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Abstract

A protein is a dynamic shape-shifter whose function is determined by the set of structures it 

adopts. Unfortunately, atomically-detailed structures are only available for a few conformations of 

any given protein, and these structures have limited explanatory and predictive power. Here, we 

provide a brief historical perspective on protein dynamics and introduce recent advances in 

computational and experimental methods that are providing unprecedented access to protein 

shape-shifting. Next, we focus on how these tools are revealing the mechanism of allosteric 

communication and features like cryptic pockets, both of which present new therapeutic 

opportunities. A major theme is the importance of considering the relative probabilities of different 

structures and the control one can exert over protein function by modulating this balance.

Keywords

protein dynamics; allostery; cryptic pockets

A brief history

A protein has the potential to adopt an enormous number of different structures. For 

example, a small protein with 100 amino acid residues has ~200 rotatable bonds along its 

backbone. Assuming that each of these rotatable bonds can adopt one of two dominant 

rotameric states, then such a protein can adopt approximately 1060 different backbone 

structures, not to mention the additional possible structures if one considers the rotatable 

bonds in side-chains. Only a small fraction of these structures is capable of performing a 

given function. The process by which a newly synthesized or unfolded protein transitions to 

one of these functional structures is called protein folding and represents a particularly 

dramatic example of protein shape-shifting (see Glossary). If a protein sampled 1000 
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different backbone structures each second, it would take about 1040 times the age of the 

universe to enumerate every possibility. The impossibility of enumerating all possible 

structures is often called Levinthal’s Paradox [1]. The number of potential structures is 

dramatically reduced by the fact that many of the configurations considered above are 

infeasible because no pair of atoms can occupy the same volume in space, called the 

excluded volume principle. However, there are still an enormous number of different 

structures that do not violate the excluded volume principle.

The set of possible structures a protein can adopt is often conceptualized as a vast, 

multidimensional landscape, called an energy landscape (Fig. 1). This term derives its name 

from the fact that each structure a protein could adopt has an associated energy that results 

from the interactions between different atoms in the protein and its surroundings. The 

probability of a protein adopting a given structure on this energy landscape is proportional to 

the exponential of the structure’s energy. Therefore, a protein spends exponentially more 

time in valleys than it does crossing the higher energy peaks separating different minima. 

The lowest energy structure is often referred to as the ground state and will have the highest 

probability of all the different structures a protein could adopt. Other higher-energy states 

are often referred to as excited states and will have lower probabilities than the ground state. 

Many of these excited states have negligible probabilities because their energies are so much 

higher than the ground state. This train of thought leaves an open question: how many 

different structures can a typical protein effectively adopt?

Early experiments suggested that a protein can adopt a large number of different 

conformations. For example, the hydrogen exchange technique (also called hydrogen-

deuterium exchange, or HDX) was originally developed to test the hypothesis that amino 

acid residues can form helices [2]. This method leverages the fact that the bond between the 

nitrogen and hydrogen in the amide of the backbone of every amino acid is relatively weak. 

Therefore, if a protein is immersed in D2O, then the hydrogens of amides that are exposed to 

solvent will exchange with deuterium. However, amides that form hydrogen bonds will be 

protected from exchange. The complex kinetics of early hydrogen exchange experiments 

suggested a diversity of structures were present at equilibrium.

Nuclear magnetic resonance (NMR) has also been a rich source of information on proteins’ 

conformational heterogeneity. NMR provides a means to assess the chemical environment of 

particular nuclei, often the same amide groups monitored by hydrogen exchange 

experiments. NMR, however, can provide information on more than just solvent exposure of 

the backbone amides. For example, early work showed that the phenyl groups of 

phenylamine residues buried in a protein’s core are capable of rotating despite the tight 

packing of atoms in this environment [3]. NMR can also be used for structure determination, 

and to study other conformational changes. However, performing these experiments is often 

time consuming and expensive. NMR also faces a number of technical limitations, such as 

the difficulty of studying large proteins.

Despite early evidence for dynamics, much of what we know about any given protein often 

comes from a single structure. While NMR can be used for structure determination, the first 

structure of a folded, globular protein was solved by x-ray crystallography [4]. In 
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crystallography, protein is prepared under conditions that promote the formation of a regular 

crystal lattice. X-ray beams are then directed at the crystal, and the resulting diffraction 

pattern is used to infer the protein’s structure. Typically, practitioners focus on solving a 

single structure that best explains the diffraction data. Crystallography yields atomic 

resolution structures with a greater throughput then NMR, so it has come to dominate 

structural biology. Tens of thousands of different structures have been deposited into an 

online repository, called the protein data bank (PDB). These structures are often thought to 

represent the ground state structure in solution, but it is more accurate to think of them as the 

average of many low energy structures under the conditions used for crystallization. It is 

typically hard to capture important excited states without stabilizing the higher energy state, 

such as having a binding partner (i.e., small molecule or another protein). Despite this 

limitation, crystal structures have proved extremely valuable for gaining insight into how 

proteins function, as well as designing drugs and new proteins. The wealth of information a 

crystal structure provides sometimes even leads people to conclude that it encodes all the 

information one could need, rendering the role for protein dynamics negligible. For example, 

many methods for predicting protein stability assume that a single crystal structure is 

sufficient to predict the relative populations of the folded and unfolded states. Computational 

drug design software also tends to make the simplifying assumption that a single protein 

structure is a sufficient characterization of the protein.

Structures from techniques like crystallography and NMR are tremendously valuable, but 

their explanatory and predictive power is limited. The first crystal structure ever solved is a 

powerful illustration [4]. In this structure of myoglobin, the heme group used to bind and 

hold the protein’s substrate, oxygen, is buried within the protein’s core. Oxygen clearly has 

to get into the protein’s core to interact with heme, but it’s not obvious how it does so from 

this structure. Therefore, this first structure was both a demonstration of structural biology’s 

power, and the unmet need to capture protein dynamics to achieve a complete understanding 

of how a protein functions. Given a single structure, it is also extremely challenging to 

predict essential properties for understanding a protein’s function, such as its stability [5], its 

affinity for different binding partners [6], or the effect of mutations on its function [7]. Often 

times, the crystal structures of protein variants with dramatically different activities or 

stabilities are essentially identical, making it difficult to explain how mutations exert their 

effect [8]. It is possible that this lack of explanatory and predictive power results from an 

inability to extract information appropriately from available structural data. However, there 

is mounting evidence that protein dynamics, and the conformational diversity these 

fluctuations give rise to, is a crucial missing factor.

Progress towards capturing proteins’ shape-shifting

There is increasing consensus that trying to understand proteins without accounting for their 

shape-shifting is like trying to infer the rules of football from a single photo taken during a 

game. However, it has proven easier to acknowledge the importance of protein dynamics 

than to account for the role it plays in protein function. A growing community has been 

working to remedy this situation by developing methods to access proteins’ excited states.
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Solution NMR has been particularly valuable, providing insight into both thermodynamics 

and kinetics. For example, relaxation dispersion NMR spectroscopy can detect the presence 

of an excited state with a population of less than 1%. Application of this methodology to an 

enzyme arrested in one step of its catalytic cycle has demonstrated that the next step of the 

cycle is present as an excited state [9]. Such experiments have also revealed a correlation 

between the effects of mutations on dynamics and catalysis [9,10]. For example, a 

combination of NMR, crystallography, and computer simulations have been used to map out 

the energy landscapes of kinases. Based on these models, it has been possible to rationalize 

autophosphorylation and the effects of cofactors and mutations on the activities of these 

enzymes [11,12]. Initially, it was often unclear what the excited states uncovered by such 

experiments looked like. However, it is now possible to solve the structures of excited states 

[13]. Looking beyond solving the structures of particular excited states, NMR is also being 

used to measure a protein’s conformational entropy as a means to quantify the number of 

accessible excited states [14].

Many other experimental techniques have also provided valuable insight into protein 

dynamics. Enumerating them all is beyond the scope of this review. To give a couple of 

examples, developments in room-temperature crystallography [15] and cryo-electron 

microscopy (CryoEM) [16] are providing new opportunities for obtaining high-resolution 

structures of excited states. Typically, crystal structures are solved based on the diffraction 

from a crystal at cryogenic temperatures that favor low energy structures more heavily than 

the temperatures where most proteins operate in vivo. Room-temperature crystallography 

and CryoEM both attempt to capture the distribution of structures that exists at more 

physiologically-relevant temperatures. Multiple structures are often required to fit the 

electron density detected by these methods. The relative contributions of these structures to 

the total density may report on their relative populations in solution. Leveraging this insight 

into the structures of excited states and their populations has led to improved methods for 

drug design [17].

Molecular dynamics simulations provide a foundation for building atomically-detailed, 

quantitatively predictive models of proteins’ shape-shifting that complement experiments. 

Such simulations are often referred to as computational microscopes because they provide a 

means to watch how the position of every atom in a protein evolves over time [18,19]. The 

perfect simulation would provide a complete description of a protein’s thermodynamics and 

kinetics. However, these simulations face three key limitations: 1) the accuracy of the force 

fields used to model interatomic interactions, 2) the computational challenge of gathering 

enough data to sample slow processes, and 3) the scientific challenge of extracting useful 

information from large datasets embedded in high-dimensional spaces. Significant effort has 

been dedicated to all of these issues and is reviewed elsewhere [20,21]. As discussed below, 

simulations are now in quantitative agreement with many experiments and agree 

qualitatively with many others. As a result, they are a powerful means to explain the physical 

origins of experimental observations, as well as to guide the design of new experiments.

One noteworthy development that will be referenced throughout this review is the 

emergence of Markov state models (MSMs) [22]. An MSM is a network model that 

represents a protein’s energy landscape as a set of structural states it tends to adopt and the 
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probabilities of hopping between adjacent states (Fig. 1). These models facilitate analysis by 

providing a convenient, coarse-grained representation of enormous datasets. One could learn 

an MSM from a single long simulation that eventually gathers statistics on the probabilities 

of every state and the transitions between them. However, the main advantage of the MSM 

approach is that it provides a framework for integrating information from many independent 

simulations (each of which may explore different subsets of states) into a model that 

captures slow events that are far beyond the reach of any individual simulation. By analogy, 

one could determine the best route for driving from San Francisco to New York City by 

driving back and forth between them, trying different routes many times to gather statistics 

on how long they typically take. However, one could reach the same conclusion far more 

quickly by aggregating data from many drivers, each of whom only explores the region 

where they live/work. One can exploit this property to great effect using a technique called 

adaptive sampling. In adaptive sampling, one iteratively runs a batch of simulations, builds 

an MSM, and then uses the MSM to decide which of the structures that have been 

discovered so far it would be most valuable to start a new batch of simulations from. A 

number of metrics for deciding where to start new simulations have been developed that 

consider factors like minimizing statistical uncertainty, choosing a structurally diverse set of 

starting conformations, and favoring states with desirable structural properties [23-28].

Work from our lab, among others, has established quantitative agreement between MSMs 

and a variety of experiments [29,30]. These results demonstrate that existing force fields are 

accurate enough for many applications, given that sufficiently large datasets are collected. 

For example, we have shown that the agreement between different 10 nanosecond 

simulations and NMR experiments is highly variable, but that 10 microsecond simulations 

reliably yield quantitative agreement with these experiments [31]. In agreement with NMR 

and room-temperature crystallography, MSMs also reveal substantial dynamics in proteins’ 

cores despite the tight packing that one could imagine would prevent conformational 

changes [32].

Encouraged by the agreement between simulations and existing experimental data, we have 

placed increasing emphasis on making bona fide predictions and then testing these 

predictions in subsequent experiments. For example, we recently established the importance 

of accounting for excited states to understand how mutations alter the activity of an enzyme 

called TEM β-lactamase [7], which is a major source of antibiotic resistance in bacterial 

infections. To set a baseline, we showed that docking the antibiotic cefotaxime against the 

active sites of different enzyme variants is a poor predictor of their activity against this 

substrate (Fig. 2A). Comparing an MSM for a variant with a high activity against cefotaxime 

to an MSM for a variant with a low activity against this substrate suggested that the 

populations of particular protein conformations are key determinants of the enzyme’s 

catalytic efficiency. To test this insight, we designed new β-lactamase variants to modulate 

the populations of these states, and experimentally verified that the total equilibrium 

probability of these states is a strong predictor of cefotaxime activity (Fig. 2B). We have also 

used a similar approach to understand and predict how mutations alter a protein’s stability 

[33], as well as the pH-dependence of a protein-protein binding affinity [34]. Other 

successes using MSMs to make true predictions are discussed below.

Knoverek et al. Page 5

Trends Biochem Sci. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shape-shifting gives rise to allosteric communication between distant structural elements

A protein’s ability to shift between an ensemble of different structures can give rise to 

communication between distant regions of a protein, called allostery [35]. Allostery was 

first recognized in hemoglobin, where the binding of oxygen to one subunit increases the 

affinity of other subunits for oxygen. For many years, hemoglobin and allostery were almost 

synonymous. As time has progressed, it has become increasingly clear that allostery plays an 

important role in a broad range of processes, especially in signaling. For example, G protein-

coupled receptors (GPCRs) are famous for their ability to transmit information across 

membranes by binding stimuli on their extracellular surfaces and then changing the 

geometry of their intracellular surfaces to trigger signaling cascades [36]. Exerting allosteric 

control over such signaling processes is of great interest, both for understanding basic 

biology and for therapeutic applications. Despite the broadening scope of allostery, it is still 

common to assume that allostery is only relevant for a subset of proteins where it has been 

selected for.

Given that all proteins are capable of adopting an ensemble of different shapes, it is 

interesting to speculate that allostery may be extremely prevalent, possibly even universal 

[37]. The pervasiveness of allostery is supported by studies of both natural and directed 

evolution [8,38]. Both have revealed that mutations far from enzyme active sites (and other 

key functional sites) frequently have a profound effect on function. We propose that these 

mutations exert their influence by tapping into allosteric networks to modulate the 

distribution of structures at distant functional sites. Given the potential prevalence of 

allostery, systematically capturing this coupling could open many new opportunities for 

controlling biological processes. Work is ongoing to develop methods capable of detecting 

allostery, assessing how pervasive it is, and harnessing this insight to improve the design of 

new proteins and drugs.

Widespread allostery would present a number of attractive therapeutic opportunities, such as 

enhancing (rather than inhibiting) protein function and targeting ‘undruggable’ proteins. 

These objectives are currently difficult to achieve because drug design is generally limited to 

sterically occluding key functional sites to inhibit undesirable activities. However, diseases 

where a mutation causes a loss of function—such as cystic fibrosis—are prime examples of 

cases where one would prefer to enhance desirable activities. An allosteric drug could be 

designed to reverse the effects of such deleterious mutations. There are also many cases 

where key functional sites are apparently undruggable. For example, protein-protein 

interactions are notoriously difficult to target because the relevant binding sites are often too 

flat for a small molecule to bind tightly [39]. Kinases and GPCRs can also be difficult to 

target because their active/functional sites are highly conserved across large families, so 

targeting them is likely to result in undesirable off-target effects. Targeting allosteric sites 

that are less broadly conserved could provide a means to achieve specificity [40]. Combined 

with the fundamental importance of allostery for basic biological processes, the therapeutic 

opportunities this communication presents have helped spur research into allosteric 

mechanisms and approaches for identifying allosteric coupling.
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Historically, allosteric communication has typically been conceptualized in terms of 

concerted structural changes. For example, Fig. 3A shows an example of a system with two 

binding sites that each jump between two alternative structures in tandem. Binding of a 

ligand to one structure of the first binding site then locks the other binding site in a specific 

conformation. An extreme version of the conformational selection mechanism like the one 

just described could be identified by comparing crystal structures of the apo protein to 

structures with one or both ligands bound. Alternatively, a number of algorithms have been 

developed for identifying allosteric coupling by detecting concerted structural changes in 

computer simulations [41,42]. For example, the MutInf method identifies correlations by 

utilizing a mutual information metric to quantify how much better one can predict the 

structure of one part of a protein (specifically, the rotameric state of one dihedral angle) 

given the structure of a second region of the protein [43]. Application of such methods to 

proteins that are not classically considered allosteric has revealed substantial coupling, 

supporting the notion that allostery is pervasive [44].

In recent years, there has also been a growing recognition that conformational entropy has 

an important role to play in allosteric communication. The potential importance of 

conformational entropy was first proposed in a theoretical paper that demonstrated allostery 

could be achieved by coupling the breadth of two probability distributions without any 

change in the locations of their maxima [45]. Experimental evidence for allosteric 

communication of this form wasn’t obtained until decades later, when NMR successfully 

identified allosteric coupling in the absence of a concerted structural change [46]. 

Intrinsically disordered regions can also play an important role in allostery. Fig. 3B shows an 

example where the structure of one binding site is correlated to whether a second site adopts 

a well-defined structural state or is in a disordered state. The fact that the disordered state 

consists of many different structures distinguishes this scenario from a concerted structural 

change, where there are essentially two distinct structures.

Increased appreciation for the importance of conformational disorder for allostery has led to 

the development of new algorithms for detecting this form of communication in computer 

simulations. The first method focused entirely on allostery without conformational change 

[47]. The author developed the conditional activity metric for measuring correlations 

between the timing of motions. Specifically, the conditional activity quantifies how much the 

motion of one dihedral changes the barrier to the motion of a second dihedral. Importantly, 

the author demonstrated that timing correlations can convey signals over longer distances 

than concerted structural changes. Subsequently, our lab developed an approach called 

correlation of all rotameric and dynamical states (CARDS) that captures both concerted 

structural changes and the role of conformational disorder [48]. Like MutInf, CARDS uses 

the mutual information between every pair of dihedral angles to identify allosteric coupling. 

However, CARDS calculates the mutual information between both the structural and 

dynamical state of each dihedral. Here, dynamical state refers to the fact that CARDS 

borrows ideas from condensed matter physics to classify each dihedral from every snapshot 

of a simulation as being ordered or disordered. The method has proved extremely valuable 

for making sense of allosteric coupling in a number of systems. For example, using CARDS 
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to account for the role of conformational disorder has helped uncover the mechanism of 

allosteric communication in a common family of signaling proteins, called G proteins [49].

Cryptic pockets present novel therapeutic targets

Taking advantage of allostery requires a site for therapeutics, such as small molecules, to 

bind. The crystal structures of some proteins clearly present multiple pockets where small 

molecules could potentially bind and influence allosteric networks. However, this is not 

always the case, and some proteins do not have any obvious druggable pockets.

Fortunately, proteins’ shape-shifting can also populate excited states with pockets that are 

absent in available crystal structures, called cryptic pockets (Fig. 1). These sites are called 

cryptic allosteric sites when they coincide with allosteric networks. Cryptic allosteric sites 

with coupling to key functional sites have great potential value [50]. Small molecules that 

bind such sites can exert allosteric control over functional sites by modulating the relative 

probabilities of different protein structures. They can either enhance or inhibit activity, 

depending on whether they increase or decrease the probability of functional conformations, 

respectively [51,52].

Cryptic pockets can also have therapeutic value apart from allostery. For example, a cryptic 

pocket that forms in the middle of a key protein-protein interaction surface could be targeted 

to sterically block that protein-protein interaction. Cryptic pockets that extend known 

functional sites also provide opportunities for developing novel competitive inhibitors. For 

example, one could take an enzyme inhibitor that is known to bind the active site and add 

additional functional groups to leverage a cryptic extension to the active site.

The value of cryptic sites has not been fully realized because it is difficult to intentionally 

identify and target them. Most examples of cryptic pockets have been discovered 

serendipitously through screens that are agnostic to whether a hit binds a known functional 

site or a cryptic pocket. For example, a small molecule that binds in a cryptic pocket 

between the orange helices in Fig. 1 was discovered through a screening campaign [53]. In 

this particular study, the authors sought to identify novel active site inhibitors by 

computationally docking a large library of chemical compounds against TEM β-lactamase’s 

active site and then experimentally testing the chemicals with the highest docking scores. 

Experimental tests of some of the top ranked compounds confirmed that they inhibited the 

enzyme. However, solving the co-crystal structures of these compounds with the enzyme 

revealed that they did not function as intended. Instead of binding the active site, they turned 

out to bind a cryptic pocket between the orange helices in Fig. 1.

A screening method called tethering has been developed to target a specific site on a protein, 

such as a cryptic site [54]. To achieve this specificity, the method requires the protein to 

contain a single cysteine residue near the site of interest. Satisfying this requirement often 

requires one or more mutations to the protein sequence. The protein is incubated with a 

library of chemical fragments that are capable of forming a disulfide bond with the cysteine. 

This disulfide tether localizes the compounds to the site of interest. Importantly, a reducing 

agent is also introduced along with the fragment library. This reducing agent ensures that 

fragments bind reversibly. Fragments that have strong non-covalent interactions with the 

Knoverek et al. Page 8

Trends Biochem Sci. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target site will tend to stay bound even when the disulfide tether is broken by the reducing 

agent, while compounds that only form weak interactions with the protein will tend to 

dissociate. As a result, one can identify tight binding fragments by mass spectrometry. 

Tethering has successfully identified a number of novel compounds and pockets [55,56]. 

However, a cryptic pocket could go unnoticed if the fragment library does not happen to 

contain any sufficiently tight binders. Moreover, it is expensive to apply tethering to multiple 

locations on a protein in search of a cryptic pocket. A general method for identifying cryptic 

sites without requiring the simultaneous discovery of compounds that bind them would be 

valuable for guiding the application of tethering.

Computer simulations provide an alternative approach to discover cryptic sites [57]. One of 

the earliest examples is the discovery of a cryptic binding trench in HIV integrase [58]. 

Efforts to target this pocket eventually led to the development of raltegravir, a first-line 

treatment for HIV [59]. However, this success has not been replicated in a wide variety of 

other systems because of the challenges that molecular dynamics simulations face, as 

described above. A variety of techniques have been developed to overcome these limitations. 

Many of these methods use enhanced sampling algorithms to improve the performance of 

molecular dynamics simulations [60,61]. Other approaches attempt to infer cryptic pockets 

from available crystal structures [62] or use alternate simulation strategies, such as the 

Rosetta software, to identify excited states with cryptic pockets [63].

Our lab is actively developing a pipeline that combines MSMs and experiments to identify 

and target cryptic pockets, with an emphasis on separating the discovery of cryptic pockets 

from the identification of ligands that bind them. As a first step, we demonstrated that 

building an MSM for TEM β-lactamase and applying a simple pocket detection algorithm to 

a representative structure for each state in the model readily identified the known cryptic 

pocket between the orange helices in Fig. 1 [44]. The MSM also captured correlations 

between the structure of the cryptic pocket and that of the active site, consistent with the 

allosteric coupling between these sites. Moreover, the model predicted a multitude of new 

pockets with allosteric coupling to the active site. While many of these pockets are probably 

poor candidates for a drug design campaign [57], we proposed that a subset are potentially 

viable targets.

Thiol labeling experiments are a valuable means to initially test computationally predicted 

cryptic sites [64]. These experiments require a cysteine at a position that is buried in the apo 

crystal structure but that gets exposed by the opening of a cryptic pocket. Satisfying this 

requirement often requires the introduction of a cysteine. However, in one case, we 

identified a native cysteine that satisfies these criteria, alleviating any concern that 

introducing a cysteine might create a cryptic pocket where none existed before [65]. Then a 

labeling reagent is introduced that is capable of forming a covalent bond with the cysteine if 

it gets exposed. An observed labeling rate that is considerably faster than that expected due 

to unfolding supports the existence of a cryptic pocket. For cryptic allosteric sites, one can 

also measure the activity of labeled protein as a first test for allosteric communication. 

However, the effect of labeling on activity does not necessarily determine the extent or 

direction of allosteric modulation that other compounds may achieve given that compounds 

that bind the same site can be activating, inhibiting, or have no effect on activity [51,52].
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To target experimentally verified cryptic pockets, we developed a method called Boltzmann 

docking that uses MSMs to account for the target protein’s conformational heterogeneity 

[7]. In Boltzmann docking, a library of compounds is docked against a representative 

structure from every state of an MSM where a pocket of interest is open. Then compounds 

are ranked based on their population-weighted average docking score. This approach 

balances the desire for high-affinity interactions against the cost of stabilizing higher energy 

excited states. It is also capable of identifying compounds that bind tightly to a single 

structure or that bind somewhat less tightly to a set of different structures. In the first 

application of Boltzmann docking to cryptic pockets in TEM β-lactamase, we expected to 

find inhibitors given the intuition that disrupting a particular active site structure should be 

easier than stabilizing one. Surprisingly, we discovered two activators and one inhibitor [52]. 

This result suggests that it may be easier to enhance the activity of other proteins than one 

may have expected. Fig. 4 shows an example of one of the compounds we discovered. It also 

highlights that this particular pocket is largely hydrophobic. The lack of different interaction 

types may make it difficult to find potent inhibitors that bind this particular site, motivating 

our continued search for other cryptic pockets, some of which are discussed below. Further 

research is also needed to accurately predict whether a compound will be an activator or 

inhibitor. Apart from allostery, accounting for conformational heterogeneity in key 

functional sites could also be valuable [17].

These findings have inspired new methods to expedite the hunt for cryptic sites. For 

example, we developed a goal-oriented adaptive sampling method, called fluctuation 

amplification of specific traits (FAST) [24], to identify excited states with specific geometric 

features more efficiently. While FAST is entirely general, one of the applications that 

motivated the development of the method was finding cryptic sites by searching for excited 

states with large pocket volumes. While our original work on cryptic pockets in TEM β-

lactamase used 100 microseconds of simulation, FAST reproduces these results with just a 

few microseconds of simulation. We have also developed a new algorithm for quickly 

extracting interesting excited states, such as those with cryptic pockets and cryptic allosteric 

sites, from large ensembles of structures generated with molecular dynamics simulations 

[65]. These methods have revealed yet more pockets in TEM, as well as other β-lactamases, 

that may be more attractive drug targets (Fig. 1D). In the future, we expect that incorporating 

quantitative measures of the druggability of cryptic sites will also be useful [57].

Assessing the conservation of cryptic sites may also be valuable. One attractive feature of 

sterically blocking enzyme active sites is that selective pressure to maintain function reduces 

the probability of mutations that are likely to disrupt inhibitor binding. If the residues lining 

a cryptic pocket are not constrained, then it may be easier to evolve resistance to compounds 

that target these sites. However, it is possible that many cryptic pockets are not so 

susceptible to mutation. For example, enzyme activity could be just as sensitive to mutations 

in cryptic allosteric sites with strong coupling to the active site as it is to mutations in the 

active site itself. Therefore, the conservation of residues lining different cryptic sites may 

also be worth considering when trying to prioritize different potential targets.
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Disrupting constrained conformational equilibria as a powerful therapeutic strategy

The discussion above essentially divides the different structures a protein adopts into two 

classes, functional and non-functional. Modulating the relative probabilities of these two 

classes opens a number of new therapeutic opportunities, as described above. However, this 

binary classification may not be adequate for many proteins, such as those with multiple 

functions.

Proteins that must maintain a delicate balance between populating multiple functional 

structures may be particularly attractive therapeutic targets because having more constraints 

makes them more sensitive to perturbations. For example, conformational switches involved 

in signaling are likely to populate at least two distinct functional states—on and off—with 

reasonably low energies, as well as non-functional states with higher energies. Stabilizing or 

destabilizing any of these states may disrupt such proteins’ ability to function appropriately. 

Furthermore, having more constraints to satisfy may make evolving resistance to 

therapeutics more challenging.

The nucleoprotein from negative sense RNA viruses presents a concrete example. For 

instance, Ebola virus nucleoprotein, like other negative sense RNA viral nucleoproteins, is 

responsible for coating the viral genome to protect it from being recognized and destroyed 

by a host cell. But nucleoprotein must also release RNA to allow the transcription machinery 

to access the viral genome. Recent work suggests that nucleoprotein can accomplish these 

tasks by switching between different conformations to control its affinity for RNA, and that 

isolated nucleoprotein has a reasonable probability of adopting both of these alternative 

structures in solution [66]. This balance enables nucleoprotein to serve as a context-

dependent regulatory module, binding tightly to RNA until interactions with the 

transcription complex trigger a conformational change that favors dissociation from RNA. 

Furthermore, a peptide has been isolated from the transcription machinery that prevents viral 

replication by potently inhibiting the interaction between nucleoprotein and RNA [67]. It has 

been proposed that this peptide works by stabilizing nucleoprotein conformations that have a 

lower affinity for RNA [66]. Together, these results suggest that the relative populations of 

these alternative structures are constrained by the need to switch between RNA-bound and 

RNA-free states and that modulating this equilibrium is a powerful therapeutic strategy. We 

expect many other proteins have similarly constrained equilibria and, therefore, can be 

targeted in a similar fashion.

Concluding remarks

The study of protein dynamics has a rich history and the importance of this shape-shifting is 

broadly acknowledged. However, limited ability to characterize excited states has made it 

challenging to understand or exploit the connection between proteins’ conformational 

heterogeneity and function. New methodological advances are providing unprecedented 

insight into the full spectrum of conformational changes that proteins undergo and how these 

dynamic processes give rise to phenomena like allostery and cryptic sites. This 

understanding, in turn, is uncovering new therapeutic opportunities.
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Progress on understanding protein shape-shifting also raises new questions that must be 

addressed to fully realize the value of insight into protein dynamics for the design of new 

drugs and proteins (see Outstanding Questions). For example, more basic research is 

required to understand why some compounds are allosteric activators while others are 

inhibitors. The druggability and conservation of cryptic pockets are also important 

determinants of the value of these sites for drug discovery. Interestingly, the conservation of 

cryptic pockets may determine how they are used, not if they are useful. Highly conserved 

pockets may be useful for applications like antibiotic development where one wishes to hit 

multiple related targets. In contrast, limited conservation may be desirable for targets like 

kinases, where one wants to achieve great specificity for a particular kinase without eliciting 

off-target effects by binding other kinases. How to incorporate protein shape-shifting into 

protein design is even more open ended as the field is still just beginning to understand the 

connection between dynamics and function.
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Glossary

Adaptive sampling
a class of algorithms for constructing MSMs

Allostery
communication between distant parts of a protein

Cryptic pocket
a pocket that is absent in available structures

Energy landscape
a conceptual framework for protein dynamics where each point represents a protein 

conformation and a protein spends exponentially more time in lower energy structures than 

higher energy ones (Fig.1)

Excited state
any minima on an energy landscape besides the ground state

Ground state
the lowest energy (i.e. highest probability) minima in an energy landscape

Markov state model (MSM)
a computational model of an energy landscape

Mutual information
a metric for measuring pairwise correlations
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Shape-shifting
proteins fluctuate between different conformations
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Highlights

• Proteins are highly dynamic shape-shifters. However, it has proven easier to 

acknowledge the prevalence of protein dynamics than to account for the role 

it plays in protein function.

• Advanced methods for capturing protein dynamics are providing fundamental 

insights into the mechanism of allosteric communication.

• Cryptic pockets provide novel targets where therapeutics can bind and 

manipulate allosteric networks.

• Many proteins maintain a delicate equilibrium between multiple functional 

structures. Disrupting this sensitive balance provides new therapeutic 

opportunities.
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Box 1: Technology Corner: Molecular Dynamics and Monte Carlo

Molecular dynamics and Monte Carlo are two of the dominant algorithms for sampling 

the distribution of structures that a protein adopts. In molecular dynamics, one starts with 

the positions and velocities of every atom in a system and then iteratively calculates 

where each atom will be some small time in the future and how the velocities will 

change. One of the major strengths of this approach is that it provides both 

thermodynamic and kinetic information. However, a major weakness is that each 

timestep is on the order of a femtosecond, while many of the biological processes of 

interest take a millisecond or longer. Performing over 1012 iterations is extremely 

computationally expensive, and greatly limits the applicability of molecular dynamics. In 

Monte Carlo simulations, one samples the distribution by proposing random 

perturbations to an initial structure and then accepting or rejecting this move based on the 

energy difference between the initial and proposed structure. The main advantage of this 

type of algorithm is that it can capture very slow processes if the move set used to 

propose perturbations to the initial structure is designed appropriately. However, 

designing an appropriate move set can be extremely difficult and a poor move set will be 

extremely computationally inefficient as every proposed move will be rejected. 

Furthermore, Monte Carlo simulations only provide thermodynamic (not kinetic) 

information. Rosetta is one of the most successful software packages for sampling the 

ensemble of structures that a protein adopts with the Monte Carlo algorithm.
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Outstanding Questions

• How can one predict whether a drug/mutation will be a positive, negative, or 

neutral allosteric modulator?

• Are cryptic pockets viable drug targets? If so, what fraction of the cryptic 

pockets are viable targets?

• How conserved are cryptic pockets and allostery?

• Can access to excited states be incorporated into protein design algorithms to 

increase the likelihood of creating highly functional proteins?
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Figure 1. The connection between energy landscapes, MSMs, and protein shape-shifting.
(A) A simplified energy landscape for TEM β-lactamase. The ground state (lowest energy, 

highest probability state) is represented by an apo crystal structure (PDB ID 1JWP) and is 

shown in the bottom minima. The next two highest energy excited states each have a 

different cryptic pocket. The conformation on the left comes from a ligand-bound crystal 

structure where helices 10 and 11 (orange) have separated (PDB ID 1PZO). The structure on 

the right comes from computer simulations that uncovered the opening of the omega-loop 

(pink). The next highest energy state is a folding intermediate where the alpha-helical 

domain is folded while the alpha-beta domain is unfolded. The highest energy (and lowest 

probability) structure shown is the unfolded state. (B) The corresponding MSM for TEM β-

lactamase. Each node corresponds to one of the structural states from A. The weight of the 

arrows is related to the probability of transitioning between the two states connected by the 

arrow. The same coloring is used as in (A). (C) and (D) show enlarged views of the orange 

and pink cryptic pockets, respectively. Each is overlaid on the apo crystal structure (gray) to 

highlight how the protein’s conformation has changed. Abbreviation: MSM, Markov state 

model.
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Figure 2. Accounting for protein shape-shifting leads to improved predictions of an enzyme’s 
catalytic efficiency.
(A) Docking the antibiotic cefotaxime against the active site of a single structure of different 

TEM variants is a poor predictor (R = −0.37±0.07) of their activity against cefotaxime. (B) 

The total population of a set of states from an MSM, called cefotaximase states because they 

are believed to be active against cefotaxime, is a strong predictor of cefotaxime activity (R = 

0.79±0.03). Figure adapted from [7]. Abbreviation: MSM, Markov state model.
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Figure 3. Mechanisms of allosteric communication.
A signaling protein (light blue) binds a ligand (green) that allosterically impacts binding of 

an effector protein (dark blue) by two different mechanisms. (A) A classic concerted 

structural change. The ligand-binding site and effector-binding site each hop between two 

alternative structures in a correlated fashion. Ligand-binding stabilizes one structure of the 

ligand-binding site, thereby stabilizing a particular structure of the effector-binding site. (B) 

A model where conformational entropy plays an important role. Now the structure of the 

ligand-binding site is correlated to whether the effector-binding site is in a disordered state, 

consisting of many different structures, or in an ordered state that can bind the effector. 

Ligand binding stabilizes the ordered state.
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Figure 4. Two views of an allosteric activator bound to a cryptic pocket.
The protein surface is colored according to whether an amino acid is acidic (red), basic 

(blue), polar (cyan), or non-polar (gray). The compound is shown as sticks. A cartoon 

representation of the pocket can be found in Fig. 1C.
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