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Abstract

Rationale:Mediastinal lymph node (MLN) enlargement on chest
computed tomography (CT) is prevalent in patients with interstitial
lung disease (ILD) and may reflect immunologic activation and
subsequent cytokine-mediated immune cell trafficking.

Objectives:We aimed to determine whether MLN enlargement on
chest CT predicts clinical outcomes and circulating cytokine levels in
ILD.

Methods:MLN measurements were obtained from chest CT scans
of patients with ILD at baseline evaluation over a 10-year period.
Patients with sarcoidosis and drug toxicity–related ILD were
excluded. MLN diameter and location were assessed. Plasma
cytokine levels were analyzed in a subset of patients. The primary
outcome was transplant-free survival (TFS). Secondary outcomes
included all-cause and respiratory hospitalizations, lung function,
and plasma cytokine concentrations. Cox regression was used to
assess mortality risk. Outcomes were assessed in three independent
ILD cohorts.

Measurements and Main Results: Chest CT scans were assessed
in 1,094 patients (mean age, 64 yr; 52% male). MLN enlargement
(>10 mm) was present in 66% (n = 726) and strongly predicted TFS
(hazard ratio [HR], 1.53; 95%confidence interval [CI], 1.12–2.10;P =
0.008) and risk of all-cause and respiratory hospitalizations (internal
rate of return [IRR], 1.52; 95%CI, 1.17–1.98;P = 0.002; and IRR, 1.71;
95% CI, 1.15–2.53; P = 0.008, respectively) when compared with
subjects with MLN,10 mm. Patients with MLN enlargement had
lower lung function and decreased plasma concentrations of soluble
CD40L (376 pg/ml vs. 505 pg/ml, P = 0.001) compared with those
without MLN enlargement. Plasma IL-10 concentration.45 pg/ml
predicted mortality (HR, 4.21; 95% CI, 1.21–14.68; P = 0.024).
Independent analysis of external datasets confirmed these findings.

Conclusions:MLN enlargement predicts TFS and hospitalization
risk in ILD and is associated with decreased levels of a key circulating
cytokine, soluble CD40L. Incorporating MLN and cytokine findings
into current prediction models might improve ILD prognostication.

Keywords: interstitial lung disease; mediastinal lymph nodes;
mortality; pulmonary fibrosis

(Received in original form April 23, 2018; accepted in final form September 12, 2018 )

*These authors contributed equally to this work.

Supported by grants from the NIH (R21AI126031, K12HL119995, K23HL138190, R01AI125644, and R01HL130796)). The Kohn and Mitchell Family
Foundation also provided support for this study. Data from this study were provided by the Clinical Research Data Warehouse maintained by the Center for
Research Informatics at University of Chicago. The Center for Research Informatics is funded by the Biological Sciences Division, the Institute for Translational
Medicine/Clinical and Translational Science Award (NIH grant UL1 TR000430) at the University of Chicago.

Author Contributions: Conception and design: A.A., J.M.O., A.I.S., I.N., M.E.S., and J.H.C. Acquisition of data for the work: A.A., J.M.O., C.B., C.H., P.N.,
W.K., S.B., U.M., K.T., J.V.P., A.N.H., S.M.M., C.M.S., R.V., A.I.S., I.N., M.E.S., and J.H.C. Analysis and interpretation: A.A., J.M.O., C.B., C.H., P.N., W.K.,
S.B., U.M., K.T., J.V.P., A.N.H., S.M.M., C.M.S., R.V., A.I.S., I.N., M.E.S., and J.H.C. Drafting the manuscript for important intellectual content: A.A., J.M.O.,
C.B., C.H., P.N., W.K., S.B., U.M., K.T., J.V.P., A.N.H., S.M.M., C.M.S., R.V., A.I.S., I.N., M.E.S., and J.H.C. Critical revision for important intellectual content:
all authors.

Correspondence and requests for reprints should be addressed to Ayodeji Adegunsoye, M.D., Section of Pulmonary and Critical Care, Department of Medicine,
University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637. E-mail: deji@uchicago.edu.

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

Am J Respir Crit Care Med Vol 199, Iss 6, pp 747–759, Mar 15, 2019

Copyright © 2019 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.201804-0761OC on September 14, 2018

Internet address: www.atsjournals.org

Adegunsoye, Oldham, Bonham, et al.: Mediastinal Lymphadenopathy in ILD 747

http://orcid.org/0000-0002-7015-9610
mailto:deji@uchicago.edu
http://www.atsjournals.org
http://dx.doi.org/10.1164/rccm.201804-0761OC
http://www.atsjournals.org


Mortality in patients with interstitial lung
disease (ILD), which often results in
pulmonary fibrosis, has doubled during the
last three decades in the United States (1).
Although several common ILDs lead to
death within a few years of diagnosis,
substantial variability within and between
ILD subtypes makes outcome
prognostication challenging (2, 3). A
cornerstone of the ILD evaluation is high-
resolution computed tomography (CT) of
the chest (4), which can help differentiate
ILD subtypes (5). Parenchymal features of
ILD on high-resolution chest CT, including
fibrosis extent, mosaic attenuation, and
ground-glass opacities, have also been
associated with differential survival risk
(6–8).

Mediastinal lymph nodes (MLNs) are
often enlarged on chest CT scans in patients
with ILD, and they have been reported in up
to 70% of patients with a usual interstitial
pneumonia pattern (9, 10). The biology
underpinning MLN enlargement remains
unclear, but trafficking of immune cells
from the peripheral circulation through
MLNs to the lungs has been suggested
as contributory to pulmonary fibrosis
(11). Recent data also suggest that the
background lung microbiome may
influence the expression of genes with
known immunologic function, including
IL-6 and IL-10, which have been linked to
ILD outcomes (12, 13). We hypothesized
that radiologic enlargement of MLNs

(>10 mm) on chest CT scans has
prognostic value in ILD. In this
investigation, we aimed to determine
whether features of MLNs on chest CT
scans predict clinically relevant outcomes in
patients with ILD. We then assessed
whether MLN features are associated with
differential levels of clinically relevant
cytokines within the peripheral circulation
of these patients.

Methods

Study Design and Patient Selection
Our analysis used data collected from
subjects in the University of Chicago ILD
Registry, a prospectively acquired ILD
cohort. The University of Chicago
Institutional Review Board approved this
investigation (protocols nos. 14163-A
and 16-1062), and all patients signed
informed consent. Patients followed at our
institution between 2006 and 2016 with
multidisciplinary diagnosis of chronic
ILD according to American Thoracic
Society/European Respiratory Society
criteria (7, 8, 14–16) were screened.
Multidisciplinary diagnosis of ILD at our
institution is performed in a rigorous
fashion in conjunction with
pulmonologists, dedicated chest
radiologists, rheumatologists, and a
thoracic pathologist (17). Subjects in
whom chest CT scans were unavailable for
review or of poor diagnostic quality for
mediastinal assessment were excluded.
Subjects with sarcoidosis, drug
toxicity–related ILD, or confirmed or
suspected malignancy were excluded.
Subjects were eligible for study inclusion
when they had a multidisciplinary diagnosis
of ILD and a baseline chest CT scan
obtained at ILD diagnosis available for
review (see online supplement).

Data Collection
The electronic medical record was
retrospectively reviewed to extract pertinent
baseline variables from each patient’s initial
clinic visit, including demographic data
(age, race/ethnicity, and sex), tobacco use,
comorbid disease conditions (coronary
artery disease, diabetes mellitus,
gastroesophageal reflux, and
hypothyroidism), body mass index (BMI),
antinuclear antibody (ANA) titer,
pulmonary function tests (FVC, FEV1,
FEV1/FVC, and DLCO)], total white blood

cell (WBC) and absolute subset counts, and
high-resolution CT imaging findings
(honeycombing and emphysema). We
constructed the sex/age/physiology-ILD
score for study participants using the
previously recommended point-score
approach (18) that integrates patient-
specific variables (sex, age), disease-specific
variables (FVC, DLCO ), and ILD subtype
variable to yield a total point score that has
been shown to accurately predict mortality
in idiopathic pulmonary fibrosis (IPF) and
other chronic ILD subtypes at all stages of
disease.

Procedures

Chest CT image interpretation and
assessment of MLNs. Centralized analysis
and interpretation of baseline chest CT
scans obtained at ILD diagnosis was
performed by investigators (P.N., W.K.,
S.M.M, and J.H.C.) at the University of
Chicago (UCHICAGO) for the purpose of
this study. To ascertain our study findings,
we assessed three distinct ILD cohorts with
differing populations of ILD subtypes for
use as replication cohorts. Patients with
independently adjudicatedmultidisciplinary
diagnosis of ILD from four nontertiary
hospital centers were assessed for use as a
replication cohort (NONTERT) (see online
supplement). All available anonymized
chest CT images from patients enrolled in
the INSPIRE (Effect of Interferon Gamma-
1b on Survival in Patients with Idiopathic
Pulmonary Fibrosis Trial) trial (19, 20), as
well as from subjects in the University of
California Davis (UCDAVIS) ILD Registry,
a prospectively acquired ILD cohort, were
also assessed as additional replication
cohorts (see online supplement). All
radiologists were blinded to clinical and
outcomes data. Chest CT scans were
provided to radiologists for evaluation of
MLN features and to assess eligibility for
participation in the study. Prespecified
uniform criteria were used in performing
all MLN assessments and across all studies.
Radiologists underwent in-person hands-
on training before study initiation utilizing
nonstudy standard cases to solidify and
deploy an equivalent methodology and
scoring criteria.

Two radiologists (P.N. and W.K.)
independently measured the MLN
diameters to assess the reproducibility of
these measurements in the primary cohort.
Interobserver agreement was calculated

At a Glance Commentary

Scientific Knowledge on the
Subject: Enlarged mediastinal lymph
nodes are prevalent in patients with
interstitial lung disease. However, their
prognostic value or association with
circulating cytokine mediators in
interstitial lung disease is unknown.

What This Study Adds to the
Field: Mediastinal lymph node
enlargement is associated with survival
in patients with interstitial lung disease
and might be useful for risk
stratification. Additionally, mediastinal
lymph node enlargement is associated
with severity of lung function
impairment, risk of respiratory and all-
cause hospitalization, and decreased
plasma levels of soluble CD40 ligand.
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using kappa statistics. For any discrepancies
in categorization at the binary level, the
individual node measurement and MLN
location obtained by the radiologist with the
greatest experience in pulmonary imaging
was utilized. All images included were
obtained from multidetector row CT
scanners with contiguous images available
for reconstruction in the transaxial plane at
up to 1.0 mm thickness with an interval of
<0.4 mm. The performing radiologist
provided MLN measurements from the
reformatted imaging data using virtual
calipers. MLNs with a short-axis diameter
>10 mm were reported as enlarged (21–23).
MLN stations based on the International
Association for the Study of Lung Cancer
nomenclature were systematically assessed for
enlarged lymph nodes (22). As our study
objective was focused on lymph nodes in the
mediastinum (stations 1–9), hilar lymph
nodes (stations 10–14) were not assessed.
Discrete lymph nodes were identified and
exact measurements specified at each station.
In cases of lymph node conglomeration, the
whole station was measured.

Cytokine analysis. To elucidate the
relationship between cytokine
concentration and MLN features, we
analyzed a randomly generated subset of
patients with available plasma samples
obtained at baseline evaluation of ILD. In
this subset of patients followed at the
UCHICAGO, patients without enlarged
MLNs were matched 1:1 according to age,
sex, race, and ILD subtype to patients with
enlarged MLNs during the same time period
(see online supplement). As many patients
meeting criteria for interstitial pneumonia
with autoimmune features (IPAF) are
currently considered to be unclassifiable in
clinical practice (24, 25), we grouped
patients with IPAF and unclassifiable ILD
together, and all other ILDs into a separate
category, for further subgroup analyses of
cytokines. Plasma samples were obtained
and stored at 2808C until analysis. Plasma
concentrations of immunomodulatory
cytokines involved in innate and adaptive
immune responses were analyzed by
Multiplex bead array according to the
manufacturer’s protocol (Millipore) and
measurements were recorded (see online
supplement).

Follow-up and Endpoint of the Study
The primary endpoint of the study was
transplant-free survival (TFS) defined as
time from initial ILD evaluation to death or

lung transplantation, and it was evaluated
during the first 10 years in the UCHICAGO
and the NONTERT cohorts. All patients
were followed up until occurrence of death,
lung transplantation, end of study period, or
loss to follow-up. Person-time was averaged
at 30 days per month from initial ILD
evaluation to study endpoint. Vital status
was determined from review of medical
records, as well as from the Social Security
death index. Follow-up time was censored
on July 31, 2016. In the UCDAVIS and
INSPIRE replication cohorts, vital status was
recorded from the time of performing the
index CT scan to 3 years after study
enrollment. The secondary endpoints
included all-cause hospitalization and
respiratory hospitalization, lung function,
and plasma cytokine concentrations.
Participants were adjudicated to have a
respiratory hospitalization when the
primary reason for hospitalization was one
of the following: respiratory tract infection
or pneumonia, respiratory failure (requiring
mechanical ventilation), chronic obstructive
pulmonary disease exacerbation, physician-
diagnosed acute exacerbation of ILD,
pneumothorax, aspiration event, pulmonary
embolism, pulmonary hypertension, or
other acute respiratory worsening
presenting with increased dyspnea, hypoxia,
or respiratory distress. All-cause
hospitalization was adjudicated when
participants had any hospitalization event
including elective admission for lung
biopsy, or elective admission for lung
transplantation as previously described (26).

Statistical Analysis
Cox proportional hazard models were used
to determine the association between MLN
features on baseline chest CT scan and TFS.
Subgroups of the entire ILD cohort based on
MLN diameter (,10 mm and >10 mm)
were constructed and analyzed using
stratified unadjusted log-rank testing to
assess primary endpoint-free survival
between variable groups. These
subcategories were based on clinically
intuitive radiologic cutoffs. Cox models
adjusted for covariates that were
determined by stepwise selection of
pertinent patient characteristics considered
biologically relevant and that changed the
point estimates of the univariate association
with mortality by >10%. The reported
effect estimates of the adjusted model are
the coefficients after inclusion of covariates.
These include terms for hospital center, sex,

age, FVC, DLCO , ILD subtype, tobacco use,
BMI, immunosuppression, and antifibrotic
therapy, each measured at study
enrollment. Sensitivity analyses were
conducted testing the association between
TFS and total MLN count per subject using
univariate and multivariable Cox regression
models. In addition, we tested the
association between the primary endpoint
and a unit change in MLN diameter (mm)
using these Cox models. We further
analyzed the association of MLN
diameter with mortality within discrete
ILD subcategories. Sensitivity analyses
adjusting multivariable models for the
presence or absence of radiographic
honeycombing, as well as pulmonary artery
(PA) diameter measurements as a surrogate
for pulmonary hypertension, were also
conducted.

The effects of mediastinal features on
the secondary endpoints of hospitalization
were determined using a negative binomial
regression model. This model was chosen
over the Poisson regression model because
its mean structure contains an extra
parameter to model the observed
overdispersion within count data used to
represent the secondary endpoint.
Comparisons of patient characteristics were
determined by analyses of variance, two-
sided t tests, or chi-square tests, as
appropriate. Confidence limits for
Pearson chi-squared, t test, or F test
coefficients assessing the relationship
between MLN diameter and change in
FVC, DLCO , and cytokine concentrations
were based on 10,000 bootstrap
replications to improve precision at the
95% confidence interval (CI) level. P values
for cytokine comparisons between MLN
subgroups were Bonferroni adjusted, and a
correction for false discovery rates was
applied to values obtained for the cytokine
analysis (27). We tested the proportional
hazards assumption by examining covariate
effects over time and by regressing
Schoenfeld residuals over time in the Cox
survival models, and all models evaluated
passed this test. All statistical analysis was
conducted using Stata (2017 release 15;
StataCorp).

Results

Study Cohort
The baseline characteristics of the 1,094
patients included in the study are shown in
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Table 1. Mean age was 64 (612) years, 567
(52%) were men, and the mean percentage
predicted FVC and DLCO were 65 (619)
and 51 (622), respectively. Enlarged MLNs
were present in 726 (66%) of patients
(Table 1 and Figures E1 and E2 in the
online supplement).

The overall interobserver agreement for
measurements of mediastinal features was
.80% for all variables assessed (P,
0.0001; Table E1). When compared with
those without enlarged MLNs, study
participants with enlarged MLNs were
older (65 vs. 62 yr), more likely to be male
(61% vs. 35%), had greater number of
tobacco pack-years (19 vs. 12 pack-years),
had higher total WBC and lymphocyte

subset counts (9.6/ml vs. 8.4/ml and 1.8/ml
vs. 1.6/ml, respectively), and had more
high-resolution CT honeycombing (47% vs.
30%). Subjects with enlarged MLNs had
greater prevalence of coronary artery
disease (22% vs. 16%), greater PA diameter
(31 vs. 29 mm), and greater aorta diameter
(34 vs. 32 mm). Mean MLN diameters
stratified by baseline demographic
characteristics are shown in Table E2.
MLN diameters were greatest (13 mm) in
men, ever smokers, and patients with
chronic hypersensitivity pneumonitis
(Table E2).

When assessing individual ILD
categories, MLN enlargement was highly
prevalent among patients within the IPF

(36% vs. 23%; P, 0.001) and IPAF
diagnostic categories (18% vs. 10%; P,
0.001) when compared with those without
MLN enlargement. Conversely, fewer
patients had MLN enlargement within
the diagnostic categories of chronic
hypersensitivity pneumonitis (CHP; 11%
vs. 16%; P, 0.025) and chronic
hypersensitivity pneumonitis (CTD)–ILD
(18% vs. 30%; P, 0.001). There was no
significant difference in the prevalence of
MLN enlargement among patients with
unclassifiable ILD (18% vs. 22%; P = 0.152).

Primary Outcome Assessment
The risk of death was independently higher
in study participants with enlarged MLNs

Table 1. Baseline Characteristics of the Study Population

Characteristics
Total Population

(n = 1,094)
Mediastinal LN <10 mm

(n = 368)
Mediastinal LN >10 mm

(n = 726) P Value

Age, mean (6SD) 64.1 (12.0) 61.6 (13.7) 65.4 (10.8) ,0.001
Male sex, n (%) 567 (52.0) 128 (35.1) 439 (60.5) ,0.001
White race, n (%) 804 (73.7) 247 (67.7) 557 (76.7) 0.001
BMI, mean (6SD) 30.0 (6.7) 29.3 (6.7) 30.3 (6.7) 0.040
Tobacco, pack-years, mean (6SD) 16.5 (23 . 6) 11.6 (20.6) 19.0 (24.6) ,0.001
Gastroesophageal reflux, n (%) 453 (44.0) 149 (43.3) 304 (44.5) 0.716
CAD, n (%) 172 (20.4) 41 (15.8) 131 (22.4) 0.028
Diabetes mellitus, n (%) 161 (19.0) 47 (12.9) 114 (19.5) 0.630
Hypothyroidism, n (%) 175 (17.0) 64 (18.6) 111 (16.3) 0.344
FVC (% predicted), mean (6SD) 64.6 (18.5) 67.5 (18.9) 63.2 (18.1) ,0.001
FEV1 (% predicted), mean (6SD) 75.8 (20.9) 77.0 (21.2) 75.3 (20.7) 0.245
FEV1/FVC (% predicted), mean (6SD) 83.5 (8.7) 82.6 (9.0) 83.9 (8.5) 0.027
DLCO (% predicted) (6SD) 50.7 (21.5) 57.8 (24.1) 47.3 (19.2) ,0.001
Positive ANA titer, n (%) 498 (48.6) 151 (45.1) 347 (50.3) 0.117
WBC, mean (6SD) 8.9 (5.6) 8.4 (3.1) 9.6 (6.5) 0.009
Granulocytes, mean (6SD) 6.0 (2.7) 5.7 (2.5) 6.1 (2.7) 0.063
Lymphocytes, mean (6SD) 1.7 (0.9) 1.6 (0.8) 1.8 (0.9) 0.035
Monocytes, mean (6SD) 0.6 (0.4) 0.6 (0.3) 0.7 (0.5) 0.281
Eosinophils, mean (6SD) 0.3 (0.5) 0.2 (0.5) 0.3 (0.6) 0.225
Basophils, mean (6SD) 0.1 (0.5) 0.0 (0.1) 0.1 (0.5) 0.307

CRP, mean (6SD) 10.9 (30.3) 10.7 (25.6) 10.9 (32.3) 0.922
Immunosuppressive therapy, n (%) 706 (67.3) 420 (67.4) 286 (67.1) 0.924
Patients with HRCT honeycombing, n (%) 403 (41.3) 94 (29.6) 309 (47.0) ,0.001
Patients with HRCT emphysema, n (%) 260 (24.6) 79 (22.4) 181 (25.6) 0.261
PA diameter, mean (6SD) 30.0 (4.8) 28.5 (4.4) 30.7 (4.9) ,0.001
Aorta diameter, mean (6SD) 33.6 (4.3) 32.4 (4.2) 34.2 (4.2) ,0.001
ILD subtype, n (%)
IPF 342 (31.3) 84 (22.8) 258 (35.5) ,0.001
IPAF 168 (15.3) 36 (9.8) 132 (18.2) ,0.001
CHP 136 (12.4) 57 (15.5) 79 (10.9) 0.025
CTD-ILD 239 (21.8) 111 (30.2) 128 (17.6) ,0.001
Unclassifiable 209 (19.1) 80 (21.7) 129 (17.8) 0.52

Definition of abbreviations: ANA = antinuclear antibody; BMI = body mass index; CAD = coronary artery disease; CHP = chronic hypersensitivity
pneumonitis; CRP = C-reactive protein; CTD = chronic hypersensitivity pneumonitis; GER = gastroesophageal reflux; HRCT = high-resolution computed
tomography; ILD = interstitial lung disease; IPAF = interstitial pneumonia with autoimmune features; IPF = idiopathic pulmonary fibrosis; LN = lymph node;
PA = pulmonary artery; WBC=white blood cells.
All entries represent original data without imputed values. Exception for baseline characteristics: BMI, n = 925; GER, n = 1029; CAD, n = 844; diabetes,
n = 846; FVC, n = 986; FEV1, n = 977; FEV1/FVC, n = 965; DLCO, n = 968; ANA, n = 1,027; WBC, n = 695; CRP, n = 646; immunosuppressive therapy, n =
1,049; HRCT honeycombing, n = 979; HRCT emphysema, n = 1,062. Pack-years are presented for former and current smokers only. Positive ANA titer:
ANA> 1:320.
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(HR, 1.53; 95% CI, 1.12–2.10; P = 0.008)
compared with subjects without enlarged
MLNs (Table 2 and Figures 1 and 2).
Substratification of the enlarged MLN
cohort demonstrated a location-dependent
effect on survival. After adjusting for study
covariates, the increased mortality hazard
differed between subjects with enlarged
paratracheal MLNs (HR, 1.52; 95% CI,
1.11–2.09; P = 0.01) and subjects with lower
zone MLNs (HR, 2.10; 95% CI, 1.01–4.35;
P = 0.046) in comparison to subjects
without enlarged MLNs (Table 2 and
Figure 2). Study participants in the primary
cohort with two or more enlarged MLNs
had a 12% increase in the mortality hazard
for each additional enlarged MLNs when
compared with those without enlarged
MLNs (HR, 1.12; 95% CI, 1.04–1.20; P =
0.003). These findings were replicated in
three independent ILD cohorts, that is,
NONTERT (a predominantly unclassifiable
ILD population), INSPIRE (20) (an IPF
population), and UCDAVIS (a
predominantly IPF and CHP population)
(Tables 2, E3–5, and Figure 1).

Sensitivity analyses testing the linear
association between TFS andMLN diameter
demonstrated a 5% rise in mortality with
every 1-mm increase in MLN diameter
when .10 mm (HR, 1.05; 95% CI,

1.04–1.08; P , 0.001). The increased
mortality hazard remained consistent after
adjusting for study covariates including
hospital center, sex, age, FVC, DLCO ,
ILD subtype, tobacco pack-years, BMI,
hypothyroidism, immunosuppression, and
antifibrotic therapy (HR, 1.05; 95% CI,
1.03–1.07; P, 0.001). Cohort
subclassification by discrete ILD subtypes
demonstrated consistency in the trend to
increased mortality with enlarged MLNs
(Figure E3). Sensitivity analyses adjusting
for smoking demonstrated that between-
group differences in soluble CD40 ligand
(sCD40L) concentrations occurred
independent of smoking (UCHICAGO,
1,322 vs. 529, P = 0.015; UCDAVIS, 490 vs.
327, P = 0.034). Analyses adjusting for the
presence or absence of radiographic
honeycombing demonstrated that the
presence of MLN enlargement predicts TFS
(HR, 1.45; 95% CI, 1.06–1.99; P = 0.022)
and respiratory hospitalization (internal
rate of return [IRR], 1.62; 95% CI,
1.09–2.41; P = 0.017) independent of
radiographic honeycombing. Additional
sensitivity analyses adjusting for PA
diameter measurements as a surrogate
for pulmonary hypertension (28–30)
demonstrated that presence of MLN
enlargement predicts TFS and respiratory

hospitalization independent of PA diameter
(HR, 1.53; 95% CI, 1.11–2.10, P = 0.009 and
IRR, 1.57, 95% CI, 1.05–2.34, P = 0.028,
respectively) or PA/aorta ratio (HR, 1.51;
95% CI, 1.10–2.08; P = 0.012 and IRR, 1.69;
95% CI, 1.14–2.51; P = 0.009, respectively).

Inclusion of MLN enlargement
into our statistical risk prediction models
demonstrated a modest improvement in
model discrimination for the combined
cohorts (Table E6).

Secondary Outcome Assessment

All-cause hospitalizations, respiratory
hospitalizations, and pulmonary function.
When assessing the secondary study
endpoints, all-cause and respiratory
hospitalization risks rose with increasing
MLN diameter (Figure E4). In comparison
to subjects without enlarged MLNs, those
with enlarged MLNs had increased risks of
all-cause and respiratory hospitalization
(IRR, 1.54; 95% CI, 1.22–1.95; P, 0.001
and IRR, 1.55; 95% CI, 1.10–2.19; P = 0.012,
respectively) even after adjusting for study
covariates (IRR, 1.52; 95% CI, 1.17–1.98;
P = 0.002 and IRR, 1.71; 95% CI, 1.15–2.53;
P = 0.008, respectively; Table 3 and Figure
E4). The presence of abnormal MLNs in
“paratracheal” or “lower zone” MLN

Table 2. Mortality Risk by Mediastinal Lymph Node Characteristics in Patients with Interstitial Lung Disease

Characteristic

Primary Cohort:
UCHICAGO (n = 1,094)

Replication Cohort 1:
INSPIRE (n = 228)

Replication Cohort 2:
NONTERT (n = 250)

Replication Cohort 3:
UCDAVIS (n = 215)

HR (95% CI)
P

Value HR (95% CI)
P

Value HR (95% CI)
P

Value HR (95% CI)
P

Value

Univariate Cox regression
MLN* >10 mm 1.91 (1.46–2.50) ,0.001 1.96 (1.00–3.81) 0.048 1.79 (1.13–2 . 84) 0.013 3.78 (1.62–8.82) 0.002
PT MLN station* (stations
1–7)

1.92 (1.46–2.52) ,0.001 1.82 (0.92–3.59) 0.085 1.79 (1.13–2.84) 0.013 3.53 (1.50–8.33) 0.004

LZ MLN station* (stations 8
and 9)

2.57 (1.42–4.64) 0.002 4.64 (1.32–16.4) 0.017 — — 5.27 (1.09–25.48) 0.039

MLN count* 1.25 (1.17–1.33) ,0.001 1.33 (0.96–1.83) 0.083 1.21 (1.00–1.45) 0.046 1.51 (1.16–1.97) 0.002
Multivariable Cox regression†

MLN* >10 mm 1.53 (1.12–2.10) 0.008 2.50 (1.01–6.22) 0.048 2.12 (1. 09–4.13) 0.028 3.54 (1.41–8.93) 0.007
PT MLN station* (stations
1–7)

1.52 (1.11–2.09) 0.010 2.15 (0.85–5.49) 0.132 2.12 (1.09–4.13) 0.028 3.51 (1.38–8.88) 0.008

LZ MLN station* (stations 8
and 9)

2.10 (1.01–4.35 0.046 6.16 (1.53–24.7) 0.010 — — 3.50 (0.64–19.03) 0.147

MLN count* 1.12 (1.04–1.20) 0.003 1.34 (0.91–1.97) 0.138 1.66 (0.86–3.23) 0.132 1.52 (1.13–2.04) 0.006

Definition of abbreviations: CI = confidence interval; HR = hazard ratio; ILD = interstitial lung disease; INSPIRE = Effect of Interferon Gamma-1b on Survival
in Patients with Idiopathic Pulmonary Fibrosis Trial; LZ = lower zone; MLN=mediastinal lymph node; NONTERT = nontertiary hospital cohort with
adjudicated multidisciplinary interstitial lung disease diagnosis; PT = paratracheal; UCDAVIS = University of California Davis; UCHICAGO=University of
Chicago.
In the INSPIRE cohort, 228 patients had high-resolution computed tomography of acceptable quality available for mediastinal evaluation.
*Compared to patients without enlarged MLN (i.e., MLN ,10 mm).
†Adjusted for sex, age, FVC, DLCO, ILD subtype, tobacco pack-years, body mass index, immunosuppressive therapy, antifibrotic therapy, and hospital
center.
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stations also independently predicted all-
cause hospitalization (IRR, 1.46; 95% CI,
1.12–1.90; P = 0.005 and IRR, 3.52; 95% CI,
2.02–6.13; P, 0.001, respectively) and
respiratory hospitalization (IRR, 1.59; 95%
CI, 1.07–2.36; P = 0.021 and IRR, 4.58; 95%
CI, 2.11–9.96; P , 0.001, respectively).
Patients with two or more enlarged MLNs
had increased risk of all-cause and
respiratory hospitalization (IRR, 1.51; 95%

CI, 1.19–1.93; P = 0.001 and IRR, 1.63; 95%
CI, 1.14–2.33; P = 0.007, respectively) when
compared with patients with fewer than
two MLNs (Table 3). When assessing lung
function, patients with enlarged MLNs had
substantially worse lung function compared
with those without enlarged MLNs (FVC,
63% vs. 68%; P, 0.001; DLCO, 47% vs.
58%; P , 0.001; Table 1 and Figure E5).
However, total count of enlarged MLNs per

patient demonstrated a weak association
with baseline FVC (r =20.12, P = 0.0001)
and DLCO (r =20.27, P, 0.0001).

Plasma cytokine concentration. The
randomly generated patient subset with
available baseline plasma samples consisted
of 116 participants. Plasma levels of cytokine
sCD40L differed significantly between
patients with and without enlarged MLNs
(Tables E7 and E8). Median plasma sCD40L
concentration was decreased in patients
with MLN enlargement compared with
patients without enlarged MLNs (376 vs.
505 pg/ml, P = 0.0015; Tables 7 and 8).
Subgroup analyses demonstrated a more
profound decrease in plasma sCD40L
concentration within the subset with
unclassifiable ILD or IPAF (861.14 vs.
484.80 pg/ml, P = 0.002) than in the subset
with IPF, CHP, or CTD-ILD (409.87 vs.
356.35 pg/ml, P = 0.070; Figure 3 and
Tables E9 and E10). Similarly, the plasma
concentration of epidermal growth factor
(EGF) was decreased in patients with MLN
enlargement compared with patients
without enlarged MLNs within the subset
with unclassifiable ILD or IPAF (38.82 vs.
29.26 pg/ml, P = 0.027), unlike in the subset
with IPF, CHP, or CTD-ILD (26.46 vs.
28.77 pg/ml, P = 0.487; Figure 3 and
Table E10). Conversely, median plasma
concentration of macrophage inflammatory
protein-3 (MIP3a, or CCL20) was increased
although not statistically significant (21 vs.
31 pg/ml, P = 0.137), even when assessing
the subset with unclassifiable ILD or IPAF
(P = 0.847), and within the subset with IPF,
CHP, or CTD-ILD (P = 0.089; Figure 3).
These findings were independently
replicated in the UCDAVIS cohort
(Figure 3 and Tables E9 and E10).
Stratification by MLN location within the
chest revealed no differences in plasma
cytokine levels (Tables E11 and E12).

Analysis of the top differing cytokines
by MLN enlargement revealed differences in
correlation between these inflammatory
modulators and key clinical variables
(Figure 4). Among subjects without
enlarged MLNs, tobacco exposure
correlated positively with sCD40L, EGF,
eotaxin, IL-4, and IL-9 (r = 0.49, P = 0.003;
r = 0.46, P = 0.008; r = 0.47, P = 0.007; r =
0.50, P = 0.004; and r = 0.45, P = 0.01,
respectively) whereas serum ANA titers
correlated positively with eotaxin alone (r =
0.43, P = 0.01). Conversely, among subjects
with enlarged MLNs, tobacco exposure
correlated negatively with circulating levels
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Figure 1. Mediastinal lymph node (MLN) features in interstitial lung disease and distinctive survival
patterns. (A–D) Survival pattern by MLN diameter in University of Chicago (UCHICAGO) cohort
(A), nontertiary medical centers (NONTERT) (B), INSPIRE cohort (C), and University of California
Davis (UCDAVIS) cohort (D). In the INSPIRE cohort, 228 patients had high-resolution computed
tomography scans of acceptable quality for mediastinal evaluation. INSPIRE = Effect of Interferon
Gamma-1b on Survival in Patients with Idiopathic Pulmonary Fibrosis Trial.
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of sCD40L (r = –0.39, P = 0.02) but
positively with MIP-3a, vascular endothelial
growth factor, and IL-33 (r = 0.48, P =
0.004; r = 0.48, P = 0.004; and r = 0.48, P =
0.004, respectively). Within this subgroup,
total WBC count also correlated negatively
with IL-3 and IL-9 (r = –0.48, P = 0.004 and
r = 0.40, P = 0.02, respectively). Importantly,
only elevated plasma IL-10.45 pg/ml

independently predicted mortality (HR, 4.21;
95% CI, 1.21–14.68; P = 0.024), and this
finding was independently replicated in the
UCDAVIS cohort (Figure E6 and Table E13).

There were no significant differences
(P = 0.68) in the use of immunosuppression
between patients with and without enlarged
MLNs. Furthermore, results remained
consistent after excluding all subjects who

had received immunosuppressive therapy
in the cytokine subset. We also did not
find immunosuppressive therapy use
as an independent predictor of MLN
enlargement in the cytokine subset or in the
overall UCHICAGO, NONTERT, and
UCDAVIS replication cohorts (P = 0.26,
0.75, and 0.88, respectively, multivariable
regression model).
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Figure 2. Mediastinal lymph node (MLN) location predicts mortality risk. (A) Digital representation of enlarged mediastinal lymph nodes stations .10 mm.
(B) Survival pattern by MLN station. LZ = lower zone (International Association for the Study of Lung Cancer Lymph node stations 8–9); PT = paratracheal
(International Association for the Study of Lung Cancer lymph node stations 1–7).

Table 3. Risk of All-Cause and Respiratory Hospitalization in Patients with Interstitial Lung Disease

Characteristic

Unadjusted (n = 1,094) Adjusted (n = 880)

IRR 95% CI P Value IRR 95% CI P Value

All-cause hospitalization
MLN* >10 mm 1.54 1.22–1.95 ,0.001 1.52 1.17–1.98 0.002
PT MLN station* (stations 1–7) 1.48 1.17–1.88 0.001 1.46 1.12–1.90 0.005
LZ MLN station* (stations 8 and 9) 2.67 1.62–4.41 ,0.001 3.52 2.02–6.13 ,0.001
MLN count† 1.55 1.25–1.93 ,0.001 1.51 1.19–1.93 0.001

Respiratory hospitalization
MLN* >10 mm 1.55 1.10–2.19 0.012 1.71 1.15–2.53 0.008
PT MLN station* (stations 1–7) 1.46 1.03–2.06 0.034 1.59 1.07–2.36 0.021
LZ MLN station* (stations 8 and 9) 3.19 1.61–6.30 0.001 4.58 2.11–9.96 ,0.001
MLN count† 1.63 1.18–2.24 0.003 1.63 1.14–2.33 0.007

Definition of abbreviations: CI = confidence interval; ILD = interstitial lung disease; IRR = incidence rate ratio; LZ = lower zone; MLN=mediastinal lymph
node; PT = paratracheal.
Results are adjusted for sex, age, FVC, DLCO, ILD subtype, tobacco pack-years, body mass index, immunosuppressive therapy, and hospital center.
*Compared to patients without any enlarged MLN (i.e., MLN ,10 mm).
†Comparing subjects with >2 MLN to subjects with ,2 MLN.
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Discussion

The central finding of this study is that
identification of enlargedMLNs on chest CT
at baseline ILD evaluation is associated with
increased mortality, worse lung function,
and increased risk of hospitalization. We
also report for the first time that increased
MLN diameter is associated with a greater
proportion of circulating lymphocytes,
lower plasma concentration of cytokine
sCD40L, as well as a change in correlation
between key immunomodulatory cytokines
and baseline variables of importance in ILD.
This raises the possibility that clinically
significant increase in MLN size may be
reflective of underlying immunologic
phenomena in patients with advanced ILD.
Clinical outcomes varied with the size,
location, and number of enlarged MLNs,
indicating significant involvement of the
immune system in the pathobiology of ILD.
Importantly, patients with the greatest

circulating levels of IL-10 in our study
had the worst survival. In addition, we
demonstrate the consistency of these
findings across tertiary and nontertiary
medical centers, and in an independent
nationally acquired ILD dataset.

Several factors support the hypothesis
that enlarged MLNs are of prognostic value
in ILD. First, there is a strong biologic
rationale for MLN assessment in thoracic
disease. Pulmonary disorders with a robust
immunologic response are frequently
characterized by enlarged MLNs (31–37),
which are a hallmark of ongoing immune
response within the tissue. We have
recently demonstrated that IPF lungs
contain high numbers of immune cells,
especially T cells, and that these T cells
have distinct phenotypic markers when
compared with lung T cells from patients
without fibrotic lung disease (11). We
found these same phenotypic differences in
the MLNs, which suggests the trafficking of

effector immune cells from the lungs to the
MLNs (11). These findings suggest that
enlargement and changes in cellular
composition of MLNs may contribute to
the pathophysiology of disease progression
in pulmonary fibrosis. However, MLN
enlargement may also be a marker of
disease severity or a hallmark of a
protective immune response that increases
with disease severity. Second, the total
number of enlarged MLNs has previously
been linked to the severity of pulmonary
fibrosis in ILD (38). Third, radiologic MLN
assessment has been repeatedly
demonstrated to be critical in staging and
prognostication of numerous pulmonary
diseases, including sarcoidosis and lung
cancer (22, 39–42). Increased MLN size has
been strongly linked to more advanced
stages of malignancy and greater mortality
(43, 44). Fourth, there is abundant evidence
in health and disease that noninvasive CT
assessment of MLN enlargement correlates
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Figure 4. Correlation of top cytokines with clinically acquired biologic variables stratified by mediastinal lymph node (MLN) size. Left panel depicts
correlation matrix for MLNs ,10 mm, whereas right panel depicts correlation matrix for MLNs >10 mm. Cytokine correlation with clinical variable was
determined by Pearson’s correlation algorithm and is displayed in the corresponding box (coefficient of r value on top and P value in parentheses). The
color of each box represents the directionality of the correlation (red indicates positive correlation; green indicates negative correlation). The bar below
scales the degree of correlation. Pearson’s correlation was used to determine the significance of correlation (P, 0.05) between the concentrations of
individual cytokines with clinical variables as shown above. ANA = antinuclear antibody; BMI = body mass index; CRP =C-reactive protein; PA/A =
pulmonary artery/aorta ratio; WBC=white blood cell.
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fairly well with more invasive techniques
such as endobronchial ultrasound
measurements (21, 45). Thus, preliminary
CT evaluation is almost always used
to guide MLN sampling and tissue
procurement for diagnosis and planning
therapy. Taken together, these findings
strongly suggest that MLN assessment is an
important determinant of outcomes.

The results of this investigation support
the utility of noninvasive MLN assessment
on routinely obtained CT at baseline ILD
evaluation. We highlight the value of this
technique for predicting ILD
subpopulations with differential survival
patterns, hospitalization risk, and
differences in lung function severity at
baseline. Importantly, our results show that
the absence of MLN enlargement identifies a
subset of patients with ILD who have a
significant survival advantage and possibly a
unique clinical phenotype. The consistency
of our findings in diverse ILDs and across
tertiary and nontertiary centers provides
evidence for the potential inclusion of MLN
assessment into risk prediction models as a
powerful and reliable index providing added
value to established prognostic metrics such
as the sex/age/physiology score (18, 46).
Although our results demonstrated
consistency across all major ILD categories,
the MLN findings were most striking
within the IPAF and unclassifiable ILD
subgroups, both of which are
heterogeneous disease categories that likely
include patients spanning the spectrum of
more IPF-like to more non–IPF-like. The
stronger association of MLN enlargement
with outcomes in IPF compared with CHP
or CTD-ILD may indicate the potential
value of MLN enlargement and plasma
cytokines (sCD40L and EGF) in the
subclassification of ILD subtypes currently
deemed unclassifiable.

Our study demonstrates key
pathobiologic differences between patients
with and without enlarged MLNs. Notably,
tobacco exposure and positive ANA titers
are prevalent in patients with ILD (47), and
the observed subgroup-related differences
in plasma cytokine correlation implicates
specific cytokine responses in these
exposure-linked processes. This
investigation also revealed differences in the
plasma concentrations of multiple
cytokines among patients with enlarged
MLNs. Of these, the most significant
change was the reduction in plasma
concentration of sCD40L, a well-known

immunomodulatory factor (48). The
CD40/CD40L signaling pathway is
fundamental to dendritic cell activity with
an immunosuppressive effect in chronic
disease states (48, 49). sCD40L is released
after cleavage of CD40L from the cell
surface of activated T cells and can induce
activation and differentiation of B cells (40).

In recent studies, circulating levels of
sCD40L and IL-12 increased after treatment
with rituximab, a chimeric monoclonal anti-
CD20 antibody that depletes peripheral
B cells (50, 51). Likewise, a rituximab-
mediated increase in the acute production
and release of IL-6 has been demonstrated
in vitro (52). Interestingly, all three
cytokines were decreased in our study
cohort with enlarged MLNs, and this
patient subgroup had concurrently worse
clinical outcomes. An ongoing study is
currently evaluating the beneficial
therapeutic effect of VAY736, a fully
human IgG1 monoclonal antibody that,
similar to rituximab, targets B cells in
patients with IPF and coexistent MLN
enlargement, lending credence to the
hypothesis that elevating plasma levels of
sCD40L, IL-12p70, and IL-6 in the
circulation might be protective in fibrotic
ILD and lead to more favorable prognosis
(ClinicalTrials.gov no. NCT03287414).

EGF is a mitogenic protein with high
affinity for its tyrosine kinase receptor—
EGF receptor (EGFR) (53). Alveolar
upregulation of EGFR occurs in several ILD
subtypes, including IPF, fibrotic NSIP, and
cryptogenic organizing pneumonia,
suggesting an important role for EGFR in
the pathogenesis of abnormal
reepithelialization (54–56). Furthermore,
inhibition of EGFR has been strongly
linked to ILD pathogenesis, with EGFR
inhibitor therapy frequently resulting in the
development and worsening of ILD
(57–59). Our findings of reduced plasma
EGF concentration in the ILD subset with
enlarged MLNs further strengthen the
pathobiology linking the EGFR pathway to
ILD risk and disease severity.

Also, we observed a detrimental effect
of elevated IL-10 plasma levels in both
patients with MLN enlargement and those
without enlarged MLNs. The anti-
inflammatory cytokine IL-10 regulates
proinflammatory responses and is deemed
critically important to the pathologic
processes that determine chronicity of
pulmonary fibrosis (60–62). Circulating
fibrocytes involved in tissue fibrosis are

significantly elevated in patients with IPF,
and preclinical models have associated the
overexpression of circulating IL-10 with
fibrocyte recruitment (61, 63). In addition,
hyperplastic alveolar epithelial cells within
lung biopsies from patients with IPF are a
prominent source of IL-10, and continued
cellular production could amplify the
processes leading to pulmonary fibrosis
(64). Our study demonstrates increased
mortality in patients with elevated
circulating levels of IL-10, underscoring its
potential utility as a cytokine biomarker for
disease progression in ILD.

The expansion of circulating
lymphocytes in the subpopulation with
enlarged MLNs supports the concept that
altered gene expression patterns of
immunologic pathways initiate and amplify
the processes that determine progression of
pulmonary fibrosis (13, 65). As
dysregulated immune signaling and
aberrant innate immune responses
characterize disease progression and are
associated with altered circulating leukocyte
phenotypes, the enlarged MLNs in
pulmonary fibrosis may be structural
evidence of the increased lymphocyte
trafficking that occurs during this process.
Interestingly, differences in circulating
levels of MIP3a between both subgroups
were remarkable and approached statistical
significance. MIP3a is a chemokine
expressed in lymph nodes and is strongly
chemotactic for lymphocytes and dendritic
cells (66, 67). The increased plasma level of
MIP3a suggests its involvement in the
processes leading to MLN enlargement in
patients with ILD. Our findings are
consistent with previous studies that
negatively correlated increased gene
expression of specific immunomodulatory
pathways with TFS in fibrotic ILD (13).
Interestingly, the top canonical pathways
with upregulated genes enriched in IPF
include IL-10, IL-17A, and IL-6 signaling
pathways (13, 65); these same cytokines
were among the top immunomodulatory
mediators that differed when comparing our
study subpopulation with MLN enlargement
to those without enlarged MLNs.

Our study had several limitations. First,
although most CT scans available for review
were high-resolution ILD protocol images,
baseline chest CT scans for a few patients
were standard chest CT scans, and we
acknowledge the differences in these
imaging modalities for evaluating
parenchymal abnormalities. However, all
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included CT scans in our study had
appropriate image quality for MLN
assessment. Furthermore, our study
encompasses a longitudinal ILD cohort
acquired during a decade and the variation
in CT image quality may reflect advances in
radiologic diagnostic techniques during
this period. Second, for consistency in
terminology, our MLN assessment was
strictly restricted to thoracic lymph node
stations within the mediastinum (superior
mediastinal, inferior mediastinal, para-
aortic, and subaortic nodal stations) as
defined by International Association for the
Study of Lung Cancer nomenclature (68).
Thus, hilar and interlobar lymph nodes
were not assessed. Third, our observations
of intrathoracic MLN enlargement might
have been concurrent with extrathoracic
lymphadenopathy as part of a generalized
process. However, our study was focused

on thoracic lymph nodes and not designed
to assess other regional lymph nodes for
enlargement. Fourth, the results of this
investigation are from analyses of data
acquired from healthcare settings that may
potentially be affected by selection biases
and not represent the general population.
However, the prevalence of MLN
enlargement in the general population is
unknown, and most data in ILD are
obtained from subjects evaluated within
the healthcare setting. To minimize the
influence of healthcare-related effect
modifiers on MLN characteristics, we
utilized only baseline variables and CT scans
obtained at initial ILD evaluation for
assessing MLN features. The replication of
our results across tertiary and nontertiary
medical centers, as well as in an independent
nationally acquired ILD cohort, strengthens
the external validity of these findings.

Conclusions
MLN enlargement strongly predicts clinical
outcomes in patients with ILD. Targeting
MLN parameters similar to those of healthy
subjects may improve prognosis in ILD;
therefore, future studies are needed to
determine the value of MLN assessment in
predicting response to therapy. n
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