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Abstract

Current chemical exchange saturation transfer (CEST) neuroimaging protocols typically acquire 

CEST-weighted images, and, as such, do not essentially provide quantitative proton-specific 

exchange rates (or brain pH) and concentrations. We developed a dictionary-free MR 

fingerprinting (MRF) technique to allow CEST parameter quantification with a reduced data set. 

This was accomplished by subgrouping proton exchange models (SPEM), taking amide proton 

transfer (APT) as an example, into two-pool (water and semisolid macromolecules) and three-pool 

(water, semisolid macromolecules, and amide protons) models. A variable radiofrequency 

saturation scheme was used to generate unique signal evolutions for different tissues, reflecting 

their CEST parameters. The proposed MRF-SPEM method was validated using Bloch-McConnell 

equation-based digital phantoms with known ground-truth, which showed that MRF-SPEM can 

achieve a high degree of accuracy and precision for absolute CEST parameter quantification and 

CEST phantoms. For in-vivo studies at 3 T, using the same model as in the simulations, synthetic 

Z-spectra were generated using rates and concentrations estimated from the MRF-SPEM 

reconstruction and compared with experimentally measured Z-spectra as the standard for 

optimization. The MRF-SPEM technique can provide rapid and quantitative human brain CEST 

mapping.
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1. Introduction

Chemical exchange saturation transfer (CEST) imaging is an important molecular MRI 

technique that can generate contrast based on the proton exchange between labeled protons 

in solutes and free bulk water protons, or on the water exchange between solute-bound water 

and free bulk water in tissue (Goffeney et al., 2001; Ward et al., 2000). CEST-MRI was 

developed to indirectly detect various endogenous low-concentration mobile biomolecules 

with water-exchangeable protons, such as proteins and peptides (van Zijl et al., 2003; Zhou 

et al., 2003b); glutamate (Cai et al., 2012); creatine (Haris et al., 2014); glycogen (van Zijl et 

al., 2007); and glycosaminoglycans (Ling et al., 2008); exogenous-specific molecular 

imaging agents (Aime et al., 2005; Walker-Samuel et al., 2013; Zhang et al., 2001); as well 

as tissue physiological parameters, including temperature (Zhang et al., 2005) and pH (Sun 

et al., 2007; Zhou et al., 2003b). Currently, CEST-MRI holds great promise for abundant 

clinical molecular imaging applications (Jiang et al., 2017; Jones et al., 2017; Li et al., 2014; 

Zhang et al., 2016a; Zhang et al., 2017a; Zhou et al., 2013b).

Most current CEST-MRI protocols acquire CEST-weighted images that reflect a few other 

contributions, including residual magnetization transfer contrast (MTC) and residual tissue 

relaxation characteristics (Xu et al., 2014b; Zaiss et al., 2011; Zhou et al., 2008), thus 

limiting the assessment of quantitative proton exchange rates and concentrations. In 

addition, inconsistent and controversial results have been reported by different research 

groups due to the choice of different CEST metrics (Heo et al., 2017a; Xu et al., 2014b; 

Zaiss et al., 2011), reference images (Cai et al., 2015; Heo et al., 2016c; Jin et al., 2013; 

Jones et al., 2013; Zhou et al., 2003b), and different experimental parameters (Heo et al., 

2017c; Sun et al., 2013; Zhao et al., 2011; Zhou et al., 2013a). Investigators in the CEST 

community have a great interest in quantifying label proton concentrations and exchange 

rates. One of the most promising CEST quantification methods is to fit CEST signals 

obtained from repeated and serial image acquisition with varied saturation powers, as well as 

saturation frequency offsets to the steady-state analytical solution of the Bloch-McConnell 

equation (Geades et al., 2017; Heo et al., 2016c; Liu et al., 2013; McMahon et al., 2006; 

Woessner et al., 2005; Zhou et al., 2004). The acquisition of multi-sampled Z-spectra, i.e., 

acquisitions at multiple B1 or saturation time settings, allows analysis by model-based fitting 

of the CEST process. The simplest CEST model-based analysis consists of two pools, free 

bulk water protons and single solute protons. However, MTC effects from semisolid 

macromolecular protons in-vivo interfere with the CEST process (Desmond and Stanisz, 

2012; Heo et al., 2016b; Hua et al., 2007; van Zijl and Yadav, 2011). Incorporating multiple 

pools in the model-based analysis is challenging because it requires more parameters that 

must be fitted from the data, leading to a higher risk of over-fitting errors, and thus, 

inaccurate quantification results. In addition, the use of multiple RF saturation frequencies 

under varied RF saturation powers requires long scan times, which is a major obstacle to 

clinical translation.

MR fingerprinting (MRF) is a new approach for efficient multiple tissue parameter mapping 

with varying pulse sequence parameters of interest in a pseudorandom manner (Cohen et al., 

2018; Liao et al., 2017; Ma et al., 2013; Ma et al., 2017; Su et al., 2017; Wang et al., 2017; 
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Zhou et al., 2018). Typically, a pattern-matching algorithm is used to find different tissue-

type parameters against a pre-calculated database, a so-called “dictionary,” from Bloch 

equation simulations with a wide variety of tissue parameter combinations. Therefore, MRF 

has been shown to be robust to severe aliasing artifacts from highly undersampled k-space 

measurements due to the incoherent sampling and the nature of a matching procedure based 

on prior information. When multiple components for CEST-MRI are considered, however, it 

requires even more parameters that must be matched from the dictionary, possibly leading to 

erroneous quantification results. Furthermore, the size of the database would have to be 

dramatically increased and an exhaustive search performed, limiting practical application.

In this study, we developed a dictionary-free MRF technique to allow CEST quantification 

with a reduced data set by using the simplifying assumption of subgrouping proton exchange 

models (MRF-SPEM). As a first example of application to amide proton transfer (APT) 

MRI (Zhou et al., 2003a; Zhou et al., 2003b), we assumed two-pool (water and semisolid 

macromolecules) and three-pool (water, semisolid macromolecules, and amide protons) 

models. A variable RF saturation scheme was used to generate uncorrelated signal 

evolutions for different tissue properties. Carefully designed frequency sampling and RF 

saturation power variation further allowed quantification in terms of group-based average 

exchange rates and apparent concentrations at a certain amide proton frequency. The MRF-

SPEM method was validated using Bloch-McConnell equation-based digital phantoms with 

known ground-truth values. For in-vivo studies, synthetic Z-spectra were generated by 

inserting CEST quantities obtained from MRF-SPEM reconstruction into the forward Bloch 

transform. These were compared with measured Z-spectra as the standard due to the lack of 

an objective ground-truth or gold standard in-vivo.

2. Methods

2.1. MRF-SPEM Acquisition

In the MRF-SPEM framework, RF saturation frequency offsets (Ω), saturation power (B1), 

saturation duration (Ts), and repetition time (TR) were varied throughout the acquisition, 

generating unique signal evolutions for different tissue properties, as shown in Fig. 1. TRs 

were varied according to Ts, but relaxation delay (Td) and turbo spin echo (TSE) acquisition 

(Ta) times were fixed (TR = Ts + Ta + Td). For APT quantification, MRF-SPEM images 

consisted of two distinct datasets: (1) MTC data with far off-resonance frequency offsets 

between 10 ppm and 50 ppm (black crosses in Fig. 2a); and (2) APT-weighted data with 

saturation frequency offsets between 3 ppm and 4 ppm (red crosses in Fig. 2a). The far off-

resonance frequency offsets were chosen to sample MTC data points and to avoid possible 

downfield CEST and upfield nuclear Overhauser enhancement (NOE) signal contributions to 

water saturation originating from mobile proteins and peptides. These data were fitted to a 

two-pool MTC exchange model, while APT-weighted data acquired at RF saturation 

frequency offsets around 3.5 ppm were fitted to the three-pool exchange model. The two-

pool parameters were incorporated into the three-pool model as prior known information, 

reducing the number of parameters and fitting uncertainty errors. In addition, fast-

exchanging amine protons around 3 ppm in glutamate (Cai et al., 2012), hydroxyl protons 

around 1 ppm in myoinositol (Haris et al., 2011), glycogen (van Zijl et al., 2007), 
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glycosaminoglycans (Ling et al., 2008), side‐chain amide or guanidinium protons around 2 

ppm in proteins (Zhang et al., 2017d; Zhou et al., 2003a), and guanidinium protons in 

creatine (Cai et al., 2015; Haris et al., 2012) may make contributions to the APT-weighted 

signals. At lower RF saturation power, CEST effects are dominated by slowly exchanging 

amide protons, whereas, at higher B1, this is taken over by fast-exchanging amine and 

hydroxyl protons (Heo et al., 2017b; Jin et al., 2012; van Zijl et al., 2018). Based on this 

theory, relatively low B1 powers between 0.5 μT and 1.2 μT were applied in an attempt to 

isolate APT signals from the broad resonances of rapidly exchangeable protons.

2.2. Bloch-McConnell Simulations

Three-pool, Bloch-McConnell equation-based simulations were performed to simulate 

MRF-SPEM signal profiles. All longitudinal magnetization evolutions were analytically 

simulated following a single-shot TSE sequence, as shown in Fig. 1. MRF-SPEM profiles 

were generated with a schedule of Ω, B1, Ts, and TR, and were used for digital phantoms 

that consisted of two compartments (C1 and C2) with different exchange rates and 

concentration parameters for CEST and MTC contributions. Before simulating MRF-SPEM 

Z-spectra, four dummy scans were employed to achieve steady-state. The parameters 

(C1/C2) used for the simulation are shown in Table 1 (left two columns). Furthermore, T2 

values were assumed equal in both compartments, namely 65 ms for water and amide 

protons and 20 μs for MTC protons. The chemical shifts of water, MTC, and amide protons 

were 0 ppm, 0 ppm, and 3.5 ppm, respectively. B0 and B1 fields were assumed to be 

homogenous. For comparison with magnetization transfer ratio asymmetry (MTRasym) 

analysis, conventional Z-spectra were also generated at the RF frequency offset ranging 

from −6 to +6 ppm for saturation powers of 0.5, 1, 1.5, 2, and 3 μT, and a saturation duration 

of 800 ms (a series of four block RF saturation pulses, 200 ms duration each). A Bland-

Altman analysis was performed to evaluate the agreement between MRF-SPEM and ground-

truth phantom values. For all simulations, Rician noise was added to generate noisy images 

or profiles. We estimated an apparent standard deviation of ~855, scaled by a factor of 

1/0.655 to account for the Rician noise distribution from a background region, and an 

average signal of 97138 from a white matter region in saturated MRF-SPEM images at 3.5 

ppm (SNR of ~113). For the digital phantom study, we used a SNR level of 100 with the 

pseudo-random Rician noise samples which were generated by using conventional inverse 

transform sampling. The concentration of the water protons (110 M) was used to convert the 

semisolid macromolecular and amide protons concentrations from relative to absolute units 

for simulation, phantom, and in-vivo human studies.

2.3. Phantom Experiments

Ammonium chloride (NH4Cl, Sigma Aldrich, St Louis, MO, USA) phantoms were prepared 

in 50 mL tubes by dissolving 1.07g (500 mM) or 2.14g (1M) ammonium chloride in 40 mL 

PBS (pH 7.0), followed by titration to pH of 4.5, 4.6, and 5.0 using NaOH solution and a pH 

meter. To mimic the MTC pool, 1% agarose (low gelling temperature, Sigma Aldrich, St 

Louis, MO, USA) was added to tubes, which was heated briefly using microwave to dissolve 

agarose. Tubes were then bound using tapes and placed in a plastic container. The container 

was then filled with heated water containing 1% agarose, which was allowed to gel before 

scan. All studies were performed on a 3 T Philips Achieva MRI system (Best, Netherlands) 
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with a 32-channel element head coil, and all reconstruction algorithms were implemented in 

MATLAB R2017 (The MathWorks, Inc., Natick, MA). For CEST imaging, three sets of 

imaging parameters were adopted. First, conventional Z-spectrums were acquired with 161 

frequency offsets between −20 and 20 ppm at intervals of 0.25 ppm with RF saturation 

powers of 1, 1.5, 2, 2.5, and 3 μT. The scan time was 47.6 min. Second, densely sampled Z-

spectrums were acquired with 94 frequency offsets between 1.5 and 3.5 ppm at intervals of 

~0.0234 ppm and between 8 and 20 ppm at intervals of 1 ppm with RF saturation powers of 

1, 1.5, 2, 2.5, 3, and 3.5 μT. The scan time was 33.6 min. Third, MRF-SPEM profiles were 

acquired at 26 frequency offsets between 1.5 and 3.5 ppm for three-pool CEST fitting and 5 

frequency offsets between 10 and 20 ppm for two-pool MTC fitting with RF saturation 

powers ranging from 1 to 3 μT and RF saturation times ranging from 400 to 800 ms. The 

scan time was 1.9 min. Unsaturated images were also acquired for signal normalization. 

Additionally, water saturation shift-referencing (WASSR) (Kim et al., 2009) (26 frequency 

offsets from −1.2 to 1.2 ppm at intervals of 0.125 ppm, B1 of 0.5 μT) and dual-TR (TR = 20 

and 120 ms) data were acquired for B0 and B1 corrections, respectively.

2.4. In-Vivo MRI Experiments

Human studies were approved by the Johns Hopkins Institutional Review Board. Five 

healthy volunteers (women, n=2; men, n=3; age, 32.6 ± 4.0) were recruited, who provided 

written, informed consent for the study. MRF-SPEM image data were obtained from a fat-

suppressed (spectral pre-saturation with inversion recovery, SPIR), single-shot TSE pulse 

sequence using the following parameters: TE= 6.4 ms; FOV = 212 × 186 mm2; acquisition 

and reconstruction resolution = 2.2 × 2.2 × 4.4 and 0.83 × 0.83 × 4.4 mm3; turbo spin-echo 

factor = 45; and single slice acquisition. WASSR and dual-TR data were also acquired with 

the same parameters used for the ammonium chloride phantom and incorporated into the 

MRF-SPEM reconstruction framework for B0 and B1 corrections, respectively. The MRF-

SPEM was also compared to the extrapolated semisolid magnetization transfer reference 

(EMR) method (Heo et al., 2016a; Heo et al., 2016c; Lee et al., 2017). For EMR data 

acquisitions, the frequency sweep corresponded to full Z-spectra with the following 

frequency offsets: unsaturated (S0), 0 to ± 6 ppm at intervals of 0.5 ppm; + 7 ppm to + 20 

ppm at intervals of 1 ppm; + 25 ppm to + 50 ppm at intervals of 5 ppm; and 60 ppm. Three 

RF saturation powers (1, 1.5, and 2 μT) were applied. Total EMR scan time was 11.2 min.

2.5. MRF-SPEM Processing

For motion correction, all MRF-SPEM datasets were registered to the first saturated image 

using a rigid body transformation algorithm with a mutual information cost function and 

bicubic resampling (Zhang et al., 2016b). Then, we fitted MRF-SPEM data with the above-

described two- and three-pool, Bloch-McConnell equation-based proton exchange models 

using a nonlinear least-squares fitting approach, which was implemented using the 

Levenberg-Marquardt algorithm. The three-pool exchange model, including the free bulk 

water proton pool (w), the water exchangeable solute proton pool (s), the semisolid 

macromolecular proton pool (m), and the magnetization in each pool (Mw, Ms, and Mm) in 

the presence of exchange and RF irradiation, can be described in matrix format by (Heo et 

al., 2016c; Woessner et al., 2005; Zhou and van Zijl, 2006; Zhou et al., 2004):
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dM(t)
dt = A(t)M(t) + B [1]

where

A ω1 =

Dw Nws Nwm

Nsw Ds Nsm

Nmv Nms Dm

[2]

Di =

−k2i − ω − ωi 0
ω − ωi −k2i −ω1

0 ω1 −k1i

[3]

Ni j = ki j

1 0 0
0 1 0
0 0 1

[4]

B = Bw Bs Bm
T [5]

Bi = 0 0 M0
i R1i

T
[6]

where ω1 is the RF saturation amplitude; ω is the RF saturation frequency; ωi is the 

resonance frequency of pool i; kij represents the proton exchange rate from pool i to pool j; 
R1i and R2i are the longitudinal and transverse relaxation rate of pool i, respectively; k1/2w, 
k1/2s, and k1/2m are given by R1/2w+kws+kwm, R1/2s+ksw, and R1/2m+kmw, respectively; and 

M0
i is the equilibrium magnetization of pool i. The analytical solution of the coupled linear 

differential equations (Eq. [1]) is:

M = M0 + BA−1 eAt − BA−1 [7]

where
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M0 = M0
w′ M0

s′ M0
m′ T

[8]

M0
i′ = 0 0 M0

i T
[9]

The longitudinal magnetization evolution was generated based on a pulse-train CEST 

sequence with a single-shot TSE readout. Crusher gradients of 10-ms duration were applied 

between block RF saturation pulses to suppress residual transverse magnetization by setting 

zero transverse magnetization components (spoiler matrix). For the image acquisition, the 

magnetization vector evolution was calculated by multiplying the previous magnetization 

vectors with the rotation matrices to consider a 90° excitation pulse followed by a 180° 

refocusing pulse and multiple refocusing pulses forming echo trains. During the relaxation 

delay period, the magnetization vector was calculated solely by relaxation recovery process 

in the absence of B1. The three-pool APT exchange model can be reduced to the two-pool 

MTC exchange model (free bulk water + semisolid macromolecular proton pools) by 

assuming the concentration of amide proton pools to be zero. The RF saturation parameters 

and repetition times corresponding to saturation schedules were updated for each dynamic 

scan. The three-pool APT exchange model was analytically solved with the a priori fitted 

two-pool symmetric MTC parameters obtained from far off-resonance frequency offsets and 

the parameter fitting was performed using the minimum norm estimate. Our model fitting 

approach substantially reduced the risk of over-fitting and the uncertainties of direct three-

pool model parameter estimates. The quality of the estimated parameters was evaluated by 

the root of the sum of the squared difference between the fitted and acquired MRF-SPEM 

data, and the χ2 goodness-of-fit metric. In the fitting process, the values of the parameters 

were constrained within upper and lower bounds of [0.1, 3.5 sec] for T1w, [0.01, 2 sec] for 

T2w, [1, 200 μsec] for T2m, [1, 200 Hz] for kmw, [1, 20 M] for M0
m, [0.1, 500 msec] for T2s, 

[1, 600 Hz] for ksw, [1, 600 mM] for M0
s for in-vivo studies, but adjusted for simulation and 

phantom studies. B0 shifts and B1 scaling factors obtained from the additional WASSR and 

B1 calibration scans were applied pixel-wise during the fitting.

In addition, Monte-Carlo simulation studies were performed to compare MRFSPEM and 

MRF (one-step fitting) methods with simulated MRF-SPEM signal profiles. 1000 sets of 

noisy images (SNR of ~100) were generated with different parameters of the semisolid 

macromolecular proton and amide proton pools. For each trial, the pool parameters were 

randomly chosen within the range of kmw from 20 to 60 Hz at intervals of 0.25 Hz, the range 

of M0
m from 4 to 12 M at intervals of 0.05 M, the range of ksw from 50 to 500 Hz at 

intervals of 2.5 Hz, and the range of M0
s from 100 to 400 mM at intervals of 2 mM.

2.6. Validation of MRF-SPEM using synthetic CEST data

A “true” gold standard does not currently exist for absolute CEST quantification of invivo 
brain tissue. Instead, synthetic Z-spectra (or CEST signals) were generated using CEST 

parameters obtained from the MRF-SPEM methodology and then, were compared with 
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experimental measurements. Virtual scanner settings (e.g., TR, TE, TSE factor, excitation 

flip angles, Ω, B1, Ts, etc.) that corresponded to the experimental measurements were used. 

For a direct comparison with the standard, synthesized APT# signal intensities were 

calculated by:

APT#(syn) = Zre f ( + 3.5ppm) − Zlab( + 3.5ppm) [10]

where Zref and Zlab are the reference image signal intensity and label image signal intensity 

normalized with respect to the image signal intensity measured without RF saturation, 

respectively. For APT#(syn) calculation, Zref and Zlab were calculated by using the Bloch-

McConnell equation with two-pool and three-pool exchange models, respectively, with 

parameters obtained from MRF-SPEM. By assuming the concentration of a solute proton 

pool to be zero (M0
s= 0), the three-pool model (Zlab) can be reduced to the two-pool model 

(Zref).

For the validation standard, reference and labeled Z-spectra were taken from the 

extrapolated semisolid MT reference (EMR) signal (namely, ZEMR) and the B0-corrected 

experimental Z-spectra (Zexp), respectively:

APT#(meas) = ZEMR( + 3.5ppm) − Zexp( + 3.5ppm) [11]

The EMR calculation was performed according to the procedures based on recently 

published papers (Heo et al., 2018; Heo et al., 2016c). Wide-offset experimental Z-spectra 

with MTC data points between 8 and 60 ppm were chosen to avoid the interference of 

possible CEST and upfield NOE signals from mobile proteins and peptides and were fitted 

to a two-pool MTC model with a symmetric Lorentzian lineshape. The experimental MTC 

datasets acquired at three RF saturation powers (1, 1.5, and 2 μT) were simultaneously fitted 

to improve the EMR fitting quality. Then, the MTC and direct water saturation contributions 

were extrapolated to obtain baseline signals (ZEMR) at the respective RF saturation 

frequencies of interest (e.g., 3.5 ppm). To compare APT#(syn) results with the experimental 

measurement, APT#(meas), two ROIs enclosing the gray matter (GM) and white matter 

(WM) were analyzed. These ROIs were carefully drawn on the unsaturated S0 image. Data 

in graphs and tables are presented as mean ± standard deviation. Statistical analysis was 

performed using a one-way analysis of variance, followed by Tukey’s post hoc test. 

Statistical significance was considered at p < 0.05.

3. Results

3.1. Bloch-McConnell Simulation Results

The longitudinal magnetization of free bulk water (Mz
w) was changed dynamically under a 

variable RF saturation scheme (Ω, B1, Ts, and TR), generating unique magnetization signals. 

Fig. 2a shows the pattern of RF saturation parameters and TR values varied deliberately 

throughout the acquisition, producing dynamic CEST-weighted images (red crosses) and 
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MTC-weighted images (black crosses) where the magnitude of the MR signal of each voxel 

changed at every dynamic step (Fig. 2b). Based on our digital phantom studies (Fig. 2c) at 

an appropriate SNR level of 100 (SNR for WM measured is 113), excellent agreement was 

observed for MRF-SPEM and the known exchange rate and concentration (ground-truth 

values). As shown in Fig. 2d, the results show a strong linear correlation (R2 = 0.985 for ksw; 

R2 = 0.996 for M0
s), with slopes of 0.995 for ksw and 1.000 for M0

s. The y-intercepts were 

1.82 Hz for ksw and −0.222 mM for M0
s. For ksw, the 95% limits of agreement were −34 Hz 

to 35 Hz, with a mean bias of 0.38 Hz. For M0
s, the 95% limits of agreement were −9 mM to 

8.7 mM, with a mean bias of −0.17 mM (also see Fig. 3). A Bland-Altman analysis was 

performed to assess the agreement between MRF-SPEM reconstruction and ground-truth 

values at different SNR levels (Fig. 3). The analysis revealed no significant bias for the 

measurement of ksw and M0
s over all SNR levels. However, the 95% limits of agreement 

became narrow and fewer outliers were present at higher SNRs. Monte-Carlo simulations 

were used to assess the precision and accuracy of two-pool MTC and solute proton 

parameter estimation by MRF-SPEM and MRF methods as shown in Fig. 4. The parameters 

estimated from MRF-SPEM were more accurate (close to ground truth) and precise (narrow 

distribution) than MRF method.

Fig. 5 shows another Bloch simulation result for the digital phantom with two compartments 

(C1 and C2 mimicked normal tissue and lesion, respectively). The parameters of the 

compartments are shown in Table 1. Interestingly, there was a negligible MTRasym(3.5ppm) 

signal difference between the two compartments at an RF saturation power of 1 μT (Fig. 5b 

and 5d), despite the different water relaxation rates, MTC (except for semisolid 

macromolecular proton exchange rate), and CEST parameters. Furthermore, the strong RF 

saturation power dependency of MTRasym(3.5ppm) image contrast can be seen clearly in 

Fig. 5b and 5d. A positive MTRasym(3.5ppm) image contrast between compartments C2 and 

C1 was observed at low RF power (0.5 μT) due to small MTC and direct saturation effects 

and the smaller exchange rate in C2 having close to maximal saturation. The 

MTRasym(3.5ppm) image contrast between two compartments became negative at higher RF 

saturation powers (> 1 μT) because the solute exchange rate of C1 was faster than that of C2 

and the small APT effect in C2 was overwhelmed by the MTC and direct saturation effects. 

When using the variable RF saturation scheme, image voxels with different relaxation rates, 

water-exchangeable proton concentrations, and exchange rates evolved differently, thereby 

generating unique magnetization trajectories, as shown in Fig. 5c. Accurate and precise 

parameters (Fig. 5e) were successfully decoded, which were in excellent agreement with the 

ground-truth values (Table 1).

3.2. CEST Phantom Imaging Results

Fig. 6 shows ammonium chloride phantom results. The phantom consists of four 

compartments with either varying NH4Cl concentration or pH (Fig. 6a). RF saturation power 

dependencies of the direct water saturation, semisolid MTC, and CEST signals can be seen 

clearly as shown in Figs. 6b–c. Instead of using a repeated and serial image acquisition with 

varied saturation powers and saturation frequency offset, a variable RF saturation and 

acquisition created unique signal evolutions (Fig. 6d) for the compartments with different 

CEST concentrations or pH. Fig. 6e shows the image contrast of MTRasym(2.5ppm) between 
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vials. However, it is not clear what the contribution (proton exchange rate or concentration) 

is of the underlying contrast on the observed CEST-weighted images. Quantitative CEST 

parameter maps obtained from the conventional Bloch equation fitting method which is a 

two-step fitting approach (two-pool MTC model fitting first, followed by three-pool model 

fitting) using the densely sampled Z-spectra (Fig. 6c) and MRF-SPEM reconstruction using 

the MRF-SPEM signal profile (Fig. 6d) created by the variable RF saturation are shown in 

Fig. 6f–g, respectively. The CEST parameter values estimated by MRF-SPEM were in good 

agreement with values estimated by using the reference measurement in spite of concurrent 

variation of CEST concentration and pH in each vial (Table 2).

3.3. Human Volunteer Imaging Results

To compare the proposed MRF-SPEM with conventional CEST measurements as a standard 

for validation of in-vivo CEST parameter quantification, Z-spectra were synthesized using 

estimated parameters from MRF-SPEM and compared with experimentally measured Z-

spectra with three different RF saturation powers (1, 1.5, and 2 μT). Fig. 7a shows average 

ROI-based MRF-SPEM signal evolution profiles (+), and two-pool fitted (solid line), three-

pool fitted (dashed line) curves of gray and white matter. The reference signals (solid lines) 

were calculated by the two-pool MTC model fitting with semisolid MTC data (black crosses 

in Fig. 7a). Shaded areas (dark gray and light gray) indicate APT signal effects by 

subtracting three-pool MRF-SPEM label signals from two-pool MRF-SPEM reference 

signals. The APT signal intensities were higher in the gray matter than in the white matter. 

Using CEST parameters estimated from MRF-SPEM, synthetic Z-spectra (Fig. 7b) were 

reconstructed with saturation/imaging parameters identical to those used in the standard scan 

(Fig. 7c–d). Synthesized (Fig. 7b) and experimentally measured (Fig. 7c) signals were in 

excellent agreement at positive frequency offsets (red vs. black solid lines and + signs in Fig. 

7d). Note that the synthesized Zlab signals (Fig. 7b) evidently differed from the result of the 

experimental measurements (Fig. 7c) at negative frequency offsets (upfield from water) 

because only a three-pool exchange model (free bulk water, semisolid MTC, and downfield 

amide protons pools) was considered in MRF-SPEM and because the MTC effect was 

considered symmetric. As shown in Fig. 8a–b, both synthetic Zref(3.5ppm) values in gray 

matter and white matter were in excellent agreement with the EMR results. Interestingly, 

even though the difference was not statistically significant, the APT#(syn) values seemed 

slightly higher than the APT#(meas) values, as shown in Fig. 8c, probably because multiple 

CEST components contaminated the signal at the amide proton frequency (more detail 

provided in the Discussion section).

Quantitative parameter maps and values of the healthy volunteer brain are shown in Fig. 9 

and Table 3. The gray matter and white matter have very different semisolid macromolecular 

proton and amide proton concentrations and exchange rates. The semisolid macromolecular 

proton exchange rates for gray and white matter were ~40 Hz (95% confidence interval: 34 

Hz – 46 Hz) and ~29 Hz (95% confidence interval: 24 Hz – 34 Hz), respectively, and the 

concentrations of ~6 M (95% confidence interval: 5.4 M – 7.1 M) and ~11 M (95% 

confidence interval: 10.3 M – 12.1 M), respectively, were in good agreement with previous 

observations (Mougin et al., 2010; Sled and Pike, 2001; Stanisz et al., 2005). The amide 

proton concentration in gray matter (266 ± 22 mM; 95% confidence interval: 238 mM – 293 
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mM) was somewhat higher than that of the white matter (212 ± 22 mM; 95% confidence 

interval: 185 mM – 240 mM), which is in line with observed APT effects (shaded areas in 

Fig. 7a). In addition, the amide proton exchange rate (~365 Hz; 95% confidence interval: 

342 Hz – 389 Hz) of gray matter was significantly faster than that of white matter (~162 Hz; 

95% confidence interval: 142 Hz – 182 Hz). All differences in the amide proton exchange 

rates and concentrations between the gray matter and white matter were significant (p < 

0.05, see Table 3). Synthesized APT# images were in good agreement with the 

experimentally measured APT# images as shown in Fig. 9b–c. However, the intrinsic water 

T1 relaxation time of the white matter calculated from MRF-SPEM reconstruction was 

longer than the observed water T1 relaxation time of the white matter obtained from a 

modified look-locker inversion recovery experiment due to the effect of coupling to a 

semisolid macromolecular proton pool (Henkelman et al., 1993).

4. Discussion

We developed a novel MRF concept to allow CEST quantification by SPEM. Numerical 

phantom studies demonstrated that MRF-SPEM can enable a high degree of accuracy and 

precision in absolute CEST quantification at 3T magnetic field strength. The same model 

used in-vivo allowed fast quantification of apparent exchange rates and concentrations at the 

amide proton frequency. The present MRF-SPEM imaging scan took just 2 min 50 sec 

(including B0 and B1 mapping) for quantitative APT mapping (as compared to 11 min 12 

sec for EMR image acquisition with three RF saturation powers).

Our proposed method cannot be systematically assessed in-vitro and in-vivo due to the lack 

of an objective ground-truth. To enable effective validation, in lieu of ground-truth, we 

compared MRF-SPEM with a conventional Bloch equation fitting method with high-

resolution Z-spectra using ammonium chloride-agarose phantoms and observed great 

agreement between the two measurements for the proton quantification. However, the 

estimated proton exchange rates were higher than the value reported in a previous 

ammonium chloride phantom study with similar pH ranges (Desmond and Stanisz, 2012). 

We observed broadened CEST peaks with significant asymmetry in the Z-spectra due to 

coalescence of the fast exchanging proton peaks with the bulk water peak. Presumably, a 

change in pH during the phantom preparation (e.g., boiling for the agarose) may lead to a 

change in the lineshape of Z-spectra. In the human study, synthesized Z-spectra and APT# 

images generated with CEST parameters estimated from MRF-SPEM were in good 

agreement with the experimental measurements in white matter and gray matter regions of 

the healthy volunteer brain at 3 T. A fast exchange rate of semisolid macromolecular and 

amide protons was observed in voxels located partly in the cerebral ventricles (cerebrospinal 

fluid) with long T1 relaxation times. However, previous studies showed that APT signal of 

the CSF is almost zero and independent of RF saturation power, thus the APT effect can be 

assumed to be negligible in the ventricles (Paech et al., 2014; Zhao et al., 2011; also see 

simulation results in Supporting Fig. S1). In addition, there should be no MTC in the 

ventricles and these APT and MTC effects are only apparent and due to partial volume 

effects with tissue and perhaps CSF flow-related effects.
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We investigated the spatial distribution of the magnitude of MTC and APT effects in the 

human brain. While the estimated semisolid macromolecular proton concentration was 

significantly larger in white matter than in gray matter, the exchange rate was significantly 

faster in gray matter than in white matter. The estimated semisolid macromolecular proton 

parameters by MRF-SPEM were consistent with previous quantitative MT studies (Mougin 

et al., 2010; Sled and Pike, 2001; Stanisz et al., 2005). The APT signals were found to be 

slightly higher in gray matter than in white matter, in line with previous experiments (Jin et 

al., 2013; Xu et al., 2016), presumably as a result of the higher content of mobile proteins 

and peptides, or the greater magnetization exchange between protons in the water and 

macromolecular pools in white matter, leaving fewer water protons for exchange with 

mobile proteins and peptides. The apparent amide proton exchange rates of the gray matter 

and white matter estimated from MRF-SPEM were around 162 Hz and 365 Hz, respectively. 

Our APT quantification values were high compared to the values of the exchange rates and 

concentration (~ 28 Hz and 72 mM) reported in previous rat animal studies at 4.7 T using a 

water-exchange spectroscopy (WEX) approach (Mori et al., 1997; Zhou et al., 2003b; Zhou 

et al., 2004). One possible reason for this lack of consensus is that the amide protons have a 

wide range of exchange rates, while the model used here assumed that the amide protons had 

a single exchange rate. Amide protons in proteins and peptides are known to exhibit a large 

range of exchange rates at a physiologically relevant pH range (Wuthrich, 1986). The WEX 

approach may be less suitable for measuring very fast exchange rates due to the finite 

duration (several ms) of the water labeling preparation period. In the previous study, 

furthermore, the amide proton concentration (72 mM) was retrospectively calculated from a 

simplified two-pool exchange model-based APT ratio equation with the exchange rate of 28 

Hz measured from WEX experiment. Another less likely possibility is that multiple CEST 

components can influence the signal at the amide proton frequency offset. At 3T, even with 

the low RF saturation power pulse, there may still be some contamination from broad 

coalesced signals of amine protons from glutamate (Cai et al., 2012; Zhang et al., 2018), 

guanidinium protons from creatine and mobile protein/peptide (Haris et al., 2012; Zhang et 

al., 2017c), and hydroxyl protons from myo-inositol (Haris et al., 2011), glycogen (van Zijl 

et al., 2007), and glycosaminoglycans (Ling et al., 2008) over the amide proton frequency. 

Note that a previous human study at 7T (Liu et al., 2013) measured the amide proton 

exchange rate of ~280 Hz, which is comparable to that measured here, while the 

concentration was somewhat lower than our estimation. A human study using the frequency 

labeled exchange approach measured a rate on the order of 350–400 Hz (Yadav et al., 2013). 

Another human study (Geades et al., 2017) measured the amide proton concentration of 220 

mM (0.2% relative to water, 110M), which is consistent with that measured in this work.

Finding a unique (or sparse) solution in an ill-posed inverse problem is always challenging, 

particularly when multiple components for CEST MRI are considered. To overcome this 

issue, we shrank the exchange model and reduced fitting parameters by subgrouping proton 

exchange models. Additional information/constraints, such as different RF saturation 

powers, saturation times, and frequency offsets were added to find a unique solution (CEST 

parameters). Nevertheless, the coupled effect from the exchange rate and concentration was 

often observed, particularly as shown in kmw and M0
m maps (Fig. 9a). The high kmw (bright) 

and low M0
m (dark) values were shown in the anterior and posterior edges whereas the 
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T1wobs, APT# (Fig. 9b) and kmw·M0
m images (see Supporting Fig. S2) showed structures. 

These CEST-related parameters appear multiplied together in the Bloch equations and thus, 

it may be difficult to completely disentangle the coupled parameters. In future work, more 

MTC image acquisitions with varied RF saturation parameters may be required. In addition, 

the application of a varied inter-pulse delay time (Xu et al., 2014a) may be added to limit 

CEST signals only to those from biomolecules with a specific range of proton exchange rate 

to MRF-SPEM. This may yield more reliable CEST parameter mapping, especially when 

incorporating fast exchangeable amine and guanidinium proton pools in the analysis. 

Upfield NOE-related proton pools can be easily incorporated into MRF-SPEM because 

NOE signals are easily discriminated from downfield CEST signals due to the difference in 

saturation frequency offsets. Nevertheless, including additional proton pools in the model 

inevitably results in increasing acquisition images and scan time. Currently, an acquisition 

schedule with 32 image acquisitions was chosen, which is the similar acquisition number 

used in previous works (Cohen et al., 2018; Zhou et al., 2018). However, future studies are 

needed to optimize acquisition schedules for reducing acquisition times and maximizing 

specificity of CEST components.

In the present study, MRF-SPEM data were reconstructed by solving a nonlinear least 

squares problem, rather than a dictionary-match approach used in the original MRF 

approach. The advantage of this approach is that an exhaustive brute-force dictionary 

generation for high precision and search can be avoided, enabling straightforward extensions 

of the proton exchange model to incorporate multiple CEST parameters without a new 

dictionary construction. In addition, the use of highly undersampled k-space and short TRs 

for transient-state signal acquisition, as used in the original MRF may be limited in CEST 

MRI due to inherently low SNR. Currently, dictionary-free or undersampled/fully sampled 

Cartesian MRF methods are being explored (Anderson et al., 2018; Buonincontri and 

Sawiak, 2016; Cohen et al., 2018; Sbrizzi et al., 2017; Zhang et al., 2017b; Zhou et al., 

2018). In MRF-SPEM reconstruction, CEST parameter mapping with two-dimensional data 

(2562) took about six hours. Furthermore, the three-pool model might not be enough for in-

vivo. Additional CEST pools could be incorporated in MRF-SPEM reconstruction, but it 

inevitably leads to longer reconstruction times. Recently, much effort has been focused on 

the compression of the dictionary computation and acceleration of the dictionary matching 

(Asslander et al., 2018; Cao et al., 2017; Cauley et al., 2015; Cline et al., 2017; McGivney et 

al., 2014). Such an accelerated dictionary-based, pattern-matching approach could benefit 

fast three-dimensional MRF-SPEM reconstruction due to the inherent robustness of the 

dictionary matching to aliasing artifacts.

5. Conclusion

A fast quantitative CEST imaging technique based on MRF-SPEM was developed, validated 

in numerical phantoms, and demonstrated in-vivo using a synthetic CEST analysis. This 

quantitative approach could provide significant insights into the origin of the conventional 

CEST-weighted image contrast in normal human brains and in many pathologies, such as 

cancer, stroke, and various psychiatric and neurodegenerative diseases.
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1. A new MR fingerprinting concept was proposed to allow CEST 

quantification.

2. A varied RF saturation was designed to generate CEST signal evolutions.

3. Synthetic CEST MRI was used for validation of in-vivo CEST quantification.

4. The MRF-SPEM technique can provide rapid and quantitative human brain 

CEST mapping.
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Figure 1. 
(a) An illustration of turbo spin-echo (TSE)-based CEST sequence with four (i = 4) dynamic 

scans. A saturation pulse train consists of block pulses of 200 ms duration each with a 10 ms 

delay between them. (SPIR = spectral pre-saturation with inversion recovery). (b) The 

evolution of the longitudinal magnetization of the water (Mz
w) with varied saturation 

parameters, where Ωi = 4, 3, 3.5, 10 ppm, B1i = 1.2, 0.8, 2, 3 μT, Tsi = 800, 400, 800, 600 

ms, and TRi = 3.5, 3.08, 3.5, 3.29 sec., respectively. (c) Zoomed-in displays (pink boxes in 

b) showing distinct saturation effects. All initial magnetizations for each dynamic scan are 

identical due to the fixed relaxation delay time.
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Figure 2. 
(a) An example of Ω, B1, Ts, and TR schedules for an MRF-SPEM acquisition. Black 

crosses are for two-pool MTC model-fitting (10 ppm < Ω < 50 ppm and 1.2 μT < B1 < 3 μT) 

and red crosses (3 ppm < Ω < 4 ppm and 0.5 μT < B1 < 1.2μT) are for three-pool model-

fitting. (b) MRF-SPEM signal profiles obtained from five compartments with varied proton 

exchange rates and concentrations listed in (c). (c) Pixel-wise maps of the proton exchange 

rate (ksw, Hz) and concentration (M0
s, mM) in digital phantoms (SNR = 100) with the 

variable RF saturation schedules as shown in (a). (c) Correlation plots comparing proton 

exchange rates (top) and concentrations (bottom) between MRFSPEM reconstruction values 

and ground-truth (GT) phantom values.
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Figure 3. 
Bland-Altman plots comparing proton (a) exchange rates and (b) concentrations between 

MRF-SPEM reconstruction values and ground-truth phantom values at different SNR levels. 

The 95% limits of agreement are indicated by dotted black lines, and the mean bias is 

indicated by the solid black line.
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Figure 4. 
Monte-Carlo simulation results (1000 trials) comparing the MRF-SPEM and MRF methods.
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Figure 5. 
(a) Two homogenous compartments (C1 and C2) in a digital phantom (SNR = 100) having 

different water T1 relaxation times, semisolid macromolecular proton concentrations, solute 

proton exchange rates, and concentration values, as shown in Table 1. (b) Conventional Z-

spectra and MTR asymmetry curves at different RF saturation powers. (c) Unique MRF-

SPEM signal evolution profiles obtained from two compartments. (d) MTRasym(3.5ppm) 

image contrasts under different RF saturation powers. (e) water, MTC, and solute proton 

quantitative maps. Note that the semisolid macromolecular proton exchange rates in both 

compartments are identical.
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Figure 6. 
CEST phantom validation experiments. (a) a phantom with four compartments: (i) pH 4.5, 

0.5 M NH4Cl + 1% agarose + PBS, (ii) pH 5.0, 0.5 M NH4Cl + 1% agarose + PBS, (iii) pH 

4.6, 1 M NH4Cl + 1% agarose + PBS, and (iv) pH 7.0, 1% agarose + PBS. (b) Z-spectra and 

MTRasym curves, (c) densely sampled Z-spectra, and (d) MRF-SPEM signals obtained from 

four ROIs. (e) MTRasym(2.5 ppm) maps with RF saturation powers of 1, 1.5, 2, 2.5, and 3 

μT. Quantitative CEST parameter maps from (f) the conventional three-pool Bloch-equation 

fitting method using the densely sampled Z-spectra as shown in (c) and (g) MRF-SPEM 

reconstruction using the MRF-SPEM signal profiles as shown in (d).
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Figure 7. 
(a) Average ROI-based MRF-SPEM signal evolution profiles (+), and two-pool fitted (solid 

lines) and three-pool fitted (dashed lines) curves from white matter and gray matter (n = 5). 

Note that shaded areas indicate APT effects by subtracting three-pool MRF-SPEM label 

signals from two-pool MRF-SPEM reference signals. Black and red crosses are two-pool 

MTC and three-pool APT data acquisitions, respectively. (b) Synthetic two-pool (red solid 

lines) and three-pool (red +) Z-spectra using quantitative parameters estimated from MRF-

SPEM profiles. (c) Experimentally measured conventional Z-spectra with three different RF 

saturation powers as a standard for validating MRF-SPEM quantification. (d) 

Experimentally measured conventional Z-spectra (black +) and extrapolated two-pool MTC-

fitted curves (ZEMR, black solid lines). Synthetic two-pool (red solid lines) and three-pool 

(red +) Z-spectra are shown for comparison.
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Figure 8. 
(a) Average synthesized and experimentally measured Z-spectra from gray matter and white 

matter. (b) Average experimentally measured ZEMR(3.5ppm) and synthesized Zref(3.5ppm). 

(c) Experimentally measured APT#(meas) (calculated by Eq. [11]) and synthesized 

APT#(syn) (calculated by Eq. [10]) image intensities obtained from gray matter and white 

matter. Error bars depict standard deviations. No values were statistically significant (p > 

0.05).
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Figure 9. 
(a) An unsaturated image with color coded ROIs (green: gray matter, red: white matter) and 

B0, B1, quantitative MTC (kmw and M0
m), APT (ksw and M0

s) maps of a representative 

healthy volunteer human brain. (b) experimentally measured T1 map (T1W
obs) from a 

modified look-locker inversion recovery and APT#(meas) images with RF saturation powers 

of 1, 1.5, and 2 μT. (c) Synthetic T1 map (T1w(syn)) and APT#(syn) images with RF 

saturation powers of 1, 1.5, and 2 μT.
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Table 1

Ground truth values of the three-pool exchange model and estimated parameters (mean ± standard deviation) 

from MRF-SPEM in the numerical phantom study.

Ground Truth MRF-SPEM

C1 C2 C1 C2

T1w (sec) 1.20 1.40 1.20 ± 0.00 1.40 ± 0.00

kmw (Hz) 20 20 20 ± 0 20 ± 1

M0
m (M) 11.0 4.4 10.9 ± 0.0 4.4 ± 0.2

ksw (Hz) 300 70 301 ± 2 72 ± 2

M0
s (mM) 150 250 149 ± 0 246 ± 0

Other simulation parameters are shown in the Method section.
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