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Abstract

Objective: We employed a high-dimensional covariate adjustment method in microbiome 

analysis to better control for behavioral and clinical confounders, and in doing so examine the 

effects of HIV on the rectal microbiome.
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Design: Three hundred eighty-three men who have sex with men were grouped into four HIV 

viremia categories: HIV negative (n = 200), HIV+ undetectable (HIV RNA <20 copies/mL; n = 

66), HIV+ suppressed (RNA 20–200 copies/mL; n = 72) and HIV+ viremic (RNA >200 

copies/mL; n = 45).

Methods: We performed 16S rRNA gene sequencing on rectal swab samples and used inverse 

probability of treatment-weighted marginal structural models to examine differences in microbial 

composition by HIV viremia category.

Results: HIV viremia explained a significant amount of variability in microbial composition in 

both unadjusted and covariate-adjusted analyses (R2 = .011, p = .02). Alterations in bacterial taxa 

were more apparent with increasing viremia. Relative to the HIV negative group, HIV+ 

undetectable participants showed depletions in Brachyspira, Campylobacter, and Parasutterella 
while suppressed participants demonstrated depletions in Barnesiella, Brachyspira and 

Helicobacter. The microbial signature of viremic men was most distinct, showing enrichment in 

inflammatory genera Peptoniphilus, Porphyromonas, and Prevotella and depletion of Bacteroides, 

Brachyspira, and Faecalibacterium, among others.

Conclusions: Our study shows that, after accounting for the influence of multiple confounding 

factors, HIV is associated with dysbiosis in the gastrointestinal microbiome in a dose-dependent 

manner. This analytic approach may allow for better identification of true microbial associations 

by limiting the effects of confounding, and thus improve comparability across future studies.
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Introduction

The trillions of bacteria, viruses, and fungi inhabiting the human gastrointestinal (GI) tract 

have a profound impact on our health and the development of disease. Disruption in the 

homeostasis of the these microbes, a state of “dysbiosis,” has been associated with a broad 

range of illnesses, including localized GI conditions, neurocognitive disorders, cancer, 

autoimmune disorders, and cardiovascular disease [1]. There is tremendous variability in the 

diversity and composition of the microbiome, even between healthy individuals [2], and the 

effects of different exposures, behaviors, and personal characteristics on the composition and 

function of the microbiome are incompletely understood.

Chronic inflammation is a hallmark of HIV infection and continues despite suppressive 

antiretroviral therapy (ART). The GI tract is a primary site for HIV replication resulting in 

significant loss of CD4+ T-cells vital to a healthy mucosal immune system. Depletion of 

regulatory immune cells and pathways leads to decreased epithelial barrier function allowing 

translocation of microbes and microbial products which contributes to the chronic 

inflammatory response [3, 4]. HIV replication may also result in a state of dysbiosis [5–7], 

which has been correlated with increases in markers of disease progression, microbial 

translocation, and immune activation [5, 7–9]. It has been hypothesized that HIV-associated 
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immune dysfunction induces this dysbiosis, and dysbiosis causes further dysfunction [5], 

thereby driving persistent systemic inflammation in HIV-infected individuals [10].

Many studies have found that overall microbial diversity is reduced in HIV-infected 

individuals [11–13], and HIV has been associated with a shift from commensals such as 

Bacteroides to pro-inflammatory taxa such as Prevotella [11, 14, 15]. However, results have 

been inconsistent, with some studies showing the opposite or no effects of HIV on microbial 

diversity [16–18] and little effect on composition [19, 20]. Certainly, differences in sample 

collection, sequencing, post-processing, and analytic methodology may be responsible for 

much of the heterogeneity in results [21]. While some research has focused on the role of 

sampling variability and type-I error on irreproducibility of findings [22, 23], comparatively 

little attention has been paid to sources of systematic error such as incomparable study 

cohorts or confounders such as sexual behavior, substance use, diet, race/ethnicity, and age. 

Such confounders are highly prevalent in observational human studies of the microbiome 

and may have a larger effect than HIV itself [19]. Due to these limitations, the specific 

effects of HIV on the microbiome warrant further investigation.

Increased relative abundance of pro-inflammatory bacteria has been correlated with 

increased viremia, whereas the opposite has been found for potentially beneficial bacteria [9, 

13, 14]. Given these findings and the effects of viral replication on mucosal immunity, it 

stands to reason that the level of viremia may be a significant determinant of HIV-associated 

dysbiosis. However, the effect of viremia has not been thoroughly explored. Numerous 

studies comparing cohorts of HIV-infected individuals that are either on ART or ART-naïve 

have shown that ART does not result in full “reconstitution” of the microbiome, even if the 

virus is suppressed [13, 24, 25]. Additional studies focused on elite controllers showed that 

the microbial composition among individuals with controlled viremia is more similar to 

HIV-uninfected than viremic individuals [26, 27]. However, there are likely to be important 

biological differences between elite controllers and other HIV-infected individuals that may 

limit the generalizability of these findings. In order to accurately characterize the effects of 

HIV on the microbiome, a more detailed examination of the effects of viremia is needed.

To this end, we compared intestinal microbial composition between HIV-uninfected, HIV-

infected with undetectable viremia (HIV RNA <20 copies/ml), HIV-infected with 

suppressed viremia (HIV RNA ≥20–200 copies/ml), and HIV-infected viremic individuals 

(HIV RNA >200 copies/ml). We utilized data from a cohort comprised entirely of men who 

have sex with men (MSM) and employed inverse probability of treatment weighting (IPTW) 

to control for a robust set of clinical and behavioral confounders. We hypothesized that 

alterations to the microbiome would be present in all HIV-infected subgroups as compared 

to HIV-uninfected controls, and the severity of dysbiosis would increase with increasing 

viremia.

Methods

Study Population

Specimens for this study were obtained from an ongoing prospective cohort (The mSTUDY, 

NIDA U01 DA036267). The mSTUDY was approved by a UCLA Institutional Review 
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Board (IRB) and all subjects provided written informed consent at study entry. Participants 

are recruited from community clinics in Los Angeles and complete biannual assessments 

including a comprehensive physical examination and medical history, urine toxicology 

panel, clinical laboratory tests including plasma HIV RNA, specimen collection, and 

detailed behavioral questionnaire. Data presented in this manuscript were collected from 

baseline study visits completed between August 2014 and July 2017. Additional details on 

sample selection and HIV RNA quantification are provided in the supplemental content.

Specimen collection and DNA preparation

The majority (76%) of rectal swabs (FLOQSwabs, Copan Diagnostics, Murrieta, CA) were 

collected via anoscopy under direct mucosal visualization and without preparatory enema at 

approximately 8 cm from the anal verge. Due to an mSTUDY protocol change, others (24%) 

were participant self-collected at approximately 4–5 cm from the anal verge. Collection 

method was taken into account in the analysis (see Tables 1 and S1). Swabs were 

immediately frozen neat at −80°C until processing in bulk. For DNA processing the samples 

were transferred to Lysing Matrix E tubes (MP Biomedicals, Burlingame, CA) containing 

RLT lysis buffer (Qiagen, Hilden, Germany) and bead-beated on a TissueLyser (Qiagen). 

DNA was then extracted using the AllPrep DNA/RNA/Protein kit (Qiagen) per 

manufacturer’s protocol.

16S rRNA gene sequencing and data processing

Microbiome profiling was performed by sequencing of the V4 region of the 16S rRNA gene 

as previously described [28, 29]. Briefly, the V4 region was amplified in triplicate reactions 

using Golay-barcoded primers 515F/806R. Negative controls from the DNA extraction and 

PCR steps, as well as independent aliquots of a bacterial mock community [30] were 

processed alongside the samples to identify contaminant sequences and ensure data 

reproducibility. PCR products were then pooled and sequenced on the Illumina MiSeq 

platform using 2×150bp v2 chemistry. The sequences were demultiplexed with Golay error 

correction using QIIME v1.9.1 [31], and Divisive Amplicon Denoising Algorithm (DADA2) 

version 1.8 was used for error correction, exact sequence inference, read merging, and 

chimera removal [32]. Following contaminant removal (see supplemental content), the 

amplicon sequence variant (ASV) table comprised 19,955,039 total merged read pairs (mean 

per sample = 52,375; range 10,906 to 124,889). Taxonomic assignment was performed using 

RDP trainset 16 [33]. Rarefaction was performed at a depth of 10,906 reads for alpha 

diversity analyses. For all other analyses, estimates of relative library sizes (“size factors”) 

were obtained by calculating geometric means of pairwise read count ratios [34].

Behavioral and clinical covariates

Demographic and behavioral covariates included in the analyses were age, race/ethnicity, 

employment status, country of origin, a dichotomous variable for homelessness in past 

month, number of receptive anal intercourse (RAI) acts in past month, a dichotomous 

variable for RAI within the past seven days, frequency of methamphetamine, marijuana, and 

cocaine use in the past 6 months, tobacco smoking, and binge drinking. All demographic 

and behavioral data were self-reported by participants using a computer-aided self-interview 

(CASI); measures are described in the supplemental content. Dichotomous variables for 
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obesity (defined as BMI > 30 or waist circumference > 40 inches), and antibiotic use in the 

past month were also included in the analyses; these data were collected by clinical staff.

Statistical analyses

The primary analyses were unadjusted and inverse probability of treatment-weighted 

comparisons of microbiome diversity and composition between HIV-, HIV+ undetectable, 

HIV+ suppressed, and HIV+ viremic participants. The R package ‘phyloseq’ was used to 

calculate alpha diversity statistics, distance matrices, and for ordination. Differences in alpha 

diversity between groups were examined with Kruskal-Wallis tests followed by comparisons 

of median values using quantile regression (R package ‘quantreg’). Permutational 

Multivariate ANOVA (PERMANOVA) was used to test for overall differences in microbial 

composition between HIV groups (R package ‘vegan’). Zero-inflated negative binomial 

(ZINB) models were fit in order to test for differential abundance in bacterial genera 

between groups with multinomial least absolute shrinkage and selection operator (LASSO) 

models employed as a confirmatory analysis (R packages ‘pscl’ and ‘glmnet’). ZINB and 

LASSO model selection and analytic procedures are described in the supplemental content.

IPTW [35] is a method of confounder control where the study sample is re-weighted in order 

to create a “pseudo-population” in which treatment/exposure, here referring to the four HIV 

viremia groups, is independent of confounding variables (see supplemental content). We 

used IPTW to control for all variables described in the Behavioral and Clinical Covariates 

section. Weights were estimated using generalized boosted models (R package ‘twang’), and 

balance between groups was assessed by computing standardized mean differences for each 

covariate in the weighted sample (R package ‘tableone’). Table 1 and Table S1 provide 

information on covariate balance before and after weighting. Robust variance estimates for 

inference tests in weighted ZINB analyses were obtained via the sandwich estimator (R 

package ‘sandwich’). Additional detail about the IPTW estimation and modeling procedures 

is provided in the supplemental content. Missing covariate data were imputed using the 

Chained Equations method [36] (R package ‘mice’); the proportion of missing data for each 

covariate is shown in Table S1. In order to account for multiple testing, alpha diversity and 

ZINB p values were corrected with the Benjamini-Hochberg false discovery rate (FDR) 

method [37]; FDR adjusted p values are labelled as q values. We utilized a threshold of two-

sided p or q < 0.1 for significance testing; accordingly, we also display false coverage rate 

(FCR)-adjusted 90% confidence intervals [38] where relevant. All statistical analyses were 

completed using R v.3.4.3

Results

Sample characteristics

N = 383 participants were included in this study; 200 were HIV-, 66 were HIV+ 

undetectable (HIV RNA <20 copies/ml), 72 were HIV+ suppressed (HIV RNA ≥20–200 

copies/ml), and 45 were HIV+ viremic (HIV RNA >200 copies/ml). All participants were 

MSM with an average age 31 (standard deviation = 7). Most were Hispanic (49%) or non-

Hispanic Black (39%). Table 1 provides further detail on participant characteristics. 

Generally, HIV-infected participants, especially those with higher levels of viremia, were 
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more likely to be older, unemployed, recently homeless, and to report methamphetamine use 

and frequent binge drinking than their HIV-uninfected peers. Among the HIV-infected 

participants, the mean number of years since diagnosis was 7.5 (sd = 5.7), mean log10 viral 

load was 2.0 (sd = 1.2), and mean CD4 cell count was 625 cells/mm3 (sd = 287). No 

participants were ART-naïve and ninety percent of participants reported current ART.

Effects of HIV viremia on overall microbial composition

The relative composition of each individual’s microbiome is displayed in Figures 1A and 

S1, and average composition within each HIV viremia category in Figure 1B. Prevotella is 

the most highly represented bacterial genus among most participants, with increasing 

relative amounts of Bacteroides, Bifidobacteria, and Fusobacteria in those towards the right 

side of the axis (Figure 1A). Higher levels of Alloprevotella and Porphyromonas are 

apparent in the HIV+ viremic group, and lower levels of Bacteroides are apparent in all HIV

+ groups relative to HIV- controls (Figure 1B).

To quantitatively examine the influence of HIV viremia on differences in microbial 

composition between-subjects we used PERMANOVA with Bray-Curtis distance. HIV 

viremia explained a significant amount of variability in microbial composition in both 

unadjusted (R2 = .014, p = .001) and covariate-adjusted analyses (R2 = .011, p = .017) 

(Table S2). Figure 2A displays ordination of the samples by principal coordinates analysis 

(Bray-Curtis distance), where HIV- and HIV+ viremic groups are distinct while HIV+ 

undetectable and HIV+ suppressed are more similar.

Comparisons of alpha diversity suggest a tendency for HIV+ individuals to have higher 

diversity in metrics that do not account for evenness (observed count and Chao1 statistic) 

(Figure 2B). Kruskal-Wallis analyses revealed significant differences in observed and Chao1 

richness by HIV group (Table S3). Quantile regression was further used to investigate these 

differences and revealed higher median observed and Chao1 values for HIV+ suppressed 

versus HIV- individuals (q = .022 in IPTW-adjusted analyses). No other significant 

differences were found in any group. Shannon and Simpson indices did not vary greatly 

between groups.

Differences in specific bacterial taxa associated with HIV viremia

Zero-inflated binomial (ZINB) models were utilized to identify bacterial genera that were 

differentially abundant among the HIV viremia groups. HIV+ undetectable showed 

significant enrichment in Finegoldia and Streptococcus and depletion in Bacteroides, 
Brachyspira, Campylobacter, Helicobacter, Parasutterella, and Turicibacter when compared 

to HIV-uninfected. After IPTW adjustment for behavioral and clinical confounders, 

depletions in Campylobacter, Parasutterella and Brachyspira remained significant (Figure 

3A; Table S4). HIV+ suppressed participants (HIV RNA ≤200 copies/ml) had increased 

Pseudoflavonifractor and decreased Bacteroides, Barnsiella, Brachyspira, Campylobacter, 
Escherichia/Shigella, Flaonifractor, Helicobacter, Oxalobacter, Parabacteroides, Turicibacter, 
and Victivallis relative to HIV-negative subjects. Following IPTW adjustment, depletions in 

Barnesiella, Helicobacter, and Brachyspira remained significant (Figure 3B; Table S4).

COOK et al. Page 6

AIDS. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIV+ viremic men (HIV RNA >200 copies/ml) had the most distinct microbial signature 

relative to HIV-negative, showing significant enrichment of Corynebacterium, Dietzia, 
Finegolda, Murdochiella, Negativicoccus, Peptoniphilus, Porphyromonas, and Prevotella as 

well as depletion of Arcanobacterium, Brachyspira, Bacteroides, Campylobacter, 
Faecalibacterium, Helicobacter and Succinivibrio. With IPTW adjustment, enrichment of 

Murdochiella, Peptoniphilus, Porphyromonas, and Prevotella and depletion of 

Arcanobacterium, Bacteroides, Brachyspira, Faecalibacterium, and Helicobacter were 

significant (Figure 3C; Table S4). For some bacteria, including Faecalibacterium, 
Peptoniphilus, Porphyromonas, Prevotella, and Streptococcus, effect size (i.e., degree of 

enrichment or depletion) increased with increasing viremia (Figure S2).

An IPTW-adjusted multinomial least absolute shrinkage and selection operator (LASSO) 

model was also used as an additional method of feature selection to compare with ZINB 

findings. Among HIV+ participants with undetectable or suppressed viremia, no genera 

were significant in both the adjusted ZINB and LASSO models. However, among the HIV+ 

viremic group, differences in Bacteroides, Peptoniphilus, Porphyromonas, and Prevotella 
were consistent across analytic strategies (Figure 4).

It was also of interest to determine whether HIV+ participants with low levels of viremia 

(HIV RNA < 200 copies/mL) had distinct microbial signatures from those who were HIV+ 

but undetectable (HIV RNA <20 copies/mL). One genus, Sneathea, was significantly 

different between these groups in adjusted ZINB analyses (q < .1). The LASSO model 

identified depletions in Gemmiger in HIV+ suppressed as compared to undetectable 

participants (Figure S3).

Discussion

In this study examining the effects of HIV on the rectal microbiome in a cohort of 383 

young, mostly minority MSM, we found important differences in microbial composition 

between HIV-uninfected and HIV-infected men which varied depending on level of viremia. 

HIV viremia category accounted for about 1% of the variability in microbiome composition, 

an effect size that is consistent with previous studies [19]. As hypothesized, microbiome 

perturbations were most evident among HIV+ viremic men, and least evident in HIV+ men 

with undetectable viremia. Importantly, we utilized IPTW to account for multiple 

confounding factors in our analyses, which decreased the likelihood that the results we 

report are attributable to clinical or behavioral covariates affecting the microbiome such as 

sexual behavior, substance use, or obesity.

High diversity is generally associated with a healthy rectal microbiome [2], and reduced 

richness and diversity has been reported in studies comparing HIV-infected and uninfected 

persons [11, 12, 25, 39–41]. Still other studies report no differences in diversity associated 

with HIV-infection [16, 17], while others have suggested that differences in diversity may be 

related to sampling location [14], or HIV-treatment status [24, 40]. We found few significant 

differences in diversity metrics in our study, and findings did not follow a clear dose-

response pattern with level of viremia. As we were able to adjust for multiple confounders in 

our analyses, we can be reasonably confident that previously reported determinants of 
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diversity such as sexual behavior [19] and substance use [42] had limited influence on our 

findings. Our results suggest that once these confounding factors are taken into account, 

bacterial diversity and richness may not be substantially impacted by HIV infection itself.

One of the more consistent findings across studies of HIV and the microbiome has been 

enrichment in Prevotella and depletion in Bacteroides among both untreated and treated 

HIV-infected individuals [9, 11, 14]. Prevotella species are considered pro-inflammatory 

[43, 44], while Bacteroides species have been shown to induce regulatory T-cell 

differentiation and IL-10 production [45, 46]. Previous work has suggested that observed 

alterations to the Prevotella/Bacteroides ratio may have been due to sexual behavior rather 

than HIV [19]; however, others have shown decreased Bacteroides among HIV-infected 

MSM who were matched with MSM controls [9]. Our study examined exclusively MSM 

and controlled for recency and frequency of receptive anal intercourse in our analyses, 

therefore, our study provides additional evidence that HIV may directly alter the Prevotella/
Bacteroides ratio independent of sexual behavior. Although we found decreased Bacteroides 
in all HIV-infected individuals, the effect was similar between undetectable and suppressed 

participants and only statistically significant after adjustment for confounding in the viremic 

group. In addition, we found increasing relative amounts of Prevotella with increasing levels 

of viremia, which were only significant in the viremic group. Our findings are consistent 

with previous research showing that Prevotella may normalize with ART [13] whereas 

depletions in Bacteroides persist even with therapy [24].

Of the 78 genera tested, ZINB and LASSO models identified Porphyromonas as the genus 

with the largest difference between HIV+ viremic and HIV- individuals. Porphyromonas is a 

well-known modifier of inflammatory cytokines [47]. In fact, Porphyromonas gingivalis has 

been identified as a potential cause of systemic inflammation and metabolic disorders 

associated with periodontal disease [48] and implicated in inflammatory processes leading to 

the development of atherosclerosis [49]. Furthermore, administration of P. gingivalis to mice 

was shown to induce GI dysbiosis and contribute to intestinal permeability [50]. The 

association between increasing levels of HIV viremia and Porphyromonas may therefore 

represent an important mechanism behind HIV-associated chronic inflammation deserving 

of further study.

Of particular interest in our study is the examination of low level viremia individuals who 

are not undetectable (HIV RNA ≥20–200 copies/ml). It is notable that this group, while 

distinct from HIV-uninfected, was very similar to the undetectable viremia (HIV RNA <20 

copies/ml) group in ordination analysis. Only a single genus, Sneatha, was statistically 

significantly different between these two groups when directly compared. Clinically, 

persistent low level viremia may increase risk of subsequent virologic failure [51], but a 

recent large study showed no difference in progression to AIDS or incidence of non-AIDS 

events in persons with low level viremia compared to undetectable [52]. Our analysis 

suggests that microbial composition is similar between those with low level and 

undetectable viremia, but remains distinguishable from HIV-uninfected individuals. While 

those with low level viremia can still have microbial translocation and inflammatory 

biomarkers [53], the overall decreased dysbiosis in low level viremia may correspond to 

reduced chronic inflammation which lessens clinical progression.
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Our results should be interpreted with consideration of the following limitations. First, we 

did not have diet information on our cohort. We included race/ethnicity, country of origin, 

employment status, obesity, and homelessness (all of which may impact dietary intake) in 

our covariate adjustment set to mitigate this limitation to the best of our ability. Second, the 

IPTW procedure will only achieve perfect balance between exposure groups in 

nonparametric settings with large sample sizes relative to the number of relevant 

confounders, and there is potential for residual confounding even by variables we controlled 

for in our study. However, we note that many of the most significant confounders (e.g. age, 

antibiotic use, sexual behavior, alcohol use, obesity) were well-balanced after weighting. 

The ability of 16S sequencing to provide species-level resolution is limited, thus we 

conducted analyses at the genus level. We acknowledge that differentially abundant genera 

do not necessarily indicate differences in functionally important species. Finally, we did not 

have time since ART initiation for our cohort, and thus cannot determine if participants were 

viremic because they recently started treatment or because treatment was failing.

Our study also has numerous strengths. Primarily, we utilized data from a large cohort of 

regionally, socioeconomically, and behaviorally similar individuals, increasing the internal 

validity of our findings. We employed a novel technique, IPTW, to incorporate a large 

amount of clinical and behavioral data into our analyses. With IPTW, analyses are “marginal 

structural models” instead of conditional on covariates, as in multiple regression. Modeling 

microbiome data marginally offers several advantages including the ability to control for 

many confounding factors without inducing overfitting bias [54] or losing efficiency due to 

overstratification [55]. Addressing sources of systematic error using IPTW may improve 

reproducibility in future studies of HIV and the microbiome. We also stratified our HIV-

infected participants by level of viremia, allowing us to examine differences between HIV-

uninfected and HIV+ undetectable, suppressed, and viremic individuals. This stratification 

leads to better understanding of the relationship between active viral replication and 

dysbiosis, namely, that dysbiosis increases with increasing viremia. Finally, we were able to 

replicate our major findings using two distinct analytic strategies. Genera identified as 

differentially abundant in both analyses may be more likely to be true discoveries.

This study contributes to a growing body of literature describing the effects of HIV on 

microbial dysbiosis. We show that, even when taking into account the influence of multiple 

confounding factors, HIV is associated with intestinal dysbiosis in a dose-dependent manner. 

Although great strides have been made in the management of chronic HIV infection, the life 

expectancy among HIV-infected individuals remains reduced relative to their HIV-negative 

peers [56]. This reduction has largely been attributed to increased rates of inflammation-

related comorbidities observed among people living with HIV [57], and the microbiome 

likely plays a key role in modulating interactions between HIV and the immune system. 

Therefore, understanding the ways in which HIV and the microbiome interact may be a 

crucial step towards developing intervention strategies to reduce the burden of HIV-

associated morbidity and mortality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rectal microbial composition of study participants, N = 383. (A) Columns represent the 

relative composition of each subject’s microbiome at the genus level. HIV status of the 

subjects is indicated by a colored line below their microbial composition. Subjects are 

ordered by the first principal coordinate of a Bray-Curtis pairwise distance matrix. Genera 

representing less than 1% of the composition on average across samples were combined into 

“Other.” (B) Average microbial composition within each HIV viremia category. Unadjusted 

and inverse probability of treatment weighted compositions are shown. Bacterial genera 

representing less than 1% of the overall relative composition or present in less than 20% of 

the samples were grouped into “Other.”
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Figure 2. 
Associations between HIV viremia and overall microbial composition. (A) Ordination of the 

Bray-Curtis distance between samples using principal coordinates analysis. PCoA = 

Principal coordinate axis. Ellipses are 95% confidence regions for each group assuming 

points follow a multivariate t distribution. (B) Boxplots of richness metrics. Boxes represent 

the lower, median, and upper quartile of the data and whiskers are 1.5*interquartile range.
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Figure 3. 
Comparisons of individual bacterial genera between HIV viremia categories. Forest plots of 

results of zero-inflated negative binomial models comparing genus-level bacterial counts 

between HIV-negative and (A) HIV+ undetectable (HIV RNA <20 copies/ml), (B) HIV+ 

suppressed (HIV RNA >20 and ≤200 copies/ml) and (C) HIV+ viremic (HIV RNA >200 

copies/ml) participants. Inverse probability of treatment-weighted effect sizes and 90% false 

coverage rate-adjusted confidence intervals (truncated at −4, 4) are plotted, with statistical 

significance (q < 0.1) indicated in color. Effect sizes are log ratios of normalized genera 

counts.
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Figure 4. 
Summary of zero-inflated negative binomial (ZINB) and least absolute shrinkage and 

selection operator (LASSO) model results. Enriched taxa are those with positive effect sizes 

(relative to HIV-), depleted are those with negative effect sizes. Genera with no effect in 

either analysis are not shown. UNW = unadjusted, WT = IPTW adjusted.
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Table 1.

Participant characteristics, N = 383 men who have sex with men in Los Angeles, CA

HIV-Neg
ative
mean (sd)/
n (%)

Undetectable
(HIV RNA <
20 copies/mL)

Suppressed
(HIV RNA ≥20 -
200 copies/mL)

Viremic
(HIV RNA > 2
00 copies/mL)

SMD
a

(unwei
ghted)

SMD
(weig
hted)

n 200 66 72 45

Age 28.91 (6.43) 33.41 (6.55) 34.10 (6.36) 33.18 (6.86) .41 .17

Employment .54 .25

 Student 26 (13.0) 5 (7.6) 3 (4.2) 1 (2.2)

 Unemployed 61 (30.5) 23 (34.8) 50 (69.4) 27 (60.0)

 Full/part time 113 (56.5) 38 (57.6) 19 (26.4) 17 (37.8)

Race/Ethnicity .48 .37

 Black Non-Hispanic 82 (41.0) 17 (25.8) 25 (34.7) 26 (57.8)

 Hispanic 98 (49.0) 37 (56.1) 35 (48.6) 19 (42.2)

 Other Non-Hispanic 20 (10.0) 12 (18.2) 12 (16.7) 0

Country of origin .12 .08

 United States 171 (85.5) 53 (80.3) 55 (76.4) 36 (80.0)

 Other 29 (14.5) 13 (19.7) 17 (23.6) 9 (20.0)

Homeless in past 6 months 65 (32.5) 20 (30.3) 21 (29.2) 22 (48.9) .21 .18

RAI in past 7 days 88 (44.0) 32 (48.5) 30 (41.7) 19 (42.2) .08 .07

Number of RAI acts in past month 2.06 (4.19) 2.48 (4.68) 2.33 (5.45) 4.42 (8.03) .19 .07

Methamphetamine use in past 6 months .54 .20

 Daily/Weekly 21 (10.5) 14 (21.2) 18 (25.0) 21 (46.7)

 Monthly/less 32 (16.0) 21 (31.8) 19 (26.4) 9 (20.0)

 Never 147 (73.5) 31 (47.0) 35 (48.6) 15 (33.3)

Marijuana use .30 .14

 Daily/Weekly 71 (35.5) 19 (28.8) 21 (29.2) 19 (42.2)

 Monthly/less 57 (28.5) 10 (15.2) 16 (22.2) 10 (22.2)

 Never 72 (36.0) 37 (56.1) 35 (48.6) 16 (35.6)

Cocaine use .16 .09

 At least once 53 (26.5) 11 (16.7) 21 (29.2) 13 (28.9)

 Never 147 (73.5) 55 (83.3) 51 (70.8) 32 (71.1)

Tobacco smoking .26 .15

 >1 pack/day 10 (5.0) 3 (4.5) 5 (6.9) 2 (4.4)

 <1 pack/day 68 (4.0) 24 (36.4) 31 (43.1) 25 (55.6)

 Nonsmoker 122 (61.0) 39 (59.1) 36 (50.0) 18 (40.0)

Binge drinking in past 6 months
b .40 .15

 Weekly 24 (12.0) 15 (22.7) 8 (11.1) 8 (17.8)

 Monthly/less 111 (55.5) 26 (39.4) 20 (27.8) 16 (35.6)

 Never 65 (32.5) 25 (37.9) 44 (61.1) 21 (44.7)
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HIV-Neg
ative
mean (sd)/
n (%)

Undetectable
(HIV RNA <
20 copies/mL)

Suppressed
(HIV RNA ≥20 -
200 copies/mL)

Viremic
(HIV RNA > 2
00 copies/mL)

SMD
a

(unwei
ghted)

SMD
(weig
hted)

Obese
c 64 (32.0) 16 (24.2) 13 (18.1) 10 (22.2) .17 .15

Antibiotic use 11 (5.5) 5 (7.6) 7 (9.7) 8 (17.8) .21 .08

Sample collection method .21 .08

 Anoscopy 152 (77.0) 47 (71.2) 53 (73.6) 39 (86.7)

 Self-collected 46 (23.0) 19 (28.8) 19 (26.4) 6 (13.3)

Years since HIV diagnosis 
d N/A 7 (6) 7 (5) 8 (6) N/A N/A

HIV RNA copies/mL (median, IQR) N/A N/A 20 (30) 15,730 (48,680) N/A N/A

CD4 cells/mm3 N/A 708.95 (279.6) 645.21 (262.9) 470.02 (280.1) N/A N/A

ART regimen N/A N/A

 INSTI + NRTI 0 30 (45.5) 30 (41.7) 8 (17.8)

 NNRTI + NRTI 0 21 (31.8) 20 (27.8) 7 (15.6)

 NRTI + PI 10 (15.2) 11 (15.3) 9 (20)

 Other 0 5 (7.6) 8 (10.2) 4 (8.8)

 Missing/Not reported/NA 166 (83) 0 3 (4.2) 17 (37.8)

PrEP user
e 37 (19) N/A N/A N/A N/A N/A

SMD = Standardized mean difference; RAI = Receptive anal intercourse; ART = Antiretroviral therapy; INSTI = Integrase strand transfer inhibitor; 
NRTI = Nucleoside reverse transcriptase inhibitor; NNRTI = Non-nucleoside reverse transcriptase inhibitor; PI = Protease inhibitor

a
SMD is a measure of imbalance across groups; higher SMDs indicate greater imbalance. Average SMD before weighting = .29, after weighting = .

15.

b
Binge drinking defined as 6 or more drinks on one occasion.

c
Obese defined as BMI > 30 or BMI > 25 and waist circumference > 40 inches.

d
Years since HIV diagnosis, HIV RNA, CD4 cell count and ART regimen were not included in the inverse probability of treatment weight model 

(as they are generally not relevant to HIV negative participants), all other variables in the table were included.

e
HIV negative men taking tenofovir disoproxil fumarate/emtricitabine for pre-exposure prophylaxis (PrEP).
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