
A Kernel-based Low-rank (KLR) Model for Low-dimensional 
Manifold Recovery in Highly Accelerated Dynamic MRI

Ukash Nakarmi [Student Member, IEEE],
Department of Electrical Engineering, University at Buffalo, NY, 14260, USA

Yanhua Wang [Member, IEEE],
School of Information and Electronics, Beijing Institute of Technology, Beijing, China

Jingyuan Lyu [Student Member, IEEE],
Department of Electrical Engineering, University at Buffalo, NY, 14260, USA

Dong Liang [Senior Member, IEEE], and
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced 
Technology, Shenzhen, Guangdong 518055, China

Leslie Ying* [Senior Member, IEEE]
Department of Electrical Engineering, Department of Biomedical Engineering, University at 
Buffalo, NY, 14260, USA

Abstract

While many low rank and sparsity based approaches have been developed for accelerated dynamic 

magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, 

overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a 

kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist 

data. Within this framework, many existing algorithms can be extended to kernel framework with 

nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank 

(KLR) model generalizing the conventional low rank formulation. The algorithm consists of 

manifold learning using kernel, low rank enforcement in feature space, and preimaging with data 

consistency. Extensive simulation and experiment results show that the proposed method surpasses 

the conventional low-rank-modeled approaches for dMRI.

Index Terms

Low rank models; compressed sensing; kernel method; preimaging; manifold recovery

I. Introduction

DYNAMIC magnetic resonance imaging (dMRI) has been widely used in many clinical 

applications such as cardiac cine imaging and dynamic contrast enhanced imaging, due to its 
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ability to reveal spatial structures and kinetic information simultaneously. The data 

acquisition in MRI is modeled mathematically as sampling of the k-space, i.e., the Fourier 

transform of the desired image. The image is usually reconstructed from these samples using 

the well-known procedure of truncated Fourier series. In dMRI, to recover the image series 

using the conventional Fourier reconstruction, the Nyquist sampling criterion has to be 

satisfied in both k-space and the temporal direction. However, due to the slow data 

acquisition speed in MRI, this criterion is difficult to satisfy, which results in aliasing 

artifacts or motion artifacts. Research efforts have been made to reconstruct a high-quality 

image series from MRI data sampled below the Nyquist rate by exploiting spatial and/or 

temporal correlations in the image series [1]–[4]. A recent paradigm in sub-Nyquist 

sampling and signal recovery, Compressed Sensing (CS) has shown promising capability of 

accelerating data acquisition process without significant loss in signal recovery. Several 

types of constraints such as sparsity [5]–[17] and low-rankness [3], [18]–[21] have been 

explored at length in many literature. For example, the partial separable (PS) [18], [19] and 

sparsity with low rank (SLR) [20] methods suit dynamic data with slow variation, where the 

temporal basis are approximated nearly accurate from the navigator lines. This assumption is 

violated when the image series has higher temporal variation such as in perfusion imaging, 

dynamic imaging with fewer temporal frames and dMRI with motion.

Manifold models [22]–[27] have been widely used in machine learning for nonlinear 

dimensionality reduction, and it has been shown to be superior to linear approaches such as 

principal component analysis [28] and multidimensional scaling [29]. However, different 

from dimensionality reduction applications where the high-dimensional manifold-modeled 

signal is the input and is not of interest in the output, in image reconstruction, the signal is 

the output to recover. A few algorithms [30]–[35] have been developed for manifold-

modeled signal recovery outside the MRI context. Recently, some papers have studied 

manifold for dMRI reconstruction [36]–[39]. Specifically, they use the idea of heat kernels 

and spectral graph theory [25], [40] to characterize the relationship between dMRI image 

series. For example, in [36], [38], a graph Laplacian is constructed to compute the image 

similarity, and the eigenfunction of the graph Laplacian provides a smooth embedding for 

dynamic image series. Such an approach is helpful when the image series consists of highly 

correlated and distributed image sequence along temporal direction, but might not be 

effective in the cases when very few temporal frames are available, and/or signal varies 

significantly along the temporal direction. In the meantime, kernel based methods have also 

been exploited to learn the intrinsic signal manifold and extensively used for signal 

embedding, classification, regression and denoising [41]–[43].

In this work, we establish a novel kernel-based framework to learn and incorporate a 

nonlinear manifold into constrained reconstruction from reduced acquisition. In particular, 

we use kernel principal component analysis (KPCA) [43], [44] to learn the manifold 

described by the principal components of the feature space. Low Rank in feature space is 

enforced by projecting undersampled signal into principal components of features space and 

preimaging technique is applied to project back the signal from feature space to input image 

space. We have previously shown that the kernel methods can be used to exploit the 

nonlinear correlation in the dMRI data [45]–[47]. Here, we put dMRI reconstruction in the 

context of manifold recovery from compressive measurements which is supported by 
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theoretical results [26], [43], [44]. We use kernel PCA to learn the manifold. Supported by 

numerical simulations, it is hypothesized that the model learned by kernel PCA can more 

efficiently (i.e., lower rank in feature space) represent the dynamic images when few 

temporal frames are acquired, and as a result, the reconstruction based on such a model is 

more faithful. We thereby propose an efficient manifold recovery algorithm in the kernel-

based framework, extending results in our conference papers [46], [47]. Different from 

kernel compressed sensing [34] which is a nonlinear generalization of sparsity-based 

reconstruction using kernel dictionary learning, our proposed method is a nonlinear 

generalization of low rank matrix recovery using kernel principal component analysis. A 

number of simulation and experimental results are shown to support the hypothesis.

The rest of the paper is organized as follows. In section II-A, we provide a brief review to 

classical low rank approaches to dMRI. Section II-B presents some background on manifold 

learning and embeddings and section II-C provides the background of kernel methods, the 

foundation that our method resides on. Section III elaborates on our proposed method. In 

section IV, the proposed method is evaluated using extensive simulation and experimental 

results, followed by discussion on various aspects of the proposed method and results in 

section V. Finally, section VI concludes the paper.

II. Background Theory

A. Signal recovery under low-rank constraints

In dMRI, the k-space measurement at time t, denoted as d(k, t) can be represented as

d k, t = ∫ γ r, t e− j2π k ⋅ r dr (1)

where γ (r, t) is the desired dynamic image at time t. The discrete version of dynamic image 

series can be written as an M ×N Casorati matrix Γ, whose (m, n)th entry is defined as γ(rm, 
tn), representing the value at the corresponding spatial location and time point [3], [18]. 

Here, M is the number of voxels in the image and N is the number of frames in the data set. 

Assuming that data are collected in k-space at a sub-Nyquist sampling rate, the imaging 

equation can be written as:

y = A Γ (2)

where A(·) is a linear operator that performs spatial Fourier transform on the image series 

with sub-Nyquist sampling and stacks the resulting k-space measurements into a vector y = 

ℂD, D ≪ MN. Solving Eq. (2) for Γ is a highly ill-posed problem. To address this issue, the 

low-rank (or partial separability) model has been adopted as the constraint under which the 

dynamic image series is recovered from under-sampled data [3], [18]–[20]. Specifically, 

reconstructing γ(r, t) from the undersampled data d(k, t) can be regarded as recovering the 

low rank Casorati matrix Γ. One way is to use the convex nuclear norm or non-convex 
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Schatten p-norm (p < 1) [20] as surrogates of the rank of Γ. Because the nuclear norm is a 

convex function, the problem can be solved via semi definite programming:

minimize Γ ∗ s . t . y = A Γ (3)

where ‖·‖* denotes the nuclear norm. An alternative solution is to enforce the low-rank 

constraint explicitly with a pre-defined rank l by

ΓM × N = Us
M × lVt

l × N (4)

where Us is a spatial coefficient matrix and Vt a temporal basis. In partial-separability-based 

methods [3], [18], [19], [48], Vt is usually estimated a priori by applying singular value 

decomposition (SVD) to the k-space data obtained with temporal Nyquist rate.

B. Manifold

Loosely speaking, a manifold ℳ is a topological space which is locally similar to the 

Euclidean space. The broad class of manifold models arise both in parametric settings where 

a low-dimensional parameter θ controls the generation of the signal, as well as in non-

parametric settings. In parametric settings, for example, manifold models arise when the 

signals of interest are generated continuously as a function of some d-dimensional 

parameter. Non-parametric models also arise in many applications where the parameter that 

controls the generation of manifolds are not known. Both parametric and nonparametric 

cases are guided by the fundamental assumption that an N dimensional signal xi ∈ ℂN lie on 

or close to a smooth d dimensional manifold ℳ such that d ≪ N, ℳ ⊂ ℂN. The goal of 

manifold learning is to find the low dimensional manifold ℳ through some nonlinear 

dimension reduction methods. Manifold learning has been extensively used in machine 

learning community for data classification and clustering [49], [50]. However, application of 

manifold learning in signal recovery is limited due to several challenges such as the lack of 

sufficient training data, the complexity in learning the manifold model, and the need for 

preimaging.

C. Kernel Method

Among many manifold learning algorithms, kernel principal component analysis (KPCA) is 

widely used and has the potential to be applied in signal recovery due to its capability to 

map testing data onto the embedding obtained from the training data, and the existence of 

explicit representation of preimages in some cases. Unlike many other approaches such as 

Isomap [22], Laplacian eigenmaps [25], locally linear embedding [23], and Hessian maps 

[24] which use local geometry to learn the manifold, KPCA [44] uses global correlation to 

learn such low-dimensional embedding. KPCA can be considered as a nonlinear 

generalization of principal component analysis [44].

The idea of kernel method is to nonlinearly transform the data from the original input space 

to a higher dimensional feature space such that linear operations in the feature space can 
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represent a class of nonlinear operations in the input space. The nonlinear mapping 

ϕ:𝒳 ℋ, x → ϕ(x) that maps the input x from 𝒳 ℋ establishes a bridge between the 

input space 𝒳 and feature space ℋ. In KPCA, performing the linear PCA operation in the 

feature space is equivalent to performing a nonlinear PCA in input space, thus achieving the 

goal of learning the nonlinear manifold.

Specifically, in KPCA [44], the eigenvectors v of the covariance matrix 

∑ = 1
L ∑

i = 1

L
ϕ xi ϕ xi

T is given by

v = ∑
i = 1

L
αiϕ xi , (5)

where ϕ xi = ϕ xi − 1
L ∑

i = 1

L
ϕ xi  is the mean centered data and L is the numbers of signals. 

These eigenvectors represent the principal components (PC) of the data in the feature space. 

The coefficients α = [α1, α2, ⋯, αL]T can be found by solving the eigen system equation λv 
= Σv, or equivalently,

Kcα = λα, (6)

where Kc = K − 1T K − K1T + 1T K1T is the centered kernel matrix,

K =
κ x1, x1 ⋯ κ x1, xL

⋮ ⋱ ⋮
κ xT, x1 ⋯ κ xT, xL

, (7)

1L is an L × L matrix with all its elements equals to 1/L, λ and α are the corresponding 

eigenvalue and eigenvector, and

κ xi, x j = ϕ xi , ϕ x j ℋ, (8)

is the so-called kernel function with ⋅ , ⋅ ℋ denoting inner product in the feature space. 

Different λ and α contribute to different PCs in the feature space. To map a testing signal x 
onto the low-dimensional embedding obtained by performing KPCA on the training data, we 

calculate inner product βq = vq, ϕ x ℋ, where q is the index for the principal components.

It is seen that KPCA does not require explicit calculation of the nonlinear mapping ϕ(x), but 

only needs knowledge of the kernel functions κ(xi, xj) [44]. The choice of the kernel 

function (as thus the nonlinear mapping) is critical for the capability of representing the 
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manifold effectively. For example, the Swiss roll manifold cannot be well represented using 

standard and widely used kernel functions such as Gaussian kernels κ(xi, xj) = exp(−‖xi − 

xj‖2/c) or polynomial kernels κ xi, x j = xi, x j 𝒳 + c
d
, but can be well represented by 

constructing data-dependent kernel matrix [42], [44], [51].

In signal recovery, a corrupted testing signal is embedded on the learned low-dimensional 

manifold. Another fundamental challenge in using the kernel method for signal recovery is 

that the final embedded testing signal needs to be given in the input space rather than in the 

feature space. This necessitates the preimaging problem, that finds a so-called preimage 

z ∈ 𝒳 such that ϕ(z) = ρ, where ρ is the embedded signal in feature space. Since ϕ is usually 

highly nonlinear, the preimage does not necessarily exist nor is unique. The choice of kernel 

leads to different methods of preimaging. For example, for polynomial kernel of the form,

κ xi, x j = xi, x j + c d
(9)

with c ≥ 0 and d being odd, there exists an invertible function fκ such that κ(xi, xj) = fk(〈xi, 

xj〉). In this case, there exists an explicit expression for the preimage z ∈ 𝒳 of ϕ(x) and is 

given by [52, ch.18, pp 544–546]

z = ∑
n = 1

N
f k

−1 ∑
l = 1

L
γlκ xl, ξn ξn, (10)

where ξ is any orthonormal basis of the original input space, and γl = ∑
q = 1

Q
βqαl

q where βq is 

the projection coefficient of ϕ(x) onto the qth PC vq of the feature space. For many other 

kernels, preimages can only be obtained through approximations [53], [54].

While KPCA has been widely used in pattern recognition [41], [44], data clustering and 

classification [49], these applications do not require the preimaging because the desired 

outputs are only the class that signals belong to, not the recovery of signals in the input 

space. Some image de-noising applications [34], [55], [56] employ KPCA and preimaging 

techniques, but require large numbers of training data.

III. Proposed Method

We assume the dynamic image series x lies on a low-dimensional manifold ℳ. Let 

ϕ:𝒳 ℋ be a nonlinear function that maps the signal x from input space to ϕ(x) in feature 

space. Using kernel method, we formulate the problem to reconstruct the dynamic image 

series from undersampled (k, t)-space measurements y as

min
Γ

rank ϕ Γ s . t . y = A Γ , (11)
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where xi i = 1
M  are row vectors of Γ representing the temporal profile at each spatial location, 

ϕ Γ = ϕ x1
T , ϕ x2

T , ⋯, ϕ xM
T T

 is a representation of the row vectors of Γ in the feature 

space using kernel method, A is combined partial Fourier and vectoring operator that gives a 

vectored representation y of an undersampled k-space data. The undersampling pattern for y 
is designed in such way that a few central k-space lines are fully sampled whereas higher 

frequencies are randomly undersampled at each frame and different random sampling 

pattens are adopted at different frames, as shown in the Fig. 1. Based on the properties that 

KPCA is able to reduce the dimension of data nonlinearly, we expect the Casorati matrix to 

have even lower rank when mapped to the feature space than in the input space with a proper 

choice of nonlinear mapping function ϕ. Since the manifold on which the dynamic MRI 

temporal profiles lie is unknown in general, some training data are acquired to learn the 

underlying manifold. Here we use KPCA to learn the manifold and enforce such manifold 

structure on the reconstructed image series while ensuring consistency with the k-space 

measurements. To solve Eq. (11) we use the following three distinct steps: (A) Manifold 

learning using KPCA, (B) Low rank enforcement in feature Space and (C) Preimaging with 

data consistency constraint. Step B and Step C are then iterated until convergence. The 

proposed method can be viewed as a generalization of the PS-based reconstruction method 

[3] in the feature space, where step (A) is to find the temporal basis in the featu re space 

using training data, step (B) is to recover the spatial basis and thus the signal in the feature 

space, and finally step (C) is to map the signal from the feature space to obtain the final 

image series in the original space.

A. Manifold learning using KPCA

The objective of this step is to find the low-dimensional embedding of the dynamic MR 

images. Since we don’t have knowledge of the desired images, we use the temporal profiles 

of the low resolution dynamic images as the training data to learn the low-dimensional 

embedding. Specifically, given a low resolution dynamic image series (Γlow) obtained from 

zero-filled reconstruction of some central k-space data (typically 15–25 lines), a set of T 
training signals, pt, t = 1, 2, …, T are formed where each pt is an N dimensional temporal 

vector from a specific spatial location of the image series. These T (much smaller than the 

size of the image) training signals are randomly selected from all spatial locations. To learn 

the low dimensional manifold structure of the dynamic MRI series, we perform KPCA [44], 

[51] using the training data (xi in Eq. (5) becomes pt). The key idea here is that we represent 

each principal component in feature space as a weighted combination of nonlinear functions 

(mappings in feature space) of the training signals, that is

vq = ∑
t = 1

T
αt

qϕ pt . (12)

Similar to the PS-based methods where the temporal basis are estimated initially, these 

principal components in feature space are equivalent to nonlinear temporal basis. If the 

desired dynamic image series has a low rank representation in feature space, then it can be 

represented efficiently by very few temporal basis.
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B. Low Rank Enforcement in Feature Space

In this step, our objective is to recover the desired dynamic images in feature space. We start 

with the aliased dynamic images obtained by zero-filled reconstruction of all undersampled 

k-space data. Under the assumption that the true dynamic images should lie on the low-

dimensional manifold learned from step A, we project the aliased dynamic images onto such 

a low-dimensional manifold. This is realized by enforcing the low rankness on the matrix 

formed by the aliased dynamic images in the feature space. Specifically, we construct test 

signals using the temporal profiles of the aliasing dynamic images. Each of the test signals 

xi, i = 1, 2, …, M represent the corrupted version of the temporal signals of the desired 

dynamic images such that xi = Γ(i,:). We then project the test signals xi onto the nonlinear 

temporal basis computed in step A, which is equivalent to mapping the test signals onto the 

learned low-dimensional manifold. Let vq represent the qth PC in the feature space, the 

projection of the test signal xi on the qth PC is obtained by

βq
i = vq, ϕ xi ℋ = kxp

c Tαq, (13)

where kxp
c i  is the mean centered version of kxp(i) and measures the similarity between the 

test signal xi and all training signals pt such that,

kxp i = κ p1, xi κ p2, xi ⋯ κ pT, xi
T, (14)

kxp
c i = kxp i − 1

T ∑
t

T
Kp t, i − 1

T ∑
t

T
kxp t + 1

T2 ∑
t1 = 1

T
∑

t2 = 1

T
Kp t1, t2 . (15)

It is seen from Eq. (13) that KPCA does not require explicit calculation of the nonlinear 

mapping ϕ(x), to compute the projection coefficients βq
i  but only requires the knowledge of 

the kernel functions κ(xi, xj) and α which can be calculated using the eigen decomposition 

of kernel matrix as shown in Eq. (6). Similar to the PS-based reconstruction methods where 

a pre-determined number of temporal basis is chosen, we choose Q major principal 

components (Q ≪ T ≪ M) in the feature space corresponding to the Q largest eigenvalues as 

the nonlinear temporal basis to efficiently represent the temporal variations at all spatial 

locations. Hence, ϕ xi  is approximated as:

ϕ xi ≈ ∑
q = 1

Q
βq

i vq ≈ ∑
q = 1

Q
∑
t = 1

T
βq

i αt
qϕ pt . (16)
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where γt
i = ∑

q = 1

Q
βq

i αt
q, and Eq. 16 takes the form of ϕ xi ≈ ∑

t = 1

T
γt

iϕ pt . Then the feature space 

representation of the test signal takes the form of

ϕ xi = ϕ xi + 1
T ∑

t = 1

T
ϕ pt ≈ ∑

t = 1

T
γt

iϕ pt , (17)

where

γt
i = γt

i + 1 − ∑
t = 1

T
γt

i /T . (18)

The expression of the test signal in Eqs. 16 and (17) can be considered as the low rank 

representation of the dynamic image series in the feature space by truncating the numbers of 

principal components in feature space and further soft thresholding on βq
i  as

βq
i = sign βq

i βq
i − Sth , βq

i − Sth > 0
0, otherwise.

(19)

The soft threshold value is then updated for the next iteration as Sth = Sth −(1−(it − 1)Csstep) 

where it is the number of iterations and sstep is the step size typically of order 10−5 [21], 

[57]. It should be noted that, although thresholding is typically not required in 

dimensionality reduction and classification problems because of the high quality test signals, 

in our case thresholding is desired because the test signals are corrupted temporal signals 

obtained from aliased image [21], [57]. Furthermore, our empirical results show that soft 

thresholding is slightly better than hard thresholding.

C. Preimaging with Data Consistency Constraint

After we calculate all the coefficients βq
i , we have obtained ϕ xi , the desired image series in 

feature space. Different from the conventional PS-based method where the reconstruction is 

completed after Step B, our proposed method further needs to map the estimated image 

series ϕ xi  from the feature space back into the original input space. Such a mapping is 

obtained through the so-called preimaging, which relies on the specific kernel function. Here 

we use the polynomial kernel of κ(xi, xj) = (〈xi, xj〉 + c)d such that the preimage zi of the 

temporal profile (test signal xi) at the ith spatial location can be obtained by generalization of 

Eq. (10) as,

zi = ∑
n = 1

N
f k

−1 ∑
t = 1

T
γt  i κ pt, ξn ξn, (20)
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After computing preimages for all spatial locations, we have the image series Γ, whose rows 

are the zi
T, i = 1, ⋯, M. To ensure the reconstructed Γ is consistent with the measured 

undersampled data, the spatial Fourier transform of the dynamic images are replaced by the 

acquired k-space data at the specific sampled locations while keeping the values at 

unacquired locations unchanged. Specifically,

Γk = S′ . ∗ Γk + Γk
aq, (21)

where, Γk is the k-space equivalent of Γ, S′ is the binary inversion of the sampling mask S, 

Γk
aq, is the Casorati form of acquired k-space data (y), and (.*) represents element wise 

multiplication. Then the updated dynamic image series is obtained by inverse Fourier 

transform of the updated k-space data Γk. Such an updating process has been widely used in 

MR image reconstruction [15], [16].

Algorithm 1

Kernel Low Rank (KLR) Model

Input:
 Casorati matrix (Γaq) for image series from undersampled data.

 Casorati matrix (Γlow) from low resolution training image series.

Output:
 Dynamic Image series (Γ).

A. Manifold Learning Using Kernel

 Construct: pt = Γlow(t,:), t = 1, 2, …, M.

 Select T random training signals pt.

 Compute kernel matrix Kp and mean centered Kp
c , using Eq. (7).

 Eigen decomposition: Kp
c α = λα.

 Γ = Γaq.

B. Low Rank Enforcement in Feature Space

 Construct test signals xi = Γ(i,:), i = 1, 2, …, M.

 for i = 1 : M do

  for q = 1 : Q do

   Compute: Kernel vector kxp
c , using Eq. (15).

   Compute: Projection coefficients βq
i , using Eq. (13).

   Soft threshold βq
i , using Eq. (19).

   Compute: γt
i, using Eq. (18).

  end for
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 end for

 Update soft threshold Sth.

C. Preimaging with Data Consistency

 for i = 1 : M do

  Compute preimage zi, using Eq. (20).

  Update Γ using zi i = 1
M .

  end for

 Update k-space data, using Eq. (21).

 if Convergence then

  Output dynamic image series Γ.

 else

  Repeat steps B and C.

 end if

The low rank enforcement (III-B) and the data consistency constraint (III-C) steps are then 

iterated until convergence. The iteration is continued until certain error tolerance criterion is 

met, such as 

Γit
− Γ

it − 1
F

Γ
it − 1

F

< etol where ‖·‖F is the Frobenius norm. Typically, etol is set to 

be in the order of 10−4. Although convergence has not been proved theoretically due to many 

iterative variables, numerical results show that the proposed method converges empirically. 

The proposed method is summarized in the Algorithm 1.

IV. Results

We performed simulation and experiments to evaluate the proposed method. Because the 

temporal variations can be quite different from application to application, our focus was on 

dynamic perfusion imaging with fewer temporal frames. The pros and cons of the proposed 

method are also discussed for cardiac cine imaging when the number of temporal frames are 

higher.

We start with two simulations to validate the proposed model and framework independent of 

the reconstruction algorithm. The first one is to show kernel PCA can represent the dynamic 

perfusion phantom images more efficiently than linear PCA, and the second one is to show 

the training data from low resolution images and from full resolution images generate 

similar training results. We then use a dynamic perfusion phantom [58] and two sets of in 

vivo arterial spin labeled (ASL) [59], [60] perfusion dMRI data from calf muscle and 

myocardium. In all in vivo experiments, the fully sampled data in Cartesian (k, t) space was 

acquired from an MRI scanner and its conventional Fourier reconstruction was used as the 

“true” reference for comparison of the reconstruction results from different methods. 

Besides the proposed method, methods exploiting low rankness in the original spatial-

temporal space were also used for reconstruction, including PS with sparsity constraint [18], 

SLR [20], and CS-PCA [6]. All methods reconstruct the desired dynamic MR images from 
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the retrospectively undersampled (k, t) space data obtained by using the undersampling 

pattern as shown in the Fig. 1. For the proposed method, all adjustable parameters including 

the number of principal components and the soft threshold value in feature space were all 

tuned heuristically. For all other methods, the results were obtained using the code from the 

corresponding research groups that developed the methods but were modified with the 

parameters tuned for the least root normalized mean square error (RNMSE) defined in Eq. 

(22),

RNMSE =
ΓREF − ΓREC F

ΓREF F
, (22)

where ΓREF and ΓREC are the matrix formed by the dynamic images from the reference and 

the reconstruction, respectively, and ‖·‖F denotes the Frobenius norm.

All computations were carried out on a DELL workstation with Intel(R) i7 3.40 GHz 

processor and 16 GB RAM, running MATLAB 2014.

A. Validation using simulations

We first use two simulations to validate the assumptions made in the proposed framework.

Simulation 1—The objective of this simulation is to demonstrate that kernel PCA is more 

efficient than linear PCA in representing the dynamic MR image series. We used a numeric 

perfusion phantom of size 256 × 256 with 50 time frames. The perfusion phantom represents 

liver, portal vein, inferior vena cava and pancreas based on enhancement kinetic modeling 

[58]. The injection rate, frequency and base vibration amplitude of 4 ml/sec, 500 and 30 

respectively were chosen to mimic fast and abrupt temporal variation. From the original 

image series, 1000 training signals (temporal signals at 1000 spatial locations) were 

randomly selected and used to compute both linear PCs and kernel PCs. The 256 × 256 test 

signals (temporal signals at all spatial locations) were then projected onto 5% of the PCs in 

both linear and KPCA to generate approximations of the dynamic images. For KPCA, 

polynomial kernel was used and preimaging was performed to obtain the dynamic images 

for comparison. Figure 2 shows the comparison of spatial results and temporal curves of two 

regions of interest (ROI). It shows that with the same percentage of PCs, the RNMSE is 

much lower in KPCA than in linear PCA. The superiority of KPCA is also illustrated by the 

temporal curves of two ROIs, which suggests that KPCA represents the dynamic images 

more efficiently than PCA.

Simulation 2—The objective of this simulation is to demonstrate that the training data 

from low-resolution images is sufficient to learn the low-dimensional embedding of the true, 

full-resolution images. We replace the training data in Simulation 1 from the true images to 

the low-resolution images, and perform KPCA approximation again. In Fig. 3, we compare 

the approximations obtained by low-resolution and full-resolution training data. Both 

approximations are seen to be very close in the spatial images and temporal variation as 
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shown in Fig. 3. It is evident that the low-resolution images provide sufficient information 

for training.

B. Phantom Results

A dynamic perfusion phantom with aperiodic motion with 50 temporal frames (refer to 

section IV-A for data parameters) was used to simulate the reduced (k, t) data with a 

reduction factor (R) of 5. The spatial results, as shown in the Fig. 4 illustrate that the aliasing 

artifacts in the conventional state of art methods are significantly reduced by the proposed 

method. Figure 5 compares the temporal variation of the cross section along the yellow line 

indicated in the reference image. The improved performance of the proposed method can be 

attributed to the ability to reveal the low rankness of the dynamic data in a much higher 

dimensional feature space, whereas the rank in the original space is not as low when there 

are only a few temporal frames.

C. ASL Perfusion Results

To further evaluate the proposed method using in vivo experimental data, we tested it on two 

in-vivo Arterial Spin labeling (ASL) perfusion datasets [59], [60] where only very few 

frames were acquired and abrupt changes exist in temporal signals (temporally non-smooth). 

The first dataset was from calf muscle perfusion (R=4) and the second one was from 

myocardial perfusion (R=3). Both data were acquired from healthy volunteers on a 3T 

scanner with a single channel body coil. The calf muscle perfusion data was acquired using 

a dedicated ASL sequence based on the asymmetric spinecho sequence [59], and the 

myocardial perfusion data was acquired using an ASL sequence based on single-shot 

gradient echo techniques [60]. Acquisition parameters for muscle and cardiac perfusion data 

were TR/TE = 2.8/1.2 ms, 2.5/1.1ms, flip angle = 5° for both, data matrix size = 112 × 100 × 

20, 126×120×12, FOV = 160mm×112mm, 220mm×200mm, respectively. Figures 6 and 7 

show images and temporal variations along the cross section for Muscle ASL perfusion data. 

The PS-sparse and SLR models are not good fit for these datasets because the rank is not 

low, with only very few time frames and those methods are primarily developed for dMRI 

modality with many temporal frames. Consequently, these two methods give images with 

more artifacts, and have comparatively higher RNMSEs than CS-PCA and the proposed 

method, as illustrated in the Table I. In contrast, the proposed method not only preserves the 

spatial information of images, but also effectively retains the kinetic information, both of 

which are essentials in ASL imaging. Similarly, the myocardial ASL perfusion results shown 

in Fig. 8 and Fig. 9 also suggest the superiority of the proposed method. The myocardium 

region in CS-PCA reconstruction is seen to have artifacts with blurred edges.

Temporal intensity curves of Region of Interest (ROI) are typically of interest in ASL 

imaging. Figure 10 shows the temporal intensity curve of a particular ROI from the 

reference, CS-PCA and the proposed method. This shows the temporal curves from the 

proposed method follow the reference curve more consistently and precisely than the CS-

PCA method.
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D. Cardiac Cine Results

Besides perfusion imaging, we also studied the usefulness of the proposed method in cardiac 

cine imaging using a set of cardiac cine data. The complex-valued multi-cycle cardiac cine 

data was simulated from human cardiac MR data acquired using a balanced SSFP sequence 

and single channel body coil on a 3T scanner with retrospective ECG-gating during a single 

breathhold and acquisition parameters TR = 3ms, matrix size = 200 × 256, field of view 

(FOV) = 273mm×350mm, spatial resolution = 1.36mm×1.36mm, slice thickness = 6mm. 

This data was then used to generate multiple time warps. Different heart rate variability and 

quasi-periodic spatial deformation along different cardiac cycle was obtained through thin 

plate spline mapping and nonlinear interpolation technique [61]. Each time warps were 

concatenated and a total of 40 frames were chosen representing about 3 cardiac cycle. It 

should be noted that the data in different cardiac cycles are not the same and such simulation 

has been used in [18]. Figure 11 shows the reconstruction results for the cine data with a 

reduction factor (R) of 5. The zoom-in views of the cardiac region show that the proposed 

method preserves the cardiac structures and intensity of myocardium better than the other 

methods. Figure 12 compares the temporal variation of the cross section along the yellow 

line indicated in the reference image. It demonstrates that the proposed method best 

preserves the temporal variations. Table I summarizes the RNMSEs and machine time for all 

test datasets. The qualitative reconstructions and quantitative measures signify that the 

proposed method outperforms the existing low-rank-based methods in these settings.

However, when the number of frames is increased, as is usually the case in real-time cardiac 

cine imaging, the proposed method might not bring much advantage. To illustrate such 

limitation of the proposed method, we increase the frame rate of cardiac cine data in IV-D by 

about 3 times mimicking smoother temporal variation and a larger number of temporal 

frames. Retrospectively undersampled data using 1-D Cartesian sampling with a high 

reduction factor of 7.5 was then used in all reconstructions. From Fig. 13 and Fig. 14 we can 

see that the conventional PS-sparse method performs better than the proposed method. This 

is because 1) when the number of temporal frames in dynamic imaging is substantially 

increased with smoother temporal variations, the conventional approaches are able to find 

the low rank approximations of the dynamic image series; 2) the achievable reduction factor 

in the proposed method is limited by the need for low resolution images to perform kernel 

PCA. The reduction factor cannot be increased as much as PS-sparse with a large number of 

frames because the proposed method needs quite several navigator k-space lines to perform 

kernel PCA, while PS-sparse only needs very few lines for PCA.

V. Discussions

A. Relationship with Existing Methods

While several dynamic image reconstruction methods based on the low rank model have 

demonstrated success in accelerating dMRI with very high reduction factors, a large number 

of temporal frames are usually required to reveal the low rankness. Motivated by the fact that 

the kernel method is able to reveal some non-obvious features of signals, here we presented 

a kernel-based framework to expand the temporal signal of the image series from a low 

dimensional input space to high dimensional feature space such that the low rankness model 
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still holds for the cases with few frames. Perfusion imaging is a dynamic MRI example with 

typically fewer frames, in which kernel-based framework shows improvement over existing 

methods. Such a framework opens up many possibilities to extend most existing 

reconstruction algorithms to new algorithms using manifold models. The proposed method 

is only one of possibilities, extending the low rank model to the nonlinear kernel PCA 

model.

B. Region of operation and Convergence

The performance of the proposed method depends on the choice of rank Q in feature space 

and the initial threshold value Sth. The choice of Q and threshold affect the tradeoff between 

the smoothness and details in the reconstructed images. Figure 15 shows the mean squared 

error MSE =
ΓREF − ΓREC F

2

M × N .  for muscle and myocardial ASL data as a function of Q and 

Sth while keeping other parameters fixed. We can clearly see that the error changes with the 

parameters, but is consistent over a wide range, suggesting the method is insensitive to small 

changes of the parameters. The values of the parameters giving the least MSE have been 

used in the results.

Figure 16 shows the performance of proposed method over different polynomial degrees d 

and constants c. Our experimental results show that the degree of order 3 gives the least 

MSE and the results are not sensitive significantly to constant c in the range of 100–1000. 

For better visualization, the MSE axis and the constant axis are shown in log scale in Fig. 

16(a) and Fig. 16(b), respectively.

Although the convergence of the proposed algorithm has not been proved theoretically due 

to different iterative parameters, our results have shown empirically that the proposed 

algorithm consistently converges. Figure 17 illustrates the convergence curve of the 

proposed method for different Q values keeping other parameters fixed.

C. Computational Complexity and Machine Time

The proposed method requires longer machine time than the competing methods due to the 

inherent extra operations in decomposition of the kernel matrix which increases with 

increase in numbers of training signals, and preimaging process which is not required in 

competing methods. It is important to note that the computation complexity of eigen-

decomposition of the kernel matrix in Eq. (7) is O(T3) which only depends on the numbers 

of training data T (independent of the dimension of the feature space) [43], whereas the 

conventional low rank approximation costs O(MN2) for computation of the covariance 

matrix and O(N3) for singular value decomposition [62] which depends on the size of the 

image M and number of frames N. The increase in machine time is mainly attributed to the 

decomposition of kernel matrix and extra preimaging step which is not needed in other 

approaches.
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D. Future Extensions

We present here a new kernel-based framework for dMRI reconstruction from sub-Nyquist 

acquisitions. The framework naturally motivates future studies on nonlinear sparsity models, 

and eventually combine nonlinear low rank and sparsity models using kernel method. The 

proposed method can also be integrated with existing parallel imaging techniques to further 

accelerate the data acquisition speed. Although our proposed method uses a single kernel for 

nonlinear low rank representation, multiple-kernel manifold models may be beneficial to 

application-specific dMRI reconstruction problems. Learning kernels from the 

undersampled data or data adaptive nonlinear dictionary learning instead of using generic 

kernels can be a challenging, yet interesting problem for future endeavors.

VI. Conclusion

In this paper we proposed a novel kernel-based framework for reconstructing dynamic MR 

images using manifold models. Within the framework, we extended the conventional low 

rank model to the feature space and developed a new method based on a kernel low-rank 

model. We have demonstrated that fewer nonlinear temporal basis than linear ones are 

needed to capture the temporal variations in dMRI. The method has shown its practical and 

successful application to the recovery of dynamic MR images from undersampled data, 

when existing low rank models fail, and its superior performance to the existing methods. It 

would be interesting to explore kernel extensions of other compressed-sensing based 

approaches in future studies.

Acknowledgments

This work is supported in part by the National Science foundation CBET-1265612, NSF CCF-1514403 and 
National Institute of Health R21EB020861.

We thank the anonymous reviewers for their comments and helping us to improve the quality of the paper 
significantly. We also thank Drs. Y. Wang (Cornell University), Z.-P. Liang (UIUC) and J. Zheng (Washington 
University) for helping with acquisition of different data sets.

References

1. Liang Z-P, Lauterbur PC. An efficient method for dynamic magnetic resonance imaging. Medical 
Imaging, IEEE Transactions on. 13(4):677–686.1994; 

2. Madore B, Glover GH, Pelc NJ, et al. Unaliasing by fourier-encoding the overlaps using the 
temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magnetic Resonance in 
Medicine. 42(5):813–828.1999; [PubMed: 10542340] 

3. Liang Z-P. Spatiotemporal imaging with partially separable functions. Biomedical Imaging (ISBI), 
IEEE International Symposium on. Apr.2007 :988–991.

4. Tsao J, Kozerke S. MRI temporal acceleration techniques. Journal of Magnetic Resonance Imaging. 
36(3):543–560.2012; [PubMed: 22903655] 

5. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate 
exploiting spatiotemporal correlations. Magnetic Resonance in Medicine. 50(5):1031–1042.2003; 
[PubMed: 14587014] 

6. Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: A general compressed sensing 
framework for high resolution dynamic MRI. Magnetic Resonance in Medicine. 61(1):103–
116.2009; [PubMed: 19097216] 

Nakarmi et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using FOCUSS. Physics in medicine 
and biology. 52(11):3201.2007; [PubMed: 17505098] 

8. Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing 
reconstruction for magnetic resonance parameter mapping. Magnetic Resonance in Medicine. 64(4):
1114–1120.2010; [PubMed: 20564599] 

9. Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by 
dictionary learning. Medical Imaging, IEEE Transactions on. 30(5):1028–1041.2011; 

10. Wang Y, Ying L. Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal 
dictionary. Biomedical Engineering, IEEE Transactions on. 61(4):1109–1120.2014; 

11. Bilgic B, Goyal VK, Adalsteinsson E. Multi-contrast reconstruction with bayesian compressed 
sensing. Magnetic Resonance in Medicine. 66(6):1601–1615.2011; [PubMed: 21671267] 

12. Chen L, Schabel MC, DiBella EV. Reconstruction of dynamic contrast enhanced magnetic 
resonance imaging of the breast with temporal constraints. Magnetic Resonance Imaging. 28(5):
637–645.2010; [PubMed: 20392585] 

13. Ji J, Lang T. Dynamic MRI with compressed sensing imaging using temporal correlations. 
Biomedical Imaging (ISBI), IEEE International Symposium on. 2008:1613–1616.

14. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magnetic Resonance in 
Medicine. 59(2):365–373.2008; [PubMed: 18228595] 

15. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging 
for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine. 64(3):
767–776.2010; [PubMed: 20535813] 

16. Liang D, DiBella EV, Chen R-R, Ying L. k-t ISD: Dynamic cardiac mr imaging using compressed 
sensing with iterative support detection. Magnetic Resonance in Medicine. 68(1):41–53.2012; 
[PubMed: 22113706] 

17. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR 
imaging. Magnetic Resonance in Medicine. 58(6):1182–1195.2007; [PubMed: 17969013] 

18. Zhao B, Haldar JP, Christodoulou AG, Liang Z-P. Image reconstruction from highly undersampled 
(k,t)-space data with joint partial separability and sparsity constraints. Medical Imaging, IEEE 
Transactions on. 31:1809–1820.2012; 

19. Haldar J, Liang Z-P. Spatiotemporal imaging with partially separable functions: a matrix recovery 
approach. Biomedical Imaging (ISBI), International Symposium on. Apr.2010 :716–719.

20. Lingala S, Hu Y, Dibella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank 
structure: k-t SLR. Medical Imaging, IEEE Transactions on. 30:1042–1054.2011; 

21. Otazo R, Candès EJ, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated 
dynamic MRI with separation of background and dynamic components. Magnetic Resonance in 
Medicine(Early view). 2014

22. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear 
dimensionality reduction. Science. 290(5500):2319–2323.2000; [PubMed: 11125149] 

23. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 
290(5500):2323–2326.2000; [PubMed: 11125150] 

24. Donoho DL, Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data. Proceedings of the National Academy of Sciences. 100(10):5591–5596.2003; 

25. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. 
Neural computation. 15(6):1373–1396.2003; 

26. Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel-based learning 
algorithms. Neural Networks, IEEE Transactions on. 12(2):181–201.2001; 

27. Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space 
alignment. Journal of Shanghai University (English Edition). 8(4):406–424.2004; 

28. Cao L, Chua K, Chong W, Lee H, Gu Q. A comparison of PCA, KPCA and ICA for 
dimensionality reduction in support vector machine. Neurocomputing. 55(12):321–336.2003; 

29. Borg I, Groenen PJ, Mair P. Applied Multidimensional Scaling Springer Science & Business 
Media. 2012

Nakarmi et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Chen M, Silva J, Paisley J, Wang C, Dunson D, Carin L. Compressive sensing on manifolds using 
a nonparametric mixture of factor analyzers: Algorithm and performance bounds. Signal 
Processing, IEEE Transactions on. 58(12):6140–6155.2010; 

31. Hegde C, Baraniuk RG. Signal recovery on incoherent manifolds. Information Theory, IEEE 
Transactions on. 58(12):7204–7214.2012; 

32. Iwen MA, Maggioni M. Approximation of points on low-dimensional manifolds via random linear 
projections. Information and Inference. 2(1):1–31.2013; 

33. Peyré G. Manifold models for signals and images. Computer Vision and Image Understanding. 
113(2):249–260.2009; 

34. Pourkamali Anaraki F, Hughes SM. Kernel compressive sensing. Image Processing (ICIP), 2013 
20th IEEE International Conference on IEEE. 2013:494–498.

35. Qi H, Hughes S. Using the kernel trick in compressive sensing: Accurate signal recovery from 
fewer measurements. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE 
International Conference on IEEE. 2011:3940–3943.

36. Poddar S, Jacob M. Dynamic MRI using smoothness regularization on manifolds (SToRM). 
Medical Imaging, IEEE Transactions on. 35(4):1106–1115.Apr; 2016 

37. Schmidt JF, Santelli C, Kozerke S. MR image reconstruction using block matching and adaptive 
kernel methods. PloS one. 11(4):1–14.2016; 

38. Bhatia KK, Caballero J, Price AN, Hajnal JV, Rueckert D. Fast reconstruction of highly-
undersampled dynamic MRI using random sampling and manifold interpolation. ISMRM. 2015

39. Usman M, Atkinson D, Kolbitsch C, Schaeffter T, Prieto C. Manifold learning based ECG-free 
free-breathing cardiac cine MRI. Journal of Magnetic Resonance Imaging. 41(6):1521–1527.2015; 
[PubMed: 25124545] 

40. Chung FR. Spectral Graph Theory Regional Conference Series in Mathematics. 1992; (92)

41. Bishop, CM. Pattern Recognition and Machine Learning (Information Science and Statistics). 
Springer-Verlag New York, Inc; 2006. 

42. Weinberger KQ, Sha F, Saul LK. Learning a kernel matrix for nonlinear dimensionality reduction. 
Twenty First International Conference on Machine Learning (ICML). 2004

43. Mika, S, Schölkopf, B, Smola, A, Müller, KR, Scholz, M, Rätsch, G. Kernel PCA and de-noising 
in feature spaces. In: Kearns, MS, Solla, SA, Cohn, DA, editors. Advances in Neural Information 
Processing Systems 11. Morgan Kaufmann; 1998. 

44. Schölkopf B, Smola A, Müller K-R. Kernel principal component analysis. Artificial Neural 
Networks ICANN’97 Springer. 1997:583–588.

45. Zhou Y, Wang Y, Ying L. A kernel-based compressed sensing approach to dynamic MRI from 
highly undersampled data. Biomedical Imaging (ISBI), IEEE International Symposium on. Apr.
2013 :716–719.

46. Wang Y, Ying L. Undersampled dynamic magnetic resonance imaging using kernel principal 
component analysis. Engineering in Medicine and Biology Society (EMBC), Annual International 
Conference of the IEEE. 2014:1533–1536.

47. Nakarmi U, Wang Y, Lyu J, Ying L. Dynamic magnetic resonance imaging using compressed 
sensing with self-learned nonlinear dictionary (NL-D). Biomedical Imaging (ISBI), IEEE 
International Symposium on. 2015:331–334.

48. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: Temporally constrained k-t 
BLAST reconstruction using principal component analysis. Magnetic Resonance in Medicine. 
62(3):706–716.2009; [PubMed: 19585603] 

49. Wang R, Chen X. Manifold discriminant analysis. Computer Vision and Pattern Recognition, IEEE 
Conference on. 2009:429–436.

50. Belkin M, P N, Sindhwani V. Manifold regularization: A geometric framework for learning from 
examples. 2006

51. Ham J, Lee DD, Mika S, Schlkopf B. A kernel view of the dimensionality reduction of manifolds. 
International Conference on Machine Learning (ICML). 2004

52. Schölkopf B, Smola AJ. Learning with Kernels Cambridge: MIT Press. 2001

Nakarmi et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Zheng WS, Lai J, Yuen PC. Penalized preimage learning in kernel principal component analysis. 
Neural Networks, IEEE Transactions on. 21(4):551–570.2010; 

54. Honeine P, Richard C. Preimage problem in kernel-based machine learning. IEEE Signal 
Processing Magazine. 28(2):77–88.2011; 

55. Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries 
for sparse representation. Signal Processing, IEEE Transactions on. 54(11):4311–4322.2006; 

56. Nguyen H, Patel VM, Nasrabadi NM, Chellappa R. Kernel dictionary learning. Acoustics, Speech 
and Signal Processing (ICASSP), 2012 IEEE International Conference on IEEE. 2012:2021–2024.

57. Donoho DL. De-noising by soft-thresholding. Information Theory, IEEE Transactions on. 41(3):
613–627.May; 1995 

58. Xu B, Spincemaille P, Chen G, et al. Fast 3D contrast enhanced MRI of the liver using temporal 
resolution acceleration with constrained evolution reconstruction. Magnetic Resonance in 
Medicine. 69(2):370–381.2013; [PubMed: 22442108] 

59. Zheng J, An H, Coggan AR, et al. Noncontrast skeletal muscle oximetry. Magnetic Resonance in 
Medicine. 71(1):318–325.2014; [PubMed: 23424006] 

60. Northrup BE, McCommis KS, Zhang H, et al. Resting myocardial perfusion quantification with 
CMR arterial spin labeling at 1.5 T and 3.0 T. Journal of Cardiovascular Magnetic Resonance. 
10(1)2008; 

61. Tsai Y, Ling H, Hu Y, et al. Thin plate spline technique for medical image deformation. Journal of 
medical and biological engineering). 20:203–209.2000; 

62. Du Q, Fowler JE. Low-complexity principal component analysis for hyperspectral image 
compression. International Journal of High Performance Computing Applications. 22(4):438–
448.2008; 

Nakarmi et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Undersampling pattern used to simulate retrospective undersampling. Left: sampling pattern 

along phase (Np) - frequency encoding (Nf). Right: phase encoding (Np) - frame (Nfr) 

direction.
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Fig. 2. 
(i) Comparison of images and (ii) temporal curves of ROIs using linear and kernel PCA. (a) 

Reference. (b) Approximations using 5% PCs. Top: Linear PCA; Bottom: KPCA. (c) 

Corresponding error maps magnified ×20. RNMSE: PCA 0.0182 and KPCA 2.9×10−8, 

respectively.
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Fig. 3. 
(i) Comparison of images and (ii) temporal curves of ROIs approximated using training 

signals from full resolution and low resolution images. (a) Reference. (b) Approximations 

using 5% of PCs. Top: using training signals from full resolution images; Bottom: using 

training signals from low resolution images. (c) Corresponding error maps magnified ×107. 

RNMSE: Full resolution 1.12×10−8, Low resolution 3.14×10−7.
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Fig. 4. 
Spatial results: reconstruction comparison for dynamic perfusion phantom with motion. Two 

representative frames (a) Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-

KLR.
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Fig. 5. 
Dynamic perfusion phantom with motion, temporal variation of a cross section. (a) 

Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR.
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Fig. 6. 
Spatial results: reconstruction comparison for calf muscle ASL perfusion data. (a) 

Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR. Top: Frame 2; Bottom: 

Frame 7.
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Fig. 7. 
Calf muscle ASL perfusion data temporal variation of a cross section. (a) Reference, (b) PS 

Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR.
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Fig. 8. 
Spatial results: reconstruction comparison for myocardial ASL perfusion data. (a) 

Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR. Top: Frame 2 Full FOV; 

Middle: Frame 2 ROI; Bottom: Frame 5 ROI.
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Fig. 9. 
Myocardial ASL perfusion data temporal variation of a cross section, (a) Reference, (b) PS 

Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR.
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Fig. 10. 
Intensity curve of an ROI in ASL perfusion (a) Muscle ASL data (b) Cardiac ASL data.
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Fig. 11. 
Spatial results: representative systolic and diastolic frames comparison for dynamic cardiac 

cine. (a) Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR.
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Fig. 12. 
Cardiac cine temporal variation of a cross section. (a) Reference, (b) PS Sparse, (c) SLR, (d) 

CS-PCA, (e) Proposed-KLR.
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Fig. 13. 
Spatial results: representative systolic and diastolic frames to illustrate limitation of the 

proposed method in the case of high frame rate and large numbers of frames. (a) Reference, 

(b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR. Numbers on top right of each 

column are respective RNMSE values.
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Fig. 14. 
Cardiac cine temporal variation of a cross section in the case of high frame rates and large 

number of frames. (a) Reference, (b) PS Sparse, (c) SLR, (d) CS-PCA, (e) Proposed-KLR.
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Fig. 15. 
Region of operation test: MSE for different Q and threshold values. (a) muscle ASL 

perfusion data, (b) myocardial ASL perfusion data.
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Fig. 16. 
Performance analysis for different polynomial degree and constant.(a) MSE vs degree d, (b) 

MSE vs constant c.
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Fig. 17. 
Convergence test: convergence rate for different Q (a) muscle ASL perfusion data, (b) 

myocardial ASL perfusion data.
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