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Abstract

Background Causes of anterior cruciate ligament (ACL) injuries are multifactorial. Anterior cruciate ligament injury pre-
vention should thus be approached from a multifactorial perspective as well. Training to resist fatigue is an underestimated
aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury.
Objectives The primary objective of this literature review was to summarize research findings relating to the kinematic and
kinetic effects of fatigue on single-leg landing tasks through a systematic review and meta-analysis. Other objectives were to
critically appraise current approaches to examine the effects of fatigue together with elucidating and proposing an optimized
approach for measuring the role of fatigue in ACL injury prevention.

Methods A systematic literature search was conducted in the databases PubMed (1978-November 2017), CINAHL (1992—
November 2017), and EMBASE (1973-November 2017). The inclusion criteria were: (1) full text, (2) published in English,
German, or Dutch, (3) healthy subjects, (4) average age > 18 years, (5) single-leg jump landing task, (6) evaluation of the
kinematics and/or kinetics of the lower extremities before and after a fatigue protocol, and (7) presentation of numerical
kinematic and/or kinetic data. Participants included healthy subjects who underwent a fatigue protocol and in whom the
effects of pre- and post-fatigue on three-dimensional lower extremity kinematic and kinetics were compared. Methods of
data collection, patient selection, blinding, prevention of verification bias, and study design were independently assessed.
Results Twenty studies were included, in which four types of single-leg tasks were examined: the single-leg drop vertical
jump, the single-leg drop landing, the single-leg hop for distance, and sidestep cutting. Fatigue seemed to mostly affect
initial contact (decreased angles post-fatigue) and peak (increased angles post-fatigue) hip and knee flexion. Sagittal plane
variables at initial contact were mostly affected under the single-leg hop for distance and sidestep cutting conditions whilst
peak angles were affected during the single-leg drop jump.

Conclusions Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue
may play a crucial role in sustaining an ACL injury. Considering the small number of variables affected after fatigue, the
question arises whether the same fatigue pathways are affected by the fatigue protocols used in the included laboratory stud-

ies as are experienced on the sports field.
Key Points

Current fatigue protocols might over-simplify a complex
system.

An optimized approach to the role of fatigue in anterior
cruciate ligament injury prevention might be necessary
in which workload, aerobic fitness and fatigue serve as

interacting factors.

Electronic supplementary material The online version of this

article (https:/doi.org/10.1007/s40279-019-01052-6) contains The combination of practising open skills where athletes
supplementary material, which is available to authorized users. have to respond to unanticipated events in a fatigued
condition may have merit given the similarity to
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1 Introduction

Injuries significantly impair both individual and team per-
formance. Prevention must therefore be a priority [1]. As
anterior cruciate ligament (ACL) injuries continue to rise
per 1000 athlete exposures [2], there is a need for a criti-
cal appraisal of current injury prevention programs. Current
ACL injury prevention programs typically involve a combi-
nation of plyometrics, strength training, agility, and balance
exercises [3-5]. The key to avoiding an injury is the ability
of an athlete to create stable motor output, even under sport-
specific fatigued conditions in a complex athletic environ-
ment [6, 7], where all segments of the body act in synergy
[8]. The pathway to fatigue runs parallel to the pathway to
injury [8]. Both processes lead to a decrease of synergy of
body segments during movement owing to, for example,
coordinative changes, a reduction in degrees of freedom, or
loss of efficiency [8]. However, training to resist fatigue is
typically not included in injury prevention protocols, even
though the presence of fatigue may play a role in sustaining
an ACL injury [9].

The currently most used measure of fatigue is incremen-
tal fatigue related to playing time [10]. However, injury
surveillance data have not shown a consistent relationship
between fatigue as a result of playing time and injury [11].
This approach may be too simple and an important perspec-
tive to include in an injury prevention model is the fact that
an imbalance between stress and recovery can generate sev-
eral physical (e.g., increased fatigue level, decreased per-
formance) and psychological (e.g., increased anxiety, emo-
tional lability) responses [9] (Fig. 1). Athletes can respond
in two ways to an imbalance between stress and recovery.
Either they adjust their activities (i.e., increasing recov-
ery and decreasing training load) and return to a balance

Fig. 1 Illustration of mecha-
nisms of fatigue that can
increase injury risk
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1 Training effort and neglecting recovery

between stress and recovery, or they ignore the physical
and psychological reactions (i.e., increasing training effort
and neglecting recovery), which is generally associated
with adverse outcomes, such as an increased likelihood of
becoming injured and an increased risk for both overtrain-
ing syndrome and chronic fatigue [9, 12]. Additionally, for
instance, increases in pre-surgery stress have been shown
to negatively impact on both rehabilitation compliance and
knee symptoms [13, 14].

To date, laboratory studies have shown conflicting results
pertaining to the effect of fatigue on lower limb biomechan-
ics during athletic tasks [15, 16]. However, these laboratory
studies do not reflect the complexity of physical and psycho-
logical fatigue that occurs during an actual game [17], which
may be a reason for these conflicting results.

This complexity can be demonstrated in three examples.
First, fatigue can occur early in a game when an athlete has
not had enough sleep the night before the game day or has
heightened levels of stress/daily hassles. In this situation,
suboptimal recovery makes the athlete perceive a higher
internal workload and feel more fatigued. This increased
fatigue might make the athlete more vulnerable to injury [9,
18, 19]. Second, athletes can experience fatigue after a sud-
den 1-min spike in acute workload during the game [17, 20].
Third, an athlete can experience neuromuscular fatigue as a
result of playing time (i.e., workload) [21-23] and thus be
more vulnerable as the game progresses. These three exam-
ples display the complexity of factors interacting with each
other. Training to resist fatigue is an underestimated aspect
of prevention programs given that the presence of fatigue
may play a crucial role in sustaining an ACL injury.

Our understanding of the concept of fatigue in relation
to injury prevention may thus need to be revised in relation
to the ACL injury risk profile. With a better understanding,
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we may be able to increase the external validity of testing
the effects of fatigue and eventually assist in more effective
implementation of injury prevention programs for ball team
sport athletes.

The primary objective of this systematic review and meta-
analysis was to summarize research findings relating to the
kinematic and kinetic effects of fatigue on single-leg landing
tasks. Other objectives were to critically appraise current
approaches to examining the effects of fatigue together with
elucidating and proposing an optimized approach for meas-
uring the role of fatigue in ACL injury prevention.

The article is divided into two sections. First, we present
the systematic review and meta-analysis (Sects. 2, 3, and
4.1-4.3). Second, we critically discuss the current methods
of measuring the role of fatigue in ACL injury prevention
and present a revised approach to injury prevention (Sects.
4.4-4.8).

1.1 Definitions
1.1.1 Psychological and Physical Fatigue

Fatigue can be defined as the decrease in the pre-match/base-
line psychological and physiological function of the athlete
[24]. The factors that cause someone to move in a particular
way, which may increase their risk of injury, constitute a
complex relationship between psychological and physical
factors.

For example, when an athlete has to cope with psycho-
logical stress (i.e., external psychological load), this can
affect perceptual abilities (i.e., experienced internal load),
e.g., central and peripheral vision and reaction time [25, 26].
When alertness is decreased, attention and decision making
will be reduced because of psychological fatigue. Athletes
may be unable to respond in a timely fashion to the abundant
somatosensory information and the biomechanical demands
of a rapidly changing physical environment [6], such that
movement patterns may become detrimental [27].

However, external physical load [28] can be perceived
differently by each individual athlete (i.e., experienced
internal load) [17]. For example, a biomechanical load with
accelerations and decelerations when landing from a jump or
sidestep cutting needs to be countered by a reverse optimal
internal (joint) load. Absorption of external load has been
shown to be associated with clinically relevant biomechani-
cal deficits when individuals are fatigued [23]. Thus, a given
external workload is a poor predictor of fatigue because indi-
viduals vary widely in their internal response [17].

1.1.2 Physical: Central and Peripheral Fatigue

It is common to distinguish between central fatigue and
peripheral fatigue [29, 30]. Central fatigue refers to an

Table 1 Search strings and terms per database

EMBASE (1973-November 2017)

CINAHL (1992-November 2017)

PubMed (1978-November 2017)

‘Fatigue’” AND (‘Knee joint’ OR ‘Knee’ OR ‘Lower limb’ OR
‘Leg’ OR ‘Hip’ OR ‘Ankle’) AND (‘Kinetics’ OR ‘Kin-

“Fatigue” AND (“Knee joint” OR “Knee” OR “Lower limb”
OR “Leg” OR “Hip” OR “Ankle””) AND (“Kinetics” OR
“Kinematics” OR “Biomechanics”) AND (“Land*” OR

“Fatigue” AND (“Knee joint” OR “Knee” OR “Lower limb”
OR “Leg” OR “Hip” OR “Ankle””) AND (“Kinetics” OR
“Kinematics” OR “Biomechanics”) AND (“Land*” OR

ematics’ OR ‘Biomechanics’) AND (Land* OR Jump* OR

‘Single’ OR ‘Task’ OR ‘Task performance’)

“Jump*” OR “Single” OR “Task*” OR “Task performance”)

“Jump*” OR “Single” OR “Task*” OR “Task performance”)

A\ Adis



568

A.Benjaminse et al.

exercise-induced reduction in the level of voluntary muscle
activation [29, 30] (i.e., reduced central drive, autonomic
nervous system alterations, and neuromuscular fatigue) as a
result of impairments proximal to the neuromuscular junc-
tion [29, 30]. Peripheral fatigue refers to exercise-induced
processes leading to a reduction in the force-generating
capacity of the muscle (i.e., metabolic and mechanical dam-
age and neuromuscular fatigue) occurring at or distal to the
level of the neuromuscular junction [29, 30].

2 Methods
2.1 Literature Search

A systematic literature search was conducted in the databases
PubMed (1978-November 2017), CINAHL (1992-Novem-
ber 2017), and EMBASE (1973—-November 2017) (Table 1).
A combination of the following search terms was used: (1)
fatigue, (2) knee joint, lower limb, leg, knee, hip, ankle,
(3) kinetics, kinematics, biomechanics, and (4) land*,
jump*, side*, step*, single, cut*, task*, task performance.
Within groups, the search terms were combined with the
OR operator; between groups, search terms were connected
with the AND operator. The results of the three searches
were combined and duplicates were removed. These elec-
tronic searches were supplemented by manual searches and
cross-checking the reference lists and citations of relevant
published studies (i.e., checking on search terms, inclusion
criteria, activities and/or population in the title and abstract).

After an initial review by M.M., all irrelevant papers were
excluded. Full texts were independently analyzed by two
authors (A.B. and M.M.) for final inclusion, based on prede-
fined inclusion and exclusion criteria. Any discrepancy was
resolved by a consensus meeting between the two reviewers.
If this failed to resolve the issue, the opinion of a third per-
son was sought (K.W.). The inclusion criteria were: (1) full
text, (2) published in English, German, or Dutch, (3) healthy
subjects, (4) average age > 18 years, (5) single-leg landing
task, (6) evaluation of the kinematics and/or kinetics of the
lower extremities before and after a fatigue protocol, and (7)
presentation of numerical kinematic and/or kinetic data. Par-
ticipants included healthy subjects who underwent a fatigue
protocol and in whom the effects of pre- and post-fatigue
on three-dimensional (3D) lower extremity kinematics and
kinetics were compared.

2.2 Data Extraction and Analysis
The following data were extracted and summarized from
each included article: characteristics of the subjects, land-

ing task, fatigue protocol, study design and outcome meas-
ures, results, and key findings. The measures of interest were
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pre- and post-fatigue 3D joint angles and moments of the
hip, knee, and ankle at landing. The data were independently
extracted by three reviewers (A.B., M.M., A.K.) [Tables
S1-S4 of the Electronic Supplementary Material (ESM)].
Again, any discrepancy was resolved by a consensus meeting
between the two reviewers. If this failed to resolve the issue,
the opinion of a fourth person was sought (K.W.). Effect size
(ES) meta-analyses using StatsDirect Ltd, Cambridge, UK
were conducted for each primary variable for which there
were a minimum of three samples. A minimum of three sam-
ples was chosen because of the large number of possible 3D
biomechanical outcomes and to better identify consistency
of findings. For all analyses, the DerSimonian and Laird
random-effects model was used owing to the heterogene-
ity of the study samples. All analyses are expressed using
95% confidence intervals (95% CIs) and Cohen’s ES statistic
(Cohen’s d) where d = 0.2-0.5, d = 0.5-0.8, and d > 0.8 rep-
resent small, moderate, and large effects, respectively [31].

2.3 Risk of Bias in Individual Studies

To evaluate the validity of the studies and the applicability
of the results (items b—f), the methodological quality of all
included studies was assessed with the modified scoring list
based on the Cochrane Group on Screening and Diagnos-
tic Test Methodology [32]. The Downs and Black revised
checklist was used for measuring study quality (items g—q)
[33]. Methods of data collection, subject selection, blinding,
prevention of verification bias, and study design were inde-
pendently assessed. The reviewers agreed on the answers to
all these questions.

3 Results

3.1 Methodological Quality and Study
Characteristics

The searches in PubMed, EMBASE, and CINAHL revealed
177, 406, and 116 studies, respectively. Of these studies,
634 studies were excluded (not relevant as they did not cover
the main topic, activities and/or population), 35 duplicates
were removed. Nine studies lacking kinematic and/or kinetic
data were excluded. One study was excluded [54] because
it contained duplicate data from another study [53]. Twenty
studies were included for review (Fig. 2), of which two stud-
ies were excluded from the meta-analyses, as not enough
data samples were available from these studies [34, 35]. The
four types of single-leg tasks in this review were: (1) sin-
gle-leg drop vertical jump (SLDVJ, n=35 studies) [36—40],
(2) single-leg drop landing (SLDL, n =8 studies) [41-48],
(3) single-leg hop for distance (SLHD, n =3 studies) [34,
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Fig.2 Flow chart of study
selection

Records identified
through database
searching (n=699)

-

Records screened

| Records excluded (n=634) |

r——

(n=699)

' ’ Duplicates excluded (n=35) |

-

Records after
duplicates removed

(n=30)

S—

Full-text articles

Full-text articles
assessed for eligibility

excluded, with reason:
no numerical kinematic
and/or kinetic data

(n=30) provided (n=9) +

duplicate data (n=1)

—

Studies included in
qualitative synthesis

(n=20)

-

Studies included in
quantitative synthesis

(n=18)

49, 50], and (4) sidestep cutting (SSC, n=4 studies) [35,
51-53].

A detailed description of the methodological quality
and characteristics of the studies included in this review
is presented in Table S5 of the ESM and Table 2. Fifteen
studies conducted central fatigue protocols [35-43, 45,
48, 49, 51, 52, 54] and five studies conducted peripheral
fatigue protocols [34, 44, 46, 47, 50]. Six studies included
both female and male subjects [37, 41, 43, 44, 48, 50], nine
studies included only female subjects [35, 38, 40, 45-47,
51, 52, 54], and five studies included only male subjects
[34, 36, 39, 42, 49]. The average age of included subjects
was 24.89 +4.26 years and 20.68 +1.35 years for male and
female subjects, respectively. The number of participants per
study included in the review ranged from 8 (male subjects)
[34] to 40 (20 female subjects and 20 male subjects) [48].
The overall quality score ranged from 12 to 17 (maximum
21). Most studies were level 4 studies, but two studies were
level 1 [38, 40]. This was mainly because they included a
control group and assigned subjects to the groups randomly.

Only two studies took confounders into account [34, 50].
Nine out of the 20 studies reported power calculations [39,
43, 45-47, 50-52, 54], calculated as 0.8 and 0.9.

3.2 Pooled Analysis

The pooled effects of fatigue for the sagittal plane are pre-
sented in Tables 3 and 4 and in Figs. S1-S4 of the ESM for
knee flexion angle at initial contact (IC), peak knee flexion
angle, hip flexion angle at IC, and peak hip flexion angle,
respectively. Knee flexion angle at IC was significantly
smaller post-fatigue during the SLHD (p=0.001, ES=0.84,
95% C10.34-1.34) and SSC (p=0.0101, ES=0.48, 95% CI
0.11-0.84). Hip flexion angle at IC significantly decreased
post-fatigue during SSC (p=0.016, ES=0.45, 95% CI
0.08-0.81). Peak knee (p =0.0005, ES=-1.27, 95% CI
—1.98 to —0.56) and hip (p=0.0023, ES=-0.48, 95% CI
—0.80 to —0.17) flexion angles were significantly greater
post-fatigue during the SLDL.
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Table 3 Pooled effects of fatigue on initial contact (IC) and peak
knee and hip flexion angles

Task Effect of fatigue

Knee flexion IC (°)
Single-leg drop vertical jump NS
Single-leg drop landing NS

Single-leg hop for distance Decrease post-fatigue

Sidestep cutting Decrease post-fatigue
Knee flexion peak (°)
Single-leg drop vertical jump NS

Single-leg drop landing Increase post-fatigue

Single-leg hop for distance -

Sidestep cutting -
Hip flexion IC (°)

Single-leg drop vertical jump NS

Single-leg drop landing NS

Single-leg hop for distance NS

Sidestep cutting Decrease post-fatigue
Hip flexion peak (°)

Single-leg drop vertical jump NS

Single-leg drop landing Increase post-fatigue
Single-leg hop for distance -

Sidestep cutting -

NS not significant

Table 4 Pooled effects of fatigue on peak knee and hip frontal plane
angles and moments

Task Effect
of
fatigue

Knee abduction peak (°)

Single-leg drop vertical jump NS
Single-leg drop landing NS
Single-leg hop for distance -
Sidestep cutting -

Hip abduction peak (°)

Single-leg drop vertical jump NS
Single-leg drop landing NS

Single-leg hop for distance -
Sidestep cutting -
Knee abduction peak (Nm/kg)
Single-leg drop vertical jump NS
Single-leg drop landing NS
Single-leg hop for distance -
Sidestep cutting -
Hip abduction peak (Nm/kg)
Single-leg drop vertical jump NS
Single-leg drop landing -
Single-leg hop for distance -
Sidestep cutting -

NS not significant

A wide variety of methods was used to collect kinematic
and kinetic variables in the studies included in the review.
Furthermore, the applied fatigue protocols and operational
definitions of fatigue were very heterogeneous with no pro-
tocol or definition being the same across the studies. No
clear trend for the effects of central vs. peripheral fatigue
was found (Figs. S1-S7 of the ESM). Central fatigue pro-
tocols such as treadmill and bike ergometer, agility drills,
squats, jumps and step-ups were used. Peripheral fatigue
protocols contained mostly local hip or knee alternating
flexion extension or hip abduction-adduction movements
against resistance. Besides the different protocols and dif-
ferent subjective and objective measures of fatigue used in
the studies, other factors such as individual physical fitness
and coordination could have affected study results as well.

Of note is that most studies used preplanned tasks. How-
ever, research has shown that movement mechanics change
unfavorably during unanticipated execution of a task com-
pared with when the task is anticipated [35, 45, 62, 63].
Potentially, this more closely reflects aspects of a real game
where the environment constantly changes and thus athletes
must anticipate and adopt appropriate movement strategies.
The integrative impact of fatigue and decision making may
present a suboptimal combination for high-risk dynamic
landing strategies [64]. That is, the demands of the sports
environment allow athletes only milliseconds to perform
the cognitive processing involved in movement selection
(‘decision making’) [65, 66]. Not surprisingly, athletes with
slower baseline cognitive processing speeds (e.g., longer
reaction times) demonstrate mechanics that may result in
greater ACL loading during execution of unplanned landing
and cutting maneuvers [67—-69]. Fatigue induced by intense
exercise may result in decrements in cognitive processing
(indicative of a ‘supraspinal’ effect) [70-76]. In addition,
specific cognitive functions, such as concentration, deterio-
rate when experiencing higher stress levels, decreasing an
individual’s ability to perform well in tasks that require high
levels of attentional control (being ‘in the game’) [77]. Con-
sidering the important role that efficient cognitive processing
appears to play in controlling movement in sports, potential
fatigue-related transient decrements in cognitive functioning
could compromise an athlete’s ability to maneuver within
dynamic environments without injury.

It is also important to question whether a fatigue protocol
until exhaustion [41] reflects sports-specific physiological
loads [78]. For example, in soccer, landing after heading a
ball or cutting to pass an opponent typically is not carried
out by the player in a state of maximal exhaustion. Studies
measuring rate of perceived exertion (RPE) using the Borg
scale during or immediately after a soccer game in young,
adolescent, male professional soccer players report RPE
values between ‘hard’ and ‘very hard’, which indicates that
players were not completely exhausted [23]. Others found
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that fatigue increased during a typical soccer game (from 2.2
during the first 10 min to 3.6 in the last 10 min on a 7-point
scale) [79]. Only a minor decrease in fatigue was experi-
enced during half-time, with attackers experiencing more
fatigue than defenders [79]. Borotikar et al. [64] showed that
biomechanical adaptations (i.e., increase in IC hip extension
angle and peak knee abduction angle) are seen already at the
50% level of fatigue.

4.3 Fatigue Effects on the Different Tasks

No significant overall effects of fatigue were found for
the SLDVIJ. After fatigue, greater overall peak knee
(ES=-1.27) and hip (ES=-0.56) flexion angles were
observed during the SLDL. It is worth mentioning that
an increase in knee abduction angle during peak stance
was found from an anticipated to an unanticipated SLDL
task (—3.4°+3.6° to —7.2° +3.2°, respectively; p <0.05,
ES =-1.20) [45]. This may indicate the relevance of adding
sport-specific elements to testing and further shows the role
of fatigue in decision making. During the SLHD, smaller
knee flexion angles at IC were observed after fatigue, with a
large ES (0.84). Last, during SSC, athletes showed a move-
ment strategy with overall smaller hip (ES=0.45) and knee
(ES=0.48) flexion angles at IC after fatigue. For both the
SLHD and SSC, this stiffer landing technique may place
the athlete at a greater risk for injury. Considering the ESs,
it seems that the sagittal motion of the knee joint is most
strongly affected, especially during the SLDL and SLHD.
Again, this can be owing to the quadriceps having difficulty
eccentrically controlling the required downward motion.
To further clarify some of the potential differences, further
research would be needed, including between task compari-
sons within cohorts.

4.4 Summary

In conclusion, healthy athletes deal well with induced
fatigue as observed in the included studies without observ-
able detrimental biomechanical changes. Therefore, the
construct validity of current fatigue protocols probably
needs to be revised. Recently, it has been found that dur-
ing the progression of a simulated soccer game, the overall
RPE was not reflected in kinematic and kinetic changes
during a countermovement jump and a single-leg drop
jump [23]. This suggests that the protocol was predomi-
nantly centrally demanding and peripheral control was not
reduced. Another explanation could be that similar path-
ways are affected, but the tasks or testing protocols used in
the laboratory are too ‘simple’ for the athlete and thus it is
possible to counteract the effect of fatigue as the athlete can
solely focus on task execution, with no other environmental
distractions (i.e., suboptimal validity of testing). Based on
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our analysis of the findings related to the primary objec-
tive of this review, we have outlined our suggestions for an
optimization of measuring the role of fatigue in ACL injury
prevention in Sect. 4.5.

4.5 Revised Approach

The second objective of this article was to critically appraise
the current approaches in examining the effects of fatigue
and propose an optimized approach of measuring the role
of fatigue in ACL injury prevention to move the field for-
ward. Even though already proposed in 2010 [27] and more
recently by Bittencourt et al. [80] (‘web of determinants’,
Fig. 3), inclusion of fatigue in the injury prevention para-
digm has rarely been considered. Identifying isolated risk
factors represents only part of the total picture and does
not include the fact that an athlete’s susceptibility to injury
changes dynamically [8]. There might be an underestimation
of the complexity of the interaction of physical and psy-
chological fatigue affecting neuromuscular control. When
someone is fatigued, a sudden perturbation of any compo-
nent of the neuromuscular system may be enough to provoke
dynamic instability [8]. As an ACL injury is the result of
the interaction among many different factors that can lead
to vulnerability (Fig. 4), both mentally and physically [80],
the complexity of the human body and brain should be
appreciated.

4.6 Proposed Approaches to Measure and Monitor
Fatigue to Support Coaches

4.6.1 Protocol

General fatigue models appear to have more ecological
validity in terms of simulating sports-relevant movement
tasks. Applying a more general induction strategy of fatigue
is therefore suggested, which may induce both peripheral
and central fatigue effects [64]. It is also advised that lower
extremity kinematics are quantified during the progression
towards fatigue (instead of pre-post design), [15, 64] to bet-
ter reflect and test the incremental effect of fatigue. Measur-
ing the athlete’s percentage of fatigue during testing is some-
thing we would recommend as it would allow individuals to
monitor the effects on landing patterns of injury prevention
protocols incorporating fatigue at different intervals from
pre- to post-intervention.

4.6.2 Impact of Fatigue on Decision Making

Unanticipated single-leg tasks are functionally demanding
and thus high-risk movements. One leg has to adapt to the
deceleration of the center of mass over a short time period,
[49] which closely simulates sports-relevant movement
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Fig.3 Model of complexity ACL injury
of factors possibly leading

to ACL injury (adapted from
Bittencourt et al. [80], with
permission). The interaction
between the various determi-
nants is presented at the bottom

of the figure. The variables that
represent risk factors circled by
darker lines, have more interac-
tions and a greater influence

on the outcome than variables
circled by lighter lines. ACL
anterior cruciate ligament

Hip muscle
weakness

nanticipated
environmental
events

Training
load

Neuromuscular Dka:‘aeI:llc
capability Galrs

Foot
misalignment
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Practice with integrated fatigue and open skills:
1 Perception-action and decision making (section 4.8.1)

Sleep and recovery
(sections 4.6.5 and 4.6.6)
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fitness (section 4.7)

1 Resistance to fatigue

4 Injury risk

external focus
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observation and imitation

lnouledge of performance

Mental imagery
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@ Implicit motor learning:
) 1 Stable movement technique and performance (section 4.8.1)
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Fig.4 Illustration of approaches that can be considered to increase the resistance to fatigue and thus decrease injury risk
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tasks. The impact of fatigue on decision making may present
a worst-case scenario for high-risk dynamic landing strate-
gies in terms of load at the knee [45, 62, 64]. Therefore,
measuring and monitoring the neuromuscular response to
the impact of fatigue and decision making on injury risk
should be considered within ACL injury prevention models.
This also includes training of cognitive processing speed
(e.g., reaction time), as this appears to be a modifiable char-
acteristic in athletes [81].

4.6.3 Training Load

Excessive and rapid increases in training loads are likely
responsible for a large proportion of non-contact soft-tissue
injuries (Fig. 2) [20]. It is therefore important to monitor
[internal (i.e., response to workload) and external (i.e., per-
formed workload)] training load [82]. An increase in overall
physical fitness protects the athlete against injury and serves
as a moderator for decreasing the perceived workload and
in turn decreasing the injury risk [17]. More specifically,
there is a significant risk of injury during key stages of
training and competition, such as during more intense train-
ing periods or during phases in which acute training loads
change [83]. In these stages, training load and fatigue (see
also Sect. 4.6.5) should be closely monitored. For example,
internal load can be monitored relatively easily by measur-
ing heart rate or by multiplying RPE by minutes practiced
or played in a game (load =RPE X duration in min) [82]. It
is imperative to give athletes responsibility and a voice in
regulation of their perceived fatigue [8, 9].

4.6.4 Rate of Perceived Exertion

Subjective assessments through separate RPEs (e.g., Borg
scale 6-20) [84] may give an indication to the peripheral
load experienced, which is relevant for preventing acute
injuries. An example would be to ask athletes to be spe-
cific about how much their ‘legs’ were affected, i.e., rate of
perceived leg-muscle exertion (RPE-L) [23, 28]. This dif-
ferentiation in physiological and biomechanical internal load
enables monitoring of both central [breathlessness (RPE-B),
e.g., uptake and transport of oxygen, central nervous system]
and peripheral (RPE-L, e.g., neuromuscular, musculoskel-
etal, and muscle metabolite characteristics) exertion in team
sport athletes [85].

4.6.5 Sleep

Sleep deprivation results in heightened fatigue and can elicit
both psychological fatigue (perceived well-being/perceived
psychological state) and physical fatigue (perceived physi-
cal state) [27, 83]. Repeated failure to obtain sufficient sleep
has a cumulative detrimental effect on alertness, [27] which
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is necessary for attention and decision making on the field
[6]. Sleep deprivation has been associated with injuries in
an adolescent athletic population [86]. Fatigue, sleep quality,
and feelings such as having too few breaks or not being able
to obtain rest during breaks have also been identified as pre-
dictors for increased injury risk in elite soccer players [87].

4.6.6 Stress and Recovery

The importance of frequent monitoring of recovery and
stress parameters to lower the risk of injuries seems to be
intuitive [27, 82]. If possible, it is advised to administer the
Recovery-Stress Questionnaire for Athletes (RESTQ-Sport)
frequently [88]. If not possible, trainers and coaches can at
least monitor stress and recovery in their athletes, for exam-
ple, by asking for a simple but reliable Total Quality of
Recovery Borg score (6-20) prior to a practice or game [89].

4.7 Strategies to Delay Fatigue

Exposing the athlete to a higher chronic workload provides
protection against a spike in acute workload [90, 91]. An
increase in overall anaerobic and aerobic fitness may offer
protection to the athlete against injury and serves as a mod-
erator to decrease injury risk [17, 91]. This needs to be in
appropriate balance with potential adverse sequelae of train-
ing (excessive fatigue, injury, illness) [17, 20]. Acute spikes
in workload increase the risk of injury during a game and
cause higher levels of fatigue. This fatigue can then poten-
tially serve as a mediator, subsequently causing injury [27].
Fatigue should thus be considered as part of an injury risk
profile where internal workload, aerobic fitness, and fatigue
serve as interacting factors. Future research on the 3D kin-
ematic and kinetic effects of training resistance to fatigue
is warranted.

4.8 Targeting Resistance to Fatigue

Anterior cruciate ligament injuries during ball team sports
typically occur in single-leg activities such as landing on
one leg or changing direction, requiring a complex coor-
dination of peripheral and central responses [92-95]. For
injury prevention, it is difficult to delineate peripheral and
central fatigue mechanisms as dynamic sports maneuvers
require explicit force production and motor control at both
the peripheral and central (spinal and supraspinal) levels [64,
96]. However, central fatigue seems to be a critical compo-
nent and targeted training of central control processes may
successfully counter the impact of fatigue [45].
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4.8.1 Fatigue and Decision Making

It is important to recognize the integration of fatigue and
decision making as two sports-relevant factors into injury
prevention programs, as this will add to the external valid-
ity and transfer of learned movement tasks to a game. Given
their lack of significant impact on kinematics and kinetics,
the four single-leg tasks assessed in this review may not
have been sufficiently demanding (e.g., only three studies
use an unanticipated design) to prevent the athlete from hav-
ing enough reserve to deal with the fatigued states.

Fatigue and decision-making effects rarely exist inde-
pendently of one another [64]. In addition, both central
and peripheral processing mechanisms are compromised in
the presence of fatigue [30, 97]. Poor perception, decision
making, reactions, and resultant movement strategies may
be more likely to occur when in a fatigued state. It is thus
advised to include complex, sport-specific, and cognitively
demanding movement tasks (i.e., open skills) in injury pre-
vention programs as this may facilitate improved perception-
action and decision making within the changing and com-
plex sport environment [45, 64]. This can be established by
including temporal constraints (e.g., time pressure for com-
pletion of a task, i.e., in dyad format, adding a competition
element where one has to be faster than the other athlete),
distracting the visual system (e.g., during sidestep cutting,
a ball is passed to the athlete, which the player has to pass
back during execution of the task), increasing the level of
task uncertainty [e.g., during a vertical jump, when the ath-
lete is in the air, he or she is given one of three options (from
peer athlete or trainer, sports physical therapist) to execute
immediately when landing, sprinting 45° to the left, straight
ahead, or to the right], performing dual tasks and decision
making (e.g., touching cones with side shuffles, where one
athlete is the leader, and the other athlete follows as quickly
as possible), or combinations of those factors [7].

This combination of practicing open skills in a fatigued
condition where athletes have to respond to the environment
will train the athlete’s ability to deal with real-world factors
and stay below the injury threshold by using effective move-
ment techniques even in a fatigued state. It is important to
note that effective movement technique in a time-constrained
environment with complex decision making has been shown
to enhance efficient motor control with an implicit motor
learning strategy [98].

4.8.2 Implicit Motor Learning: Attentional Focus

Movement technique and performance are more stable (i.e.,
less decline of capacity for controlling body movements)
under psychological and physical stress/fatigue when
acquired with an implicit learning method (e.g., external
focus of attention) [99-101]. For example, research has

shown that adoption of a verbal or visual external focus of
attention improves biomechanics by, for example, increased
knee and trunk flexion angles during cutting and landing
tasks [60, 102]. In addition, neuromuscular efficiency is
enhanced with implicit motor learning strategies [103—105],
without a reduction in performance (e.g., jump height, force
production, or shot accuracy). This is promising, as neuro-
muscular efficiency is particularly necessary when fatigued.

One explanation for this decreased capacity of controlling
movements in a fatigued state when such movements are
learned explicitly could be that integrated fatigue and deci-
sion-making effects provoke adverse movement behavior via
cognitive deterioration. This progressive increase in cen-
tral control increases cognitive demands [70]. Conversely,
with implicit motor learning, there is no or little explicit
knowledge about execution of movement, which stimulates
automatic learning processes where less cognitive load is
required [101, 106]. This means that when a skill is learned
with an external focus of attention, more resources are avail-
able to pay attention to environmental factors [101, 106].
Thus, implicit learning may protect the athlete against the
often debilitating influence of psychological or physiological
stress on motor output [101].

4.8.3 Mental Imagery

Mental imagery can be an effective means to develop the
central motor control strategies discussed in Sect. 4.8.2
that successfully transfer when fatigued [45]. The ability
for individuals to view themselves performing correctly or
making mistakes and responding to correction is of great
value [101]. One theoretical approach is that learning is a
problem-solving process; the more involved the individual
is in analyzing his or her own performance, the greater the
learning value [107]. The athlete will explore and select the
solution that fits best with their body. During internal motor
imagery, an athlete feels as if he/she is performing the action
from a first-person visual and kinesthetic view. This repli-
cation of target movements and environmental conditions
may create a “realistic” feeling as whole-body awareness
is stimulated (embodied cognition) [106]. Internal imagery
training may be used to implicitly improve a component of
a complex motor skill [108].

In summary, mental training is associated with benefits
such as decreasing stress and anxiety, increasing self-confi-
dence, relieving pain, and increasing muscle tolerance [109].
Motor imagery techniques might thus very well be powerful
in relation to experienced and/or resistance to fatigue. This
can be explained by the existence of a top—down mechanism
based on the activation of a central representation of the
movements (instead of a peripheral focus), where spatiotem-
poral or dynamic control of the action is very important
[110, 111].
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4.9 Study Limitations

This systematic review focused on changes in kinematics
and kinetics after fatigue. Performance measures were not
included in most of the included studies. The combination
of both movement technique and performance (i.e., jump
distance or jump height) is however important to the applied
setting as the goal for athletes is to be able to stay below
the injury threshold when fatigued, whilst also maintain-
ing performance. Furthermore, in a laboratory situation, an
athlete can execute movements characterized by low joint
loads and reduced performance when fatigued whereas this
is often not possible in real game situations, where a player
has to perform maximally whilst fatigued.

Second, we analyzed the changes after fatigue per joint,
and did not consider the overall body position or movement
per se. This does not reflect the real world as changes in one
joint affect the joint position elsewhere in the body (dynamic
system). The ankle and trunk were not considered in the
meta-analysis, when in fact these joints could have been
used as an inter-limb compensation strategy. Additionally,
frontal plane movement is lower overall and it is therefore
more difficult to detect pre- vs. post-fatigue differences in
this context.

The tests used were heterogeneous and different fatigue
protocols (peripheral vs. central) were also used across stud-
ies. In addition, different definitions and recording of ‘peak’
angles also made it difficult to conduct a meta-analysis. For
some of the outcomes, there was a small number of studies
present, indicating results should be interpreted cautiously.
Caution is therefore warranted when interpreting the results
of this meta-analysis given the differences in definitions of
fatigue, the methods used to induce fatigue, and the methods
used to capture kinematics/kinetics.

The average age of included subjects was
24.89 +4.26 years and 20.68 +1.35 years for male and
female subjects, respectively. This may be somewhat old
for direct comparison with the population of subjects at
risk [112]. The level of included athletes was mostly either
recreational (i.e., practice at least three times a week for at
least 30 min/day) or Division I National Collegiate Athletic
Association athletes, which is comparable to the population
at risk [2]. It should be noted that the type of sport was not
specified in all studies. Athletes playing sports other than
ball-team sports potentially have other skill levels in terms
of jumping and landing and changing directions consistent
with the requirements of these impact sports.

Instructions given were mostly on general task execution;
only two studies indicated specifically providing verbal tech-
nical instructions (toe-to-heel strategy) [42] or not provid-
ing specific verbal technical instructions [39]. Section 4.7
highlights why instructions matter in relation to (resistance
to) fatigue.
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Finally, even though training under fatigued conditions
has advantages and will increase the validity of the training
environment in relation to the complexity of the real world,
there is no consistent evidence that fatigue actually causes
ACL injuries. We need to be careful about assigning a one-
to-one causality.

5 Conclusion

Sagittal plane variables at IC were mostly affected under the
single-leg hop for distance and sidestep cutting conditions
whilst peak angles were affected during a single-leg drop
jump. However, fatigue had no significant impact on most
of the kinetic and kinematic variables that were examined in
this analysis. Given the small number of variables affected
by fatigue, the question arises as to whether the fatigue path-
ways in play on the sports field are affected by the fatigue
protocols employed in the laboratory studies included in
this review. A revised approach to increase the resistance to
fatigue and decrease injury risk has been proposed. For those
professionals dealing with injury prevention, it is suggested
to appreciate the complexity of the human body and brain
and the interactions between those factors. A 50% level of
fatigue in a complex environment can result in increased
vulnerability to injury.
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