radiation-induced senescence, promotes DNA double-strand break repair, and prevents astrocyte-mediated 
neuroinflammation and neurotoxicity.
Conclusions.  Restoring expression of the endogenous p53 isoform, ∆133p53, protects astrocytes from radiation-
induced senescence, promotes DNA repair, and inhibits astrocyte-mediated neuroinflammation.
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Key Points

1. �Astrocyte senescence is increased in irradiated human brain tissue.

2. Radiation-induced astrocyte senescence induces neurotoxicity.

3. �Δ133p53 inhibits radiation-induced astrocyte senescence to promote 
neuroprotection.

Cranial radiation therapy is used to effectively treat brain 
cancer in adult and pediatric patients.1,2 Since its develop-
ment, protocols have evolved to incorporate methods to 
reduce side effects, such as shielding the hippocampus and 
fractioning the total radiation dose.3–5 However, even with 
improvements, over 40% of patients surviving >6 months 
experience late side effects. In up to 5% of these patients, 
neurocognitive impairment progresses from decreased 
attention and problem-solving ability to memory loss, 
ataxia, and dementia.6,7 Late effects may also develop in 
pediatric patients for whom radiation may be prescribed 
to treat the two most common cancer types: leukemia and 
glioma.8–10 Side effects in these patients include deficits in 
social functioning and vocational difficulty and poor perfor-
mance in intelligence quotient testing and are most severe 
in the youngest patients receiving the highest radiation 
doses.4,9–13 As the number of cancer survivors increases, it 
becomes increasingly critical to understand the causes of 
these late effects and to develop strategies to prevent them.

Side effects of cancer therapy may be associated with 
injury to non-tumor cells.14 Following radiation exposure 
and accumulation of DNA damage, cells may adopt one of 
several cell type‒specific responses, including induction of 
cellular senescence.5,15 Importantly, although senescent cells 
do not replicate, they may avoid clearance and persist in tis-
sues while continuing to produce inflammatory factors that 
contribute to tissue injury.16,17 In this way, radiation-induced 
cellular senescence is being recognized as an important 
mediator of tissue dysfunction promoting chronic inflamma-
tion and contributing to radiation-induced side effects, includ-
ing pulmonary fibrosis and cerebrovascular dysfunction.18,19

To investigate the role of cellular senescence in cra-
nial radiotherapy, this study examines brain tissue from 
patients who have undergone brain radiation treatment 
and identifies several senescent cell types, including astro-
cytes. Astrocytes perform many neuroprotective functions, 
including production of neurotrophic factors. However, 

astrocytes may also promote neurodegeneration in some 
diseases, including Alzheimer’s disease, which is thought 
to be related to induction of a senescence-associated 
secretory phenotype (SASP).17,20 The role of astrocytes and 
astrocyte senescence in radiation-induced brain injury has 
not been previously characterized.6

After identifying senescent astrocytes in irradiated tis-
sues, this study investigates the potential functions of 
astrocyte senescence and SASP in promoting brain injury. 
Based on previous studies20 identifying regulation of rep-
licative senescence by one of the p53 isoforms, ∆133p53, 
this study examines the role of ∆133p53 in regulating 
radiation-induced astrocyte senescence. These findings 
identify restoration of ∆133p53 as a potential therapeutic 
approach to inhibiting radiation-induced astrocyte senes-
cence, promoting DNA repair in irradiated astrocytes, and 
preventing astrocyte-mediated neuroinflammation.

Methods

Human Patient Tissues

Case tissues were acquired with full institutional review 
board approval from the Georgetown Brain Bank, the 
Histopathology Tissue Shared Resource at Georgetown 
University, and Johns Hopkins Brain Bank and included 
non-tumor brain tissue from cancer patients with a history 
of cranial radiation treatment, with no history of treatment, 
or from non-disease, age-matched controls collected at 
autopsy (Supplementary Table 1). Patients receiving chemo-
therapy or immunotherapy were excluded.14 Tissues were 
anonymized, labeled with senescence-associated proteins 
(Supplementary Table 2), and examined by 3 pathologists 
(J.B., B.H., I.O.). Each control and radiation-treated tissue 
was assigned an immunoreactivity score in a blinded man-
ner based on the intensity of immunohistochemical labeling 

Importance of the Study

With improvements in cancer therapies, an increas-
ing number of patients survive long enough to 
experience late complications of radiotherapy, 
including progressive cognitive impairment that 
can escalate to severe memory loss and demen-
tia. Astrocytes are ubiquitous brain cells that may 
promote neuroinflammation and neurotoxicity in 

neurodegenerative diseases through the adoption of 
SASP. This study identifies senescent astrocytes in 
irradiated patient brain tissues and demonstrates that 
∆133p53 inhibits radiation-induced astrocyte senes-
cence, promotes DNA repair, and prevents produc-
tion of neurotoxic IL-6 from irradiated primary human  
astrocytes.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
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Fig. 1  Astrocyte senescence is increased in irradiated patient tissues. (A) Expression of senescence-associated proteins Hp1γ and p16INK4 in irradiated 
and untreated non-tumor brain tissues using immunohistochemistry. (B) Tissues were examined in a blinded fashion by 3 pathologists and scored from 0 
(none) to 3 (high) based on intensity of cell labeling. (C) Hp1γ and (D) p16INK4A immunohistochemical labeling in 3 patients receiving stereotactic radiation 
with comparison of irradiated to untreated tissue in the same patient as an internal control. *Case 7 is from a patient with a previous diagnosis of Alzheimer’s 
disease in which astrocyte senescence is prominent and thought to promote neurodegeneration.20 (E) Immunocytochemistry of irradiated brain tissue 
demonstrating co-localization of p16INK4A and GFAP in astrocytes. (F) p16INK4A-positive astrocytes in irradiated human brain tissues using immunohisto-
chemistry. (G) Quantification of p16INK4A-positive astrocytes in 20 microscopic fields (0.5 mm2) in non-tumor brain tissue from untreated cancer patients (n 
= 4) and cancer patients receiving radiation treatment (n = 4). (H) Representative images of cell types expressing senescence-associated Hp1γ in irradi-
ated (stereotactic) and untreated brain tissue from the same patient, including endothelia, astrocytes, neurons, meninges, and microglia. Scale = 50 μm.
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(Fig.  1, Supplementary Table 3). Quantification of p16INK4A-
positive astrocytes was completed in 20 microscopic fields 
(0.5 mm2) from untreated cancer patients (n = 4) and cancer 
patients receiving cranial radiation treatment (n = 4). In addi-
tion, 3 patients received stereotactic radiotherapy allowing 
for comparison of irradiated and untreated regions within the 

same patient (Fig. 1); these case-matched tissues were fur-
ther reviewed to identify Hp1γ-positive cell types, to quan-
tify percent of Hp1γ-positive microglia, and to quantify 
CD68-positive microglia per high-power field (40x) in irra-
diated and untreated brain tissue (Fig. 1, Supplementary 
Fig. 3).
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Fig. 2  Radiation induces astrocyte senescence. (A) Representative image and (B) quantification of radiation-induced DNA damage identified 
by immunolabeling of double-stranded DNA breaks by 53BP1 and γH2AX in primary human astrocytes 3 days after radiation exposure (2 Gy). (C) 
Representative images of SA-β-gal staining in human astrocytes on day 3 after exposure to radiation (2 Gy). (D) Quantitative summary of the per-
cent of astrocytes with SA-β-gal staining from 2 to 7 days after radiation (2 Gy). (E) Production of SASP-associated cytokine mRNAs (IL-1β, IL-6, 
and IL-8 mRNA) and (F) neurotrophic factor mRNAs (nerve growth factor [NGF], glial cell–derived neurotrophic factor [GDNF], insulin-like growth 
factor-1 [IGF-1]) in irradiated or sham-treated primary human astrocytes measured by qRT-PCR (Taqman). Representative images of (G) p16INK4A and 
(H) p21WAF1 immunolabeling in irradiated GFAP-positive human astrocytes on day 6 following exposure to radiation (2 Gy). (I) Quantitation of p16INK4A 
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
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Cell Culture

Primary human astrocytes were obtained from Sciencell 
and maintained in Astrocyte Medium supplemented with 
2% fetal bovine serum, 1% astrocyte growth supplement 
from Sciencell, and 1% penicillin/streptomycin solution. 
Astrocytes expressed astrocyte-lineage marker (glial fibril-
lary acidic protein [GFAP]) (Fig. 2A, G–H, Supplementary 
Fig. 4N–P) were split at a ratio of 1:3 and continued to pro-
liferate through passage 20. All experiments used prolif-
erative, low passage astrocytes (<p10).

The induced pluripotent stem cell (iPSC) line, i20 (NIH 
stem cell bank), was differentiated to neural stem cells 
using Gibco Pluripotent Stem Cell Neural Induction (Life 
Technologies). Mature neurons were differentiated from a 
transgenic human control iPSC line by neurogenin 2 induc-
tion.21 The iPSCs were plated in Matrigel-coated 10  cm 
dishes at a density of 1.5 × 106 cells/dish with doxycycline 
(2 μg/mL) in Dulbecco’s modified Eagle’s medium/F12 con-
taining N2 supplement (Invitrogen), non-essential amino 
acids (Invitrogen), L-glutamine (Invitrogen), and Y-27632 
(10  μM; Tocris). After 3  days, cells were Accutase treated 
and plated onto poly-D-lysine/laminin coated 8-chamber 
slides (Corning) at a density of 300 000 cells in induction 
media without Y-27632, supplemented with mouse laminin 
(1  μg/mL; Invitrogen), B27 supplement (Invitrogen), and 
brain derived neurotrophic factor (10 ng/mL; R+D Systems). 
Neurons were analyzed after 7 days of differentiation.

Radiation Exposure

Human cells were exposed to ionizing radiation in an 
X-Rad 320 biologic irradiator (Precision X-ray), at a dose of 
0.5 to 20 Gy as indicated.

IL-6 Treatment

Where indicated, recombinant interleukin (IL)-6 (InvivoGen) 
was incubated with iPSC-derived neural stem cells (NSCs) or 
mature neurons for 24 hours at a concentration of 5 ng/mL.

Senescence-Associated Beta Galactosidase 
Assay 

SA-β-gal staining was performed with the Senescence 
Associated (SA)-β-Galactosidase Staining Kit (Cell 
Signaling Technology).

Transwell Experiments

Human astrocytes were irradiated in the top transwell 
chamber and co-cultured with untreated neural progeni-
tor cells (NPCs) (ACS-5004) for 96 hours beginning on the 
third day after irradiation. Additional details are described 
in the Supplementary Material.

Statistical Analysis

Data are presented as mean and standard deviation of 
at least 3 independent experiments. Comparisons were 

made using 2-sided, unpaired Student’s t-test. Differences 
were considered significant at *P ≤ 0.05, **P ≤ 0.01, and 
***P ≤ 0.001 or NS (not significant).

Additional methods—including antibodies, lentiviral 
vector transduction, cell viability assay, enzyme-linked 
immunosorbent assay, quantitative reverse transcriptase 
(qRT)-PCR, immunohistochemistry, immunofluorescence, 
western blot, RNA extraction, and cDNA preparation—can 
be found in the Supplementary Material.

Results

Astrocyte Senescence Is Increased in Irradiated 
Patient Tissues

Radiation-induced cellular senescence is a stress-induced 
cell cycle arrest that may contribute to the development of 
radiotherapy side effects.18,19 To characterize cellular senes-
cence in the brain, tissue samples from patients with or 
without a history of radiation treatment were examined 
(Supplementary Table 1). Immunohistochemistry was per-
formed using antibodies against senescence-associated 
proteins p16INK4A and Hp1γ22–24 (Fig. 1A) and scored based 
on the intensity of cellular labeling (Fig. 1B, Supplementary 
Table 3). Tissue immunoexpression of senescence proteins 
was lowest in brain tissue from non-disease, age-matched 
controls; was increased in untreated cancer patients; and 
was highest in irradiated tissues (Fig. 1B). Similar results 
were observed in a subset of patients with the same cancer 
type (metastatic melanoma; Supplementary Fig. 1A–C) and 
in patients receiving stereotactic radiotherapy (Fig. 1C–D), 
which in contrast to non-targeted whole brain radiother-
apy allows for comparison of irradiated to untreated brain 
regions within the same patient as an internal control.

We next aimed to characterize senescent cell types in 
irradiated patient tissues. Hp1γ- and p16INK4A-positive cells 
were identified by 3 independent pathologists (J.B., B.H., 
I.O.). The majority of senescence-associated markers co-
localized with GFAP-positive astrocytes (Fig.  1E), under-
scoring the potential importance of astrocyte senescence 
in the brain’s response to radiation. The mild increase in 
cellular senescence in untreated cancer patient tissues 
compared with non-disease controls (Fig.  1B) may indi-
cate a role for the tumor microenvironment in promoting 
reactive astrocytosis and astrocyte senescence, which 
may be a general response of human astrocytes to injury. 
However, the number of p16INK4A-positive astrocytes was 
higher in patients receiving radiation treatment compared 
with untreated cancer patients (Fig.  1F–G), suggesting 
that radiotherapy may exacerbate this response. In addi-
tion, similar numbers of p16INK4A-positive astrocytes were 
observed in tissues irradiated between 3  months and 
4 years prior to collection (Supplementary Fig. 2A–B), which 
is consistent with reports of increased numbers of reactive 
astrocytes in animal models of radiation-induced brain 
injury for at least 1 year following radiation exposure.25,26 
Astrocyte senescence is also increased in Alzheimer’s dis-
ease (Case 7, Fig.  1C–D, Supplementary Fig.  2C–D) and 
may promote neurotoxicity, highlighting the potential 
importance of astrocyte senescence in neurodegenerative 
diseases.16,17,20 Finally, focal Hp1γ immunoreactivity was 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz001#supplementary-data
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identified in several additional cell types, including microg-
lia, which are important mediators of neuroinflammation27; 
however, this effect was less prominent than the described 
astrocyte senescence (Fig. 1H, Supplementary Fig. 3A–D).

Radiation Induces Cellular Senescence in Human 
Astrocytes

Radiation can induce DNA damage either directly through 
ionization or indirectly through the production of free radi-
cals.5,14 Adult and pediatric patients with brain cancer may 

receive 30 to 60 Gy of radiation, which is administered in 
small doses or fractions of approximately 2 Gy per treat-
ment until the total dose is achieved.1–3 After a single 2 
Gy fraction, primary human astrocytes irradiated in vitro 
have significant increases in DNA double-strand breaks 
indicated by γH2AX (P  =  0.013) and 53BP1 (P  =  0.035) 
(Fig. 2A–B).28

Following accumulation of DNA damage, one of several 
cell type‒specific responses may occur, including induction 
of apoptosis, mitotic catastrophe, or cellular senescence.5,15 
Our study has identified astrocytes as the major senes-
cent cell type in irradiated brain tissues. In contrast to NSCs 
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(Supplementary Fig. 4A),15,29 irradiated human astrocytes did 
not experience induction of apoptosis and maintained over 
90% viability for up to 7 days following radiation exposure 
(Supplementary Fig.  4B–D). To further characterize this, we 
next investigated astrocytes irradiated in vitro for the induc-
tion of cellular senescence, a response that may promote 
side effects of cancer treatment.18,19 Irradiated astrocytes 
experienced a significant, dose-dependent (Supplementary 
Fig.  4E–G) increase in SA-β-gal staining beginning 2  days 
after irradiation (P = 0.010, 1.5-fold) and persisting for up to 
1 week (P = 0.03, 2.3-fold) (Fig. 2C–D). SASP-associated cyto-
kines, including IL-1β and IL-6, are known to be upregulated 
in patients and animal models following radiation treat-
ment.27,30–33 To determine whether astrocytes may contribute 
to radiation-induced inflammation, we examined several 

cytokines implicated in neurodegeneration20,34 and found a 
significant increase in IL-1β (P = 0.016), IL-6 (P = 0.0005), and 
IL-8 (P  =  0.006) (Fig.  2E). The significant induction of SASP 
cytokines in irradiated astrocytes underscores their potential 
role in promoting neuroinflammation in radiation-induced 
brain injury. Similar induction of senescence and SASP-
associated IL-6 was also observed in astrocytes irradiated 
at radiosurgical doses (10 Gy; Supplementary Fig. 4H–J). In 
addition, radiation-induced astrocyte senescence was accom-
panied by a significant loss of insulin-like growth factor 1 
(IGF-1) (P = 0.015; Fig. 2F), which is reported to promote astro-
cyte-mediated neuroprotection and improve neurocognitive 
function in mouse models of brain injury.35,36 Finally, irradi-
ated astrocytes demonstrated increased expression of senes-
cence-associated p16INK4A (P  <  0.0001) and p21 (P  =  0.009) 
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(Fig.  2G–I), reduced cell number (Supplementary Fig.  4K), 
enlarged cell size (Supplementary Fig. 4L), increased number 
of multinucleated cells15 (Supplementary Fig. 4M), and senes-
cence-associated downregulation of GFAP37 (Supplementary 
Fig. 4N–P). Taken together, these in vitro results indicate that 
irradiated astrocytes undergo senescence, and are consistent 
with our findings in patient tissues and with animal models of 
radiation-induced brain injury.25–28

∆133p53 Is Decreased in Irradiated Astrocytes 
and Its Overexpression Protects Astrocytes from 
Radiation-Induced Cellular Senescence

Senescent astrocytes are observed in patients with neuro-
degenerative diseases, including Alzheimer’s disease and 
amyotrophic lateral sclerosis, and have been shown to have 
reduced expression of the p53 isoform ∆133p53.20 To identify 
brain cells expressing ∆133p53 in human brain tissue, immu-
nofluorescence was performed using a ∆133p53-specific 
antibody, MAP4,20,38 and cell type–specific antibodies for 
astrocytes (GFAP-positive20) or neurons (NeuN-positive39). 
The majority of ∆133p53 expression co-localizes with GFAP-
positive astrocytes (Fig. 3A), indicating that astrocytes are the 
predominant source of ∆133p53. Following radiation expo-
sure, primary human astrocytes have decreased ∆133p53 
(Fig.  3B), which is further diminished after exposure to a 
second 2 Gy fraction (4 Gy total dose) (Fig. 3C), suggesting 

that loss of Δ133p53 may be associated with the induction of 
radiation-induced astrocyte senescence.

As ∆133p53 is diminished in irradiated senescent astro-
cytes, we investigated whether reconstitution of ∆133p53 
expression would protect astrocytes from radiation-induced 
senescence. First, a lentiviral vector expressing ∆133p53 or 
pLOC control vector (Supplementary Material) was trans-
duced in primary human astrocytes 3  days after radiation 
exposure (Fig.  3D). Irradiated astrocytes with reconstituted 
∆133p53 had reduced SA-β-gal activity compared with con-
trol astrocytes (P = 0.0006) (Fig. 3E–F), indicating that Δ133p53 
can rescue astrocytes from radiation-induced senescence. 
Finally, we examined the impact of transducing astrocytes 
with lentiviral vectors expressing ∆133p53 or pLOC control 
prior to radiation exposure and found that astrocytes with 
∆133p53 had no increase in SA-β-gal staining (P  =  0.483) 
compared with an increase of approximately 55% in irradi-
ated pLOC control astrocytes (P  <  0.0001) (Supplementary 
Fig. 5A–B), demonstrating that increasing ∆133p53 protects 
astrocytes from radiation-induced senescence when induced 
either prior to or after radiation exposure.

∆133p53 Promotes DNA Repair in Irradiated 
Astrocytes

Recently, ∆133p53 has been shown to promote DNA 
repair in fibroblasts from patients with Hutchinson-Gilford 
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progeria syndrome through the promotion of homologous 
recombination (HR) DNA repair protein RAD51.40 Following 
irradiation, RAD51 is significantly increased in astrocytes 
transduced with ∆133p53 (P  =  0.016; Fig.  4A). Although 
this increase may be due to accelerated cell proliferation,41 
confluent human astrocytes transduced with Δ133p53 
maintained a 2- to 3-fold increase in RAD51 (Fig.  4B–C) 
despite an approximately 3.5-fold decrease in cellular pro-
liferation (Ki-6742; Supplementary Fig. 6A–B). The sustained 
increase in RAD51 at confluency, which is associated with 
G1 arrest,43 suggests that the effect of Δ133p53 on HR may 
be at least in part due to an increased baseline expression 
of RAD51, although this finding does not rule out an S/
G2 phase-specific regulation of HR machinery. To further 
examine the role of Δ133p53 in HR, DNA double-stranded 
breaks were labeled with γH2AX. Six days after irradiation, 
the percent of γH2AX-positive astrocytes was significantly 
reduced by ∆133p53 transduction after radiation exposure 
(P < 0.0001; Fig. 4D–E). A similar reduction in γH2AX was 
also observed in astrocytes transduced with Δ133p53 vec-
tor prior to radiation (Supplementary Fig.  6C). To exam-
ine DNA repair kinetics at earlier time points, astrocytes 
were transduced prior to irradiation and labeled at 4 and 
24 hours post-irradiation with RAD51, γH2AX, and 53BP1 
(Fig.  4F–H, Supplementary Fig.  6D–E). After 4 hours, the 
number of DNA damage foci labeled by γH2AX and 53BP1 
was not significantly different (Fig. 4G–H), suggesting that 

both control and Δ133p53 transduced cells develop similar 
levels of radiation-induced DNA damage; however, after 24 
hours, Δ133p53-transduced astrocytes had fewer γH2AX 
(P = 0.00002) and 53BP1 foci (P = 0.0006), suggesting that 
Δ133p53 promotes DNA repair in irradiated astrocytes.

∆133p53 Inhibits Astrocyte-Mediated 
Neuroinflammation

Because radiation-induced brain injury is associated with 
neurocognitive dysfunction, many studies focus on the 
effects of radiation on neurons and NPCs.6,29,44 Secretory 
factors derived from senescent astrocytes are known to 
impair astrocyte-mediated neuroprotection in animal 
models45 and may promote the late effects of radiation 
injury by contributing to chronic neuroinflammation. Of 
the SASP cytokines, IL-6 is most frequently upregulated 
in neurodegeneration.46 Following radiation exposure, 
human astrocytes secrete significantly more IL-6 (P = 0.018; 
Supplementary Fig. 5C), similar to replicatively senescent 
astrocytes, which are neurotoxic via IL-6 in neuron-astro-
cyte co-culture experiments.20 To examine whether radia-
tion-induced senescent astrocytes are also neurotoxic, we 
cultured NPCs with irradiated or sham-treated astrocytes 
separated by a transwell membrane (Supplementary 
Fig. 5D). In co-culture, there was a significant loss of NPC 
viability (P  =  0.009; Supplementary Fig.  5E) and a 2-fold 
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induction of NPC apoptosis (P  =  0.011; Supplementary 
Fig. 5F–G). These findings are not only consistent with our 
previous study of senescent astrocyte-mediated neurotox-
icity but also demonstrate that astrocytes mediate neuro-
toxicity through secretory factors such as IL-6,20 rather than 
through direct cell-cell contact. This was further examined 
through direct exposure of NSCs and mature neurons to 
IL-6 (5 ng/mL). After 24 hours, there was an approximately 
10% increase in the percent of mature neurons express-
ing the apoptotic marker cleaved caspase 3 (P  =  0.013; 
Fig. 5A–B), and the viability of NSCs was reduced to less 
than 50% (P = 0.0001; Fig. 5C), suggesting that IL-6 plays 
a causative role in neuronal death mediated by senescent 
astrocytes.

Because Δ133p53 was found to rescue irradiated astro-
cytes from senescence (Fig.  3), we next investigated 
whether ∆133p53 rescues astrocytes from radiation-
induced production of neurotoxic IL-6. Irradiated control 
astrocytes experienced a significant 5-fold increase in IL-6 
mRNA measured by qRT-PCR (P = 0.0005). In contrast, IL-6 
mRNA was not significantly upregulated in irradiated astro-
cytes with restored ∆133p53 (P = 0.389; Fig. 5D), indicating 
that astrocyte-mediated neuroinflammation is repressed by 
reconstitution of ∆133p53 after radiation treatment. Similar 
findings were also observed in astrocytes transduced prior 
to radiation, including a significant reduction in secreted IL-6 
(P = 0.017; Fig. 5E). In addition, astrocytes transduced with 
Δ133p53 demonstrated a partial rescue of neurotrophic 
IGF-1 mRNA expression (P = 0.015; Fig. 5F). Taken together, 
these findings suggest that radiation induces astrocyte 
senescence, thereby promoting astrocyte-mediated neu-
rotoxicity through the production of neurotoxic cytokines. 
Critically, Δ133p53 has been identified as a potential thera-
peutic target for inhibiting radiation-induced astrocyte-
mediated neurotoxicity (Fig. 6).

Discussion

Radiation-induced brain injury may cause progressive 
cognitive deterioration, including dementia-like symp-
toms.6 It shares pathologic features with aging-associated 
neurodegeneration, including chronic oxidative stress, 
inflammation, and reduced neurogenesis.6,47,48 Current 
understanding of the pathogenesis of radiation-induced 
brain injury focuses on the acute loss of NSCs and its effect 
on hippocampus-dependent functions such as learning 
and memory.29,49 However, few studies have addressed the 
role of astrocytes. Our finding that astrocytes preferentially 
undergo senescence, while NPCs undergo cell death, indi-
cates that astrocyte SASP may underlie the chronic nature 
of radiation-induced brain injury.

Animal models of radiation-induced brain injury have 
identified hypertrophied astrocytes that persist for 
at least 12  months following radiation treatment.25,26 
Based on our findings in irradiated human tissues and 
our previous findings in Alzheimer’s disease and amyo-
trophic lateral sclerosis,20 many of these hypertrophied 
astrocytes are senescent, an important pathologic 

characterization that likely extends to other disease pro-
cesses in the brain.

Following brain injury, astrocytes proliferate as part of 
reactive astrogliosis, which may lead to replicative senes-
cence.20,50,51 In addition, direct injury including DNA injury 
or oxidative damage may induce premature cellular senes-
cence.17,18,51 Both mechanisms of cellular senescence are 
controlled by p53 and its isoforms through p53-inducible 
cell cycle regulators, such as p21.20,38 In humans, TP53 has 
at least 12 isoforms through alternative promoters or splic-
ing that may promote or inhibit full-length p53 activities or 
have independent functions. Of these isoforms, Δ133p53 is 
the best characterized as an endogenous inhibitor of cellu-
lar senescence.20,38,40 Based on this and previous studies,40 
Δ133p53 enhances DNA repair in senescent cells by pro-
moting HR; however, our study has also demonstrated that 
expression of Δ133p53 enhanced repair of foci positive 
for 53BP1, a component of non-homologous end-joining 
(NHEJ),52 suggesting that Δ133p53 may also regulate NHEJ 
in radiation injury by a currently unknown mechanism.

In addition to accumulating DNA damage, senes-
cent cells may promote inflammation through induction 
of SASP.16,17 Increased release of the SASP cytokines 
IL-632,33 and IL-1β33 is reported in animal models of radia-
tion-induced brain injury and may inhibit neurogenesis, 
contributing to cognitive impairment.30,53,54 Using anti-
inflammatory drugs to target and reduce neuroinflamma-
tion in radiation injury improves neurogenesis,30 while 
IL-6 has been shown to reinforce radiation-induced senes-
cence in animal models,55 underscoring the role of chronic 
neuroinflammation in promoting radiation-induced brain 
injury. Based on the findings outlined in this study, astro-
cyte senescence and astrocyte-derived neuroinflam-
mation have been identified as potential contributors to 
radiation-induced brain injury.

This and previous studies have demonstrated that 
Δ133p53, through the inhibition of full-length p53, regu-
lates p21,38,40 RAD51,40 and IL-6,20,40 each of which has 
been shown to be important in radiation-induced injury 
and neurotoxicity. Although the regulatory interactions 
between these factors have yet to be elucidated, our find-
ings suggest that induction of the p53 isoform ∆133p53 
may have potential therapeutic value by preventing astro-
cyte senescence and inhibiting astrocyte-mediated neuro-
inflammation (Fig. 6). Critically, this endogenous isoform 
is produced in human cells and has not been shown to 
be mutagenic or oncogenic.20,38,56 To study the role of 
Δ133p53 in other cell types and the tumor microenviron-
ment in vivo, ongoing studies seek to establish an animal 
model and identify compounds which modulate ∆133p53. 
Future studies aim to reverse the senescence phenotype 
in diseases, such as radiation-induced brain injury, in 
which cellular senescence may initiate or worsen disease 
progression.20,38,40
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