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Abstract

Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 

2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products 

produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These 

factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 

2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, −5, −9, and −13 that 

perpetuate immune activation and act back on the epithelium to drive goblet cell hyperplasia and 

increased epithelial cell turnover. Together, these events drive worm expulsion and wound healing 

processes. While the role of Th2 cells in this context has been heavily studied, recent work has 

revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are 

critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how 

other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-

associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping 

innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect 

and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate 

immune responses that drive helminth-induced type 2 inflammation.
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INTRODUCTION

Cytokines direct the mammalian immune response to an array of pathogens, including 

viruses, single-celled prokaryotes and eukaryotes, and multicellular eukaryotic organisms 

[1-4]. A diversity of mammalian cytokines has evolved, with specific groups of cytokines 

mediating distinct host immune responses to different pathogen types [1-4]. Infection with 

large, multicellular parasitic helminths that reside in and on host tissues elicits a unique type 
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2 cytokine response [3,5-7]. Type 2 cytokines such as IL-4, −5, −9, and −13 are produced by 

innate immune cells and polarized CD4+ T helper type 2 (Th2) cells to coordinate epithelial 

cell responses including goblet cell hyperplasia, increased mucin production, enhanced 

smooth muscle contractility, and increased epithelial cell turnover [5-8]. Together, these 

activities drive worm expulsion and wound healing responses that control worm-induced 

tissue damage [3,5-9] (Fig. 1).

Recent studies have demonstrated the importance of innate immune cells in promoting 

helminth-induced type 2 inflammation [3,5-11]. Group 2 innate lymphoid cells (ILC2s), 

basophils, dendritic cells (DCs), alternatively activated macrophages (AAMacs), 

eosinophils, and mast cells are rich sources of type 2 and other cytokines that promote 

effector responses and tissue repair [3,5-11]. Intensive study has revealed that the epithelial 

cell-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) activate type 

2 innate immune responses [3,6-8,11-13] (Fig. 1). However, gaps remain in our 

understanding of how cytokines intersect with other host and pathogen-derived molecules to 

control these key innate immune responses.

The effect of IL-4, −9 and −13 on innate cells, particularly AAMacs, has recently been 

extensively reviewed [6,7,9,14-17]. Thus, this review will discuss how epithelial cell-derived 

cytokines, lipids, chemokines, antibodies, danger-associated molecular patterns (DAMPs), 

and cell-cell interactions control innate immune responses during type 2 inflammation 

(Table 1). While we will focus on studies conducted in murine models of helminth infection, 

we will also refer to the literature on innate immune activities during type 2 allergic 

inflammation in mice. Finally, we will highlight emerging evidence that shows that effects of 

epithelial cell-derived cytokines synergize with the activities of other mediators to 

orchestrate helminth-induced innate immune responses.

CYTOKINE PATHWAYS THAT REGULATE INNATE IMMUNE RESPONSES 

DURING HELMINTH INFECTION

Epithelial Cell-derived Cytokines and Alarmins

Epithelial cells are one of the first cell types exposed to intestinal helminths [3,6-8,11-13]. 

Thus, cytokines including IL-25, IL-33, and TSLP that are released from stimulated, injured, 

or dying epithelial cells are critical for the induction of innate immune responses that drive 

the type 2 inflammatory process [3,6-8,11-13]. In the intestine, IL-25 is largely produced by 

tuft cells, rare chemosensory cells that become prominent during helminth infection [18-20]. 

Single cell RNA sequencing analysis of small intestinal epithelial cells showed that a subset 

of CD45-expressing tuft cells may also be a major TSLP source [21], establishing tuft cells 

as central cytokine producers in the inflamed epithelium [18-21]. IL-33, on the other hand, is 

produced in response to damage by a range of epithelial cell types during helminth infection 

[8,13,22,23]. Whether a specific epithelial cell lineage has a higher propensity to produce 

IL-33 is unclear and the subject of ongoing studies. Notably, mast cells [24,25], 

inflammatory DCs [23], basophils, and eosinophils [13,26] may also produce IL-25, IL-33, 

and TSLP, but the significance of hematopoietic sources of these cytokines during helminth 

infection is not fully understood.
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Epithelial damage appears to be a key event that leads to the release of IL-25, IL-33, and 

TSLP [3,6-8,11-13]; however, the pathways that control the transcription, production, and 

secretion of these cytokines during helminth infection are not fully described. A recent study 

demonstrated that the intestinal metabolite succinate can promote IL-25 release from tuft 

cells that activates ILC2s during infection with Nippostrongylus brasiliensis and 

Heligmosomoides polygyrus, parasites used as models of hookworm infection in mice [27]. 

Some allergens have enzymes that can proteolytically activate IL-33 [28] or induce TSLP 

secretion [29], and helminth-derived proteases may play a similar role in the induction of 

epithelial cell-derived cytokine responses during worm infection [8,30-32]. However, how 

changes in diet, microbiota-derived intestinal metabolites [6,27,33,34], or helminth proteases 

[8,30-32] regulate innate immune responses during helminth-induced type 2 inflammation is 

not fully elucidated.

IL-25, IL-33, and TSLP can mediate the recruitment, expansion, activation, and/or cytokine 

producing capacity of innate cells that express their cognate receptors [3,6-8,11-13]. The 

effects of these cytokines on different innate immune cell types are infection- and tissue-

dependent, suggesting that these cytokines play non-redundant roles in helminth species-

specific immune responses (in-depth coverage of this topic can be found in [3,6-8,11-13]). 

However, despite intensive study, questions remain regarding how epithelial cell-derived 

cytokines control innate immune responses in the complex tissue microenvironment. For 

example, the exact role of IL-33 in granulocyte activation during helminth infection remains 

to be elucidated. IL-33 deficient mice had more Mcpt8 (a basophil-specific protease) and 

more mast cells during N. brasiliensis infection compared to wild type controls [35], 

suggesting that IL-33 does not promote basophil or mast cell population expansion, or that 

compensatory mast cell hyperplasia and basophilia occurs in response to IL-33 deficiency. 

Similarly, despite eosinophil expression of the IL-33 receptor [13,36], impaired eosinophil 

accumulation in IL-33 deficient mice [35] may be due to a decrease in IL-5, eotaxin, or 

IL-13 produced by IL-33-activated ILC2s rather than a direct IL-33 effect on eosinophils 

[37,38]. Importantly, the type 2 inflammatory roles and functions of epithelial- and immune 

cell-derived alarmins and cytokines outside of IL-25, IL-33, and TSLP, including the tumor 

necrosis factor family member TL1A [39,40] and endogenous DAMPs [3,8], are not clear. In 

this vein, a number of studies have revealed tissue- and cell-specific effects of IL-1 family 

members such as IL-18 during type 2 inflammation [8,41,42], but these findings remain to 

be fully investigated, specifically during helminth infection. Employing reporter and 

transgenic mouse strains for in vivo studies in helminth infection will increase our 

understanding of the novel effects and functional redundancies of various epithelial cell-

derived cytokines on innate immune cells.

Chemokines and Chemokine Receptors

Chemokines are cytokines that ligate their cognate receptors to promote cell migration and 

positioning between and within tissues [43]. Various in vitro and in vivo models show that 

migration of cells can be controlled by soluble mediators that orchestrate transient and 

temporal cell movement or by immobilized factors that facilitate directed movement and 

spatial positioning of cells [43]. Type 2 inflammation-associated innate immune cells 

express a variety of chemokine receptors in the steady-state and during type 2 inflammation 
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[43-45], suggesting that chemokines coordinate innate immune cell movements that control 

type 2 inflammatory responses. In support of this idea, human epidemiological data and 

murine studies have shown that levels of eotaxin, CCL17, CCL22, CCL5 (RANTES), and 

CCL24 are increased during helminth infection [46,47]. CCR3, a receptor for eotaxin and a 

number of other chemokines, has a role in the recruitment of eosinophils during helminth 

infection [47]. In addition, mast cells are responsive to CCL3 and CXCL2 produced by DCs 

during exposure to Fasciola hepatica fluke antigen [48]. While ILC2s and basophils express 

some of the important chemokine receptors associated with type 2 inflammation (reviewed 

in [44,45]), how chemokines control the migration of these cells into tissues and their spatial 

positioning in the tissue site during helminth infection has not been fully explored.

Growth Factors/Survival Cytokines

Growth factors and survival cytokines such as IL-2, −3, −5, −7 and granulocyte-macrophage 

colony-stimulating factor (GM-CSF) promote the survival, differentiation, and activation of 

innate immune cells during helminth infection [3,5,6,49-51]. IL-3, IL-5, and GM-CSF are 

secreted by activated T cells, mast cells, macrophages, and ILC2s and drive increases in 

numbers of granulocytes [37,38,49,50,52-55]. IL-3 is a potent promoter of basophil and 

mast cell responses, mediating the mobilization, survival, and activation of IL-4-producing 

basophils [50,52,55-58], and eliciting mast cell development and responses during helminth 

infection [55]. Conversely, GM-CSF and IL-5 play important roles in eosinophil biology, 

with GM-CSF promoting the in vitro survival of eosinophils [54], and IL-5 acting as a key 

eosinophil survival factor both in vitro and in vivo [59]. Notably, the importance of GM-CSF 

and IL-5, and of eosinophils in general, during helminth infection remains unclear and may 

be dependent on the species of parasite [60]. For example, GM-CSF was not critical for 

protection against N. brasiliensis, but mice lacking the common β chain (and thus signaling 

by both GM-CSF and IL-5) were less resistant [61], suggesting that IL-5 promotes type 2 

inflammation in this context. However, eosinophils are not required for primary resistance to 

infection [60] so the relevant cellular targets of IL-5 in N. brasiliensis infection and during 

infection with other species remain unclear.

IL-2 and IL-7 act predominantly on cells of the lymphoid lineage, in particular ILC2s, and in 

doing so act as critical mediators of ILC2-dependent type 2 inflammation [5,51,62-68]. IL-2 

derived from T cells promotes the survival and expansion of IL-13-producing ILC2s and 

Th2 cells in the protective response against N. brasiliensis [63,69], though IL-2 is not 

required for ILC2 function in H. polygyrus infection [70]. Likewise, stromal cell-derived 

IL-7 delivers a potent anti-apoptotic, proliferative survival signal to ILC progenitors and 

mature ILC2s, directing ILC development, ILC2 lineage determination, and lymphoid 

organogenesis, though how IL-7 affects other aspects of ILC2 functionality in vivo is less 

clear [5,51,62,63,65-68].

NON-CYTOKINE PATHWAYS THAT REGULATE INNATE IMMUNE RESPONSES DURING 
HELMINTH INFECTION

Bioactive Lipid Mediators—Bioactive lipid mediators such as the eicosanoid 

prostaglandins (PGs) and leukotrienes (LTs) are released under type 2 and other 

inflammatory conditions [71-75]. They play numerous crucial roles in the promotion, 
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suppression, and regulation of type 2 inflammation [71-76]. Eicosanoids are synthesized by 

cyclic oxidation of polyunsaturated fatty acids such as arachidonic acids and linoleic acids in 

the diet or released from membrane phospholipids [71-73]. These lipids are produced by 

mast cells, macrophages, and other cell types in response to epithelial cell-derived cytokines, 

damage signals, and crosslinking of Fc receptors [71-78] (Fig. 2). ILC2s [79-83], 

eosinophils [84,85], basophils [85,86], and mast cells [86,87] express eicosanoid receptors 

and respond to their cognate ligands (Fig. 2). While we understand more about how 

eicosanoids function during allergic inflammation, their roles during helminth infection have 

recently been explored. New studies show that LTs promote anti-helminth ILC2 functions 

during H. polygyrus infection, and during N. brasiliensis infection, LTs activated ILC2s in 

an NFAT-dependent manner [88] and promoted eosinophil accumulation [84]. In addition, 

PGE2 licensed DCs to induce Th2 polarization in mice in response to egg antigen from 

Schistosoma mansoni, a trematode parasite that can infect both mice and humans [89]. 

Numerous studies have focused on how PGD2 and its receptor CRTH2 (chemoattractant 

receptor homologous molecule expressed on Th2 cells) can promote production of type 2 

cytokines and accumulation of eosinophils, ILC2s, basophils, mast cells, and Th2 cells 

during type 2 inflammation [67,74,75,79,81,85,90-93]. Only one study has investigated the 

role of the PGD2-CRTH2 pathway during helminth infection, showing that ILC2 

accumulation in the lung was impaired in CRTH2 deficient mice in a model of chronic type 

2 pulmonary inflammation induced by N. brasiliensis infection [81]. Further studies will be 

needed to assess how eicosanoids control innate immune responses in the intestine during 

helminth infection, particularly as regards the potential suppressive or pro-resolving 

properties of the eicosanoid family [71,73,76] (Fig. 2).

Finally, how lipids other than eicosanoids, including steroids and sphingolipids, regulate 

innate immune responses during helminth infection is largely unexplored. One study has 

shown a role for sex hormones in DC and Th2 responses that control sex-specific differences 

in resistance to Trichuris muris, a whipworm parasite of mice [94]. Regarding sphingolipids, 

sugar-containing glycolipids, a recent study showed that sphingosine 1 phosphate-mediated 

chemotaxis controlled redistribution of inflammatory ILC2s during N. brasiliensis infection 

[95]. However, there is much work to be done to determine how sex hormones, naturally 

occurring corticosteroids such as cortisol, other steroid lipids, and various glycolipids impact 

innate immune function in helminth infection.

Direct Cellular Interactions—While many signals that control type 2 inflammation are 

released into the tissue microenvironment, others involve direct cell-cell interactions that 

modulate target cell gene expression and function [3,7,96]. For instance, the interaction that 

occurs between antigen presenting cells and naïve T cells drives the acquisition of critical 

type 2 inflammatory effector functions in CD4+ T cells that culminates in Th2 polarization 

[97-102]. During helminth-induced type 2 inflammation, this interaction is critically 

dependent on classical DCs that express MHC II and provision of co-stimulation through 

interactions between CD40 and OX40L and their receptors [97-102]. This topic has been 

reviewed extensively in [98,99] and thus our discussion will focus on other cell-cell 

interactions of note.
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Innate immune cells such as eosinophils, basophils, and ILC2s express MHC II and 

costimulatory molecules [63,65,103-108]. While these molecules are classically thought of 

as important for the activation and differentiation of T cells, innate cell function can also be 

modulated via these pathways [3,5-7], particularly for ILC2s [5,67]. Engagement of MHC II 

and CD80 and CD86 on ILC2s can elicit cytokine production and proliferation and facilitate 

T cell interactions [63,109], though the full significance of MHC II expression on ILC2s is 

unclear. Interactions between ICOS and ICOSL also facilitate ILC2 survival and cytokine 

production [106]. Basophils express MHC II, and some early studies suggested that these 

cells can present antigen to T cells [103-105]. More recent work using new tools to dissect 

basophil biology has shown that antigen presentation in the lymph node is likely not a 

critical function of basophils in vivo [100-102,110-112], though an interesting recent study 

has shown that basophils can acquire peptide-MHC II complexes from DCs through 

trogocytosis that allows them to present antigen [113]. Basophil MHC II expression could 

facilitate interactions between basophils and Th2 cells in the tissue that serve to amplify Th2 

cell cytokine production. In addition to the ongoing inquiry related to the role of MHC II 

expression on granulocytes, how expression of various co-stimulatory molecules by 

basophils, mast cells, and eosinophils affects their function is not yet clear.

Other direct cellular interactions that occur in the context of the Notch signaling pathway 

and integrin pathways are important in the regulation of type 2 innate immune cells. In 

Notch signaling, interaction of a Notch receptor-bearing cell with a ligand-bearing cell leads 

to release and nuclear translocation of the Notch intracellular domain, where it forms a 

transcriptional activating complex with the transcription factor recombining binding protein 

suppressor of hairless (RBPJ) that binds DNA, resulting in changes in target gene expression 

[96]. Notch signaling drives development of mast cells and ILC2s [114-116], the 

differentiation of KLRG1+ inflammatory ILC2s [117], cytokine production by bone marrow-

derived basophils in vitro [118], and localization of mast cells within the intestine during 

helminth infection [119] (Fig. 3). Notch signaling in CD4+T cells controls polarization to the 

Th2 fate [96,115,120,121], but the full significance of Notch signaling in innate cells 

remains to be fully described (Fig. 3). Integrin expression is key for the appropriate 

localization and accumulation of innate immune cells during helminth infection, with 

impaired mast cell recruitment and worm clearance observed during infection with the 

nematode Trichinella spiralis in β7 integrin-deficient mice [122]. Basophils upregulate 

integrins during N. brasiliensis infection in mice, suggesting that these molecules play a role 

in regulating an array of innate immune cells [123], but the full scope of integrin-mediated 

pathways that orchestrate innate immune responses during infection with various helminth 

species also requires further inquiry.

Antibodies and Fc Receptors—A hallmark of the immune response to parasite 

infection is immunoglobulin (Ig) E binding to Fc receptors on the surface of mast cells and 

basophils, leading to degranulation and secretion of inflammatory mediators [58,124,125]. 

This interaction, which bridges antigen specific and innate immunity, is mediated largely by 

the high affinity IgE receptor (FcεRI) that is constitutively expressed on mast cells and 

basophils [58,111,124-126]. Class-switched IgE signals through a complex network 

including FcεRI, the low affinity IgE receptor CD23, the IgE and FcεRI binding protein 
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galectin-3, complement receptors, and integrins [126]. IgG binding to the inhibitory Fc 

receptor FcγRII-B or activating Fc receptors FcγRI, FcγRII-A, FcγRIII, or FcγRIV also 

impacts the function of innate immune cells in inflammation [127], and Fcγ receptors play a 

role in trapping of H. polygyrus larvae during secondary infection [128]. FcεR-and FcγR-

dependent pathways may intersect, synergizing to facilitate worm expulsion during murine 

infection with the roundworm Strongyloides venezuelensis [129]. However, further studies 

are needed to dissect the complex interplay between Ig types and their respective activating 

or inhibitory Fc receptors on innate cells during helminth infection.

Neurotrophic Factors—A burst of interest in neuroimmunology has led to a number of 

recent studies that show that interactions between the nervous system and innate immune 

cells control type 2 inflammation. ILC2s localize close to neurons in the intestine and 

accumulate and produce type 2 cytokines in response to the neuropeptide neuromedin U 

(NMU), promoting worm clearance in N. brasiliensis infection [130,131] and allergic lung 

inflammation [132]. Further, ILC2s in the lung respond to other neurotrophic factors 

produced by pulmonary neuroendocrine cells during allergy [133]. A very recent study has 

shown that ILC2s that expressed the β2-adrenergic receptor were inhibited following 

receptor agonism, and β2-adrenergic receptor deficient mice had increased resistance to N. 
brasiliensis and H. polygyrus infections, suggesting that sympathetic nervous system signals 

can dampen ILC2 responses [134]. Earlier work showed that other type 2 innate cells also 

have connections to neurons, similar to ILC2s. Mast cells and eosinophils become activated 

and home to tissues in response to NMU [135,136]. Further, mast cells produce factors that 

stimulate neurons directly, including serotonin, histamine, and neurotrophin 4 that induces 

smooth muscle innervation [137]. While the study of the crosstalk between the nervous 

system and the immune system during helminth infection is still in early days, the nervous 

system clearly plays an important role in directing innate immune functions that support the 

type 2 inflammatory response.

DAMPs and Other Alarmins—Tissue damage caused by helminth migration, feeding, or 

secreted proteases drives the release of a wide array of alarmins including high mobility 

group box 1 protein, matrix metalloproteinases, S100 family proteins, uric acid crystals, and 

extracellular adenosine derivatives that are strong activators of anti-helminth and wound 

healing responses (reviewed in [6,8,138]). For example, extracellular purine-nucleoside 

adenosine released by damaged tissue is a potent regulator of type 2 inflammation 

[139,140]. Mice lacking the A2B adenosine receptor had impaired Th2 cell development, 

tissue eosinophilia, AAMac formation, ILC2 activation, and H. polygyrus and N. brasiliensis 
expulsion in vivo [140]. Notably however, in vitro ligation of different adenosine receptors 

had differential effects on ILC2 cytokine production [139], suggesting that the effects of 

adenosine on innate immune cells may be complex. Likewise, mast cells respond to danger-

associated extracellular ATP via the P2X7 receptor to drive downstream ILC2 activation and 

worm expulsion [25]. While roles for other DAMPs have been described in the context of 

allergic inflammation [8], less is known about these alarmins during helminth infection, and 

the mechanisms by which these molecules activate or suppress antihelminth type 2 

inflammatory responses are still unclear.
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CROSSTALK BETWEEN EPITHELIAL CELL-DERIVED CYTOKINES AND OTHER INNATE 
IMMUNE CELL REGULATORS

Biochemical Synergy—In vitro approaches and in vivo studies of helminth infection in 

single-gene knockout or transgenic mice have allowed us to understand many mechanisms 

that control innate immune responses during type 2 inflammation [3,5-11] (Fig. 1). 

However, these approaches can lead to oversimplification of the complex in vivo 
environment, in which scores of biochemical factors are produced concurrently or in tightly 

regulated spatial and temporal circuits. Excitingly, recent studies have addressed how 

various novel host, pathogen, and microbiota-derived factors synergize to orchestrate type 2 

inflammation [6,7]. In this final section, we will focus on recent work that explores the 

intersections between epithelial cell-derived cytokine pathways and other mediators of 

innate immune cells that coordinate type 2 immune responses. It is important to note that 

some of these studies have been conducted in the context of allergic inflammation, and it 

remains to be seen whether similar results will be observed in helminth infection.

A Web of Regulation—There is significant evidence for crosstalk between epithelial cell-

derived cytokine pathways and type 2 innate immune functions that depend on soluble 

mediators, including chemokines and bioactive lipids [6-8,141]. For instance, epithelial cell-

derived cytokines can act back on epithelial cells to induce release of chemotactic factors 

during N. brasiliensis infection]. TSLP exposure promoted chemokine production and 

release from basophils during T. muris infection [143], and IL-33 elicited chemokine release 

from numerous innate immune cell types in the context of allergic inflammation [141]. 

Similarly, in vitro studies demonstrated that IL-33 and TSLP can induce release of PGD2 

from mast cells [78,144], and PGE2 can conversely induce IL-33 production from DCs and 

macrophages [145]. Together, these studies suggest that epithelial cell-derived cytokines 

promote downstream accumulation of other biochemical species, and vice versa. In addition, 

exposure to PGs and LTs can potentiate IL-33-mediated activation of ILC2s during N. 
brasiliensis infection [88,146], suggesting that proper exposure to different signals in the 

correct order can lead to optimal type 2 inflammatory responses (Fig. 2).

Signals downstream of antibodies binding to Fc receptors can also intersect with pathways 

mediated via epithelial cell-derived cytokines during type 2 inflammation [58,124,125]. 

FcεR and FcγR signaling activated the production of epithelial-derived cytokines in various 

myeloid cell types in vitro and during type 2 allergic inflammation in the lung [24,147,148]. 

Interestingly, epithelial-derived cytokines can also prime specific Fc receptor-dependent 

effector functions in innate immune cells. For example, IL-25 increased IgE-mediated 

degranulation of allergic human basophils without affecting the release of IL-4, IL-8 and 

IL-13 [149]. In atopic dermatitis, signaling via FcγRI increased expression of the TSLP 

receptor on monocyte-derived DCs [150]. These data show that intersection of Fc receptor 

and epithelial cell-derived cytokine pathways may be important in bridging innate and 

adaptive responses in type 2 inflammation.

Type 2 innate immune cells must also integrate the signals received from epithelial cell-

derived cytokines and from direct interactions with other cell types, with exposure to 

epithelial cell-derived cytokines often facilitating these cell-cell interactions [6,7,96,115]. 
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TSLP induced expression of OX40L on human and mouse DCs, facilitating their capacity to 

prime Th2 cells in vitro and during allergic sensitization [151,152]. IL-33 could also drive 

activation of DCs and ILC2s during allergy, highlighted by upregulation of OX40L and 

CD40 [153,154]. Likewise, IL-33 may upregulate MHC II on bone marrow-derived mast 

cells in vitro [155], though the functional significance of this remains to be determined. 

Similarly, IL-25 and IL-33 regulated the expression of OX40L in lung ILC2s, which 

promoted downstream activation of the Th2 response during helminth infection [107]. 

Finally, cell-cell interactions can also prime a cell to receive signals delivered via cytokine 

receptors. For example, exposure of ILC2s to Notch signals in combination with IL-25 

enhanced their functional plasticity during allergic airway inflammation, allowing them to 

produce the effector cytokines IL-5 and IL-13 as well as IL-17 [117] (Fig. 3).

DISCUSSION AND FUTURE DIRECTIONS

Exciting ongoing research continues to reveal new aspects of innate immune cell regulation 

and function during helminth-induced type 2 inflammation [3,5-11]. We now understand 

many effects of epithelial cell-derived cytokines, lipids, Fc receptor signaling, and direct 

cell-cell interactions on innate immune responses during type 2 inflammation [3,6-8,11-13]. 

Notably, we are beginning to unravel how networks of these factors synergize spatially and 

temporally during helminth infection to promote innate immune-dependent type 2 

inflammation, worm expulsion, and wound-healing responses. However, significant work 

remains to be done in this area. Some of the studies discussed here have been conducted in 
vitro or in the context of allergic disease, and these findings should be tested in vivo during 

helminth infection. Systems immunology approaches and mouse models that allow for cell 

lineage-specific and inducible deletion of players in innate immune regulatory networks in 
vivo during infection will be needed to better understand how innate immune cell activities 

are controlled in the tissue. In addition, studying how epithelial cell-derived cytokine and 

other pathways integrate intracellularly on the molecular level, through the use of common 

signaling molecules, pathways, or transcription factors, will require cutting-edge in vivo 
biochemical tools that could leverage optogenetic approaches and live imaging. Thinking 

more broadly, more studies are needed to dissect how epithelial cell-derived cytokine 

responses integrate signals from microbiota- and diet-derived factors to shape innate 

immune responses in health and inflammation [6,33,34]. Finally, we understand little about 

how the diversity of soluble biochemical factors present in the human intestine during 

helminth infection can modulate innate immune-dependent type 2 inflammatory responses. 

Studies that address this gap and bridge work in murine models and in helminth-infected 

human patients will inform the development of critical new strategies to manage, treat, or 

prevent helminth infection in humans.
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AAMac: alternatively activated macrophage

CRTH2: chemoattractant receptor homologous molecule expressed on Th2 

cells

DAMP: danger-associated molecular pattern

DC: dendritic cell

GM-CSF: granulocyte-macrophage colony-stimulating factor

ILC2: group 2 innate lymphoid cell

Ig: immunoglobulin

LT: leukotriene

NMU: neuromedin U

PG: prostaglandin

RBPJ: recombining binding protein suppressor of hairless

Th2: CD4+ T helper type 2
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Figure 1. Current paradigm for the regulation of type 2 inflammation during helminth infection.
Damaged, stimulated, or dying intestinal epithelial cells produce cytokines and alarmins 

such as IL-25, IL-33, and TSLP in response to helminth parasite infection. Tuft cells are a 

rich source of IL-25. Epithelial cell-derived cytokines act on a variety of innate immune 

cells including basophils, ILC2s, eosinophils, and mast cells, delivering potent activation, 

proliferation, recruitment, and/or survival signals. Epithelial cell-derived cytokines also act 

on DCs that take up and process helminth antigens, grooming these cells to travel to the 

draining lymph nodes where they present antigen to naïve CD4+ T cells and promote Th2 

polarization. In the tissue site, activated innate immune cells and recruited Th2 cells produce 

large amounts of the type 2 cytokines IL-4, −5, −9, and −13. Different cell types 

differentially produce these cytokines (not depicted here). Type 2 cytokines amplify innate 

and adaptive immune cell activation and contribute to wound repair (not depicted here), with 

IL-4 serving as a key activator of AAMac polarization. IL-4 and IL-13 act back on the 

damaged epithelium and non-hematopoietic cells to cause goblet cell hyperplasia, tuft cell 

mobilization, increased intestinal permeability and contractility, and increased epithelial cell 

turnover that promote worm expulsion.
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Figure 2. Proposed model for eicosanoid regulation of innate immune responses during 
helminth-induced type 2 inflammation.
IgE crosslinking of FcεRI, helminth products, or epithelial cell-derived cytokines elicit 

production or release of eicosanoids including PGs and LTs from mast cells and 

macrophages during helminth infection. PGE2 can act on DCs to promote their ability to 

polarize naïve CD4+ T cells to the Th2 fate. PGD2 and LT species activate various innate 

immune cells and Th2 cells to produce type 2 cytokines and induce accumulation of these 

cells in tissues. These eicosanoid-mediated effects occur simultaneously or in sequence with 

events precipitated by epithelial cell-derived cytokines, driving synergistic and highly 

coordinated spatial and temporal regulation of innate immune cell activities. Open questions 
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remain regarding 1) whether eicosanoids act on the epithelium to promote or suppress anti-

helminth effector responses, 2) how different eicosanoid family members promote, suppress, 

or resolve innate immune cell effector functions, and 3) the identity of key eicosanoid-

producing cell types in the intestine.
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Figure 3. Notch signaling affects innate immune cell responses during type 2 inflammation.
Notch signaling occurs when a ligand-bearing cell interacts with a cell expressing a Notch 

receptor. This leads to cleavage of the Notch intracellular domain in the receiving cells and 

translocation to the nucleus. In the nucleus, the Notch intracellular domain forms a 

transcriptional activating complex along with Mastermind-like protein (MAML), various co-

activators (CoA), and the transcription factor RBPJ. The complex binds to DNA and 

regulates expression of target genes. Notch signaling can regulate the development of innate 

immune cells (mast cells and ILC2s), their differentiation and function (basophils and 

ILC2s), and their positioning in tissues (mast cells). How Notch signaling intersects with 

epithelial cell-derived cytokine-mediated pathways and specifically how innate immune cell-

intrinsic Notch affects type 2 inflammation in vivo during helminth infection remains 

unclear.
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Table 1:
Regulators of innate immune cell responses during type 2 inflammation.

Factors discussed in the text (list not exhaustive) that regulate basophil, mast cell, ILC2, DC, or eosinophil 

functions during type 2 inflammation. Cellular targets and supporting references cited in the text are 

highlighted, with possible cellular sources indicated.

Factor Function during type 2 
inflammation

Known or proposed direct cellular targets and supporting 
references

Cellular
sources (secreted 

factors only)

Adenosine Promotes IL-33 production Unclear in vivo [140] Damaged tissue 
stromal cells?

β7 integrin Promotes cell accumulation in 
the small intestine Mast cells [122] NA

CCR3 ligands 
(ie. eotaxin) Elicits cell migration Mast cells, eosinophils [47,48] DCs,

macrophages

GM-CSF Supports cell survival (effect in 
vivo remains unclear) Eosinophils [61]

Activated T cells, 
mast cells, 

macrophages, 
ILC2s

IgG Promotes anti-parasite effector 
responses Mast cells [129] B cells

IgE
Elicits degranulation and 
promotes type 2 cytokine 

production
Basophils, mast cells [58,124-126 (reviews)] B cells

IL-2 Supports cell proliferation and 
survival ILC2s [63,69,70] T cells, ILCs

IL-3 Promotes cell differentiation, 
survival, and activation Basophils, mast cells [55-57; 50,52,58 (reviews)] T cells

IL-5
Promotes cell accumulation in 

tissues, survival, and type
2 cytokine production

Eosinophils [61; 59,60 (reviews)]
Th2 cells, 

eosinophils, mast 
cells

IL-7 Supports cell differentiation 
and survival ILC2s [62,63,65,66,68; 51,67 (reviews)] Stromal cells

IL-18 Suppresses cell survival and 
type 2 cytokine production Mast cells [41; 42 (review)]

Macrophages, DCs, 
epithelial cells 

(active or precursor 
forms)

IL-25

Promotes cell accumulation in 
tissues, activation, and type 2 

cytokine production and 
potentiates degranulation

Basophils, ILC2s, eosinophils [18-21,27,36,79,107,109,117,149; 
8 (review)]

Tuft cells, 
granulocytes

IL-33

Promotes cell accumulation in 
tissues, activation, survival, 

and type 2 cytokine and 
prostaglandin production or 

release

Basophils, mast cells, ILC2s, DCs, eosinophils 
[22,23,25,35-38,54,78,79,88,107,144,146,148,153-155; 8,13,141 

(reviews)]

Epithelial and 
myeloid cells

Leukotrienes 
(LTs)

Promote cell accumulation in 
tissues and type 2 cytokine 

production
ILC2s, eosinophils [80,82,84,88,146; 86,87 (reviews)]

Mast cells, 
basophils, 

eosinophils

MHC II 
interactions

Support cell proliferation, 
enable interactions with T 
cells, and promote type 2 

cytokine production

Basophils (?), ILC2s, DCs [63,103-105,109; 98,99 (reviews)] NA

NMU
Promotes cell accumulation in 
tissues, activation, and type 2 

cytokine production
Mast cells, ILC2s, eosinophils [130-132,135,136] Neurons
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Factor Function during type 2 
inflammation

Known or proposed direct cellular targets and supporting 
references

Cellular
sources (secreted 

factors only)

Notch 
signaling

Controls cell differentiation 
and tissue localization and 
promotes type 2 cytokine 

production

Basophils, mast cells, ILC2s [114-119] NA

PGD2

Promotes cell accumulation in 
tissues, activation, chemotaxis, 
and type 2 cytokine production

Basophils, mast cells, ILC2s, eosinophils [74,79,81,85,90,91,93; 
67,75,92 (reviews)] Mast cells

PGE2

Supports Th2 polarizing 
capacity and promotes IL-33 

production
DCs [89,145,153,154] Mast cells

Sphingosine 1 
phosphate Promotes chemotaxis ILC2s [95]

Platelets,
erythrocytes,
endothelium,
hepatocytes

TL1A
Promotes cell accumulation in 

tissues, activation, survival, 
and type 2 cytokine production

ILC2s [39,40]
T cells, myeloid, 

epithelial, and 
endothelial cells

TSLP

Supports Th2 polarizing 
capacity and promotes type 2 

cytokine, chemokine, and 
prostaglandin production or 

release

Basophils, mast cells, ILC2s, DCs [26,31,143,144,150-152; 12 
(review)]

Epithelial and 
myeloid cells
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