Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: Neuroimage. 2019 Jan 9;189:380–400. doi: 10.1016/j.neuroimage.2018.12.024

Algorithm 1.

The Exact EM Algorithm

Initial values: Obtain an initial values Θ^(0) based on existing group ICA software.
repeat
E-step:
1. Evaluate the conditional distribution of the latent variables p(L(v)|y(v),Θ^(k)) using the proposed three-step approach:
1.a Evaluate the multivariate Gaussian p[L(v)|y(v),z(v),Θ^(k)];
1.b Evaluate p[z(v)|y(v);Θ^(k)] via Bayes’ Theorem
1.c integrate out the latent states z(v)
p(L(v)|y(v),Θ^(k))=z(v)Rp(L(v)|y(v),z(v),Θ^(k))p[z(v)|y(v);Θ^(k)]
2. Estimate conditional expectation Q(Θ|Θ^(k)) based on p(L(v)|y(v),Θ^(k)).
M-step:
Update parameters estimates
Θ^(k+1)=argmaxΘQ(Θ|Θ^(k)).
until convergence, i.e. Θ^(k+1)Θ^(k)Θ^(k)<ϵ