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Abstract Chronic sympathetic nervous system
overactivity is a hallmark of aging and obesity
and contributes to the development of cardiovascu-
lar diseases including hypertension and heart fail-
ure. The cause of this chronic sympathoexcitation
in aging and obesity is multifactorial and centrally
mediated. In this mini-review, we have provided an
overview of the key and emerging central mecha-
nisms contr ibut ing to the pathogenesis of
sympathoexcitation in obesity and healthy aging,
specifically focusing on hypertension. A clear un-
derstanding of these mechanisms will pave way for
targeting the sympathetic nervous system for the
treatment of cardiovascular diseases in obesity and
aging.
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Introduction

It is now widely accepted that the risk of obesity mark-
edly increases with aging. Currently, around 35% of
adults aged 65 and older are obese with a body mass
index of 30.0 or higher and it is projected to worsen
where half of the elderly population will become obese
by 2030 in the USA (Wang et al. 2007). On the other
hand, obesity is associated with accelerated aging evi-
dent from increased susceptibility for age-related dis-
eases and mortality in obese individuals (Perez et al.
2016). Obesity and aging share increased risk for car-
diovascular diseases like hypertension, myocardial in-
farction, stroke, and heart failure. A systemic, low-grade
pro-inflammatory state called Binflammaging^ is be-
lieved to underlie many of the pathologies associated
with aging and obesity. In addition, autonomic dysfunc-
tion, especially sympathetic nerve overactivity is in-
creasingly recognized as a hallmark feature linking ag-
ing and obesity with increased cardiovascular risk
(Fisher et al. 2009; Malpas 2010; Zucker et al. 2012).

Tonic sympathetic nerve discharge from the central
nervous system plays a major role in the maintenance of
resting vasomotor tone. In addition to blood pressure
homeostasis through modulation of arterial baroreflex,
the sympathetic nervous system (SNS) is also involved
in the regulation of other physiological processes in-
cluding metabolism and renal functions (Guyenet
2006). However, chronic increases in sympathetic nerve
activity (SNA) have been documented to result in hy-
pertension (Lambert et al. 2007), diastolic dysfunction
(de Souza et al. 2013), increase in ventricular and aortic
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wall thickness (Dinenno et al. 2000), endothelial dys-
function (Hijmering et al. 2002), renal failure (Grassi
et al. 2011), and metabolic dysfunction (Moreira et al.
2015), all of which increase the risk for cardiovascular
events. Over the last few decades, the neuronal mecha-
nisms that contribute to the sympathetic overactivity
were studied in great detail only with limited success
in the prevention of sympathetic overactivity under
pathophysiological conditions. This is mainly attributed
to the differential changes in sympathetic outflow to
end-organs, i.e., the SNS activity is increased to the
kidney in congestive heart failure, whereas it is not
altered to the gut or liver (Kaye and Esler 2005). These
region-specific changes in SNA are referred to as
Bsympathetic signature^ which is seen in a variety of
conditions including, but not limited to, aging and obe-
sity (Osborn and Kuroki 2012; Subramanian and
Mueller 2016). In this review, we have discussed the
remarkable similarities in aging and obesity with respect
to SNS dysregulation in cardiovascular diseases with a
specific focus on hypertension. We have attempted to
compare and contrast the mechanisms that contribute to
the activation of SNS in both obesity and aging. It is also
important to note that the elderly population is more
vulnerable to the deleterious effects of obesity than
young individuals suggesting that aging and obesity
synergistically interact to exacerbate the adverse effects
on the cardiovascular system. We have provided some
insights into how cellular senescence, a basic mecha-
nism of aging, could mediate the interaction between
aging and obesity and potentially be a target for manag-
ing cardiovascular risk in aging and obesity.

Central regulation of sympathetic outflow

The sympathetic outflow originating from the central
nervous system (CNS) involves an integration of multi-
ple neural and hormonal inputs within the cardiovascu-
lar regions of the hypothalamus and brainstem. In par-
ticular, the paraventricular nucleus (PVN) of the hypo-
thalamus and rostral ventrolateral medulla (RVLM) of
the brainstem contains neurons that project directly to
the intermediolateral cell column (IML) of the spinal
cord, which innervates sympathetic preganglionic neu-
rons and generates SNA to end organs via postgangli-
onic neurons (Dampney 1994; Guyenet 2006). The
activity of the neurons within the RVLM is modulated
by excitatory or inhibitory neurotransmitters that are

intrinsically produced or from inputs from other higher
centers such as the PVN (Dampney 1994). In addition,
the circumventricular organs like the subfornical organ
(SFO) and area postrema (AP) that lack blood-brain
barrier respond to circulatory molecules by transducing
these signals to other regions of the brain and play an
indirect role in modulating sympathetic outflow. Fur-
ther, the neuronal population within the RVLM is not
homogenous in nature with respect to generation of
SNA to peripheral tissues. The topographical organiza-
tion and neuroplasticity of sub-population of neurons
within the RVLM have been attributed to differential
responses in SNA to end organs contributing to the
sympathetic signature in disease conditions (Ootsuka
and Terui 1997, Subramanian and Mueller 2016). Sev-
eral key and emerging central mechanisms by which
overactivity of the SNS could contribute to end-organ
damage in obesity and aging are discussed in the fol-
lowing sections.

Obesity and aging share outcomes on blood pressure
and sympathetic nervous system activity

The risk for cardiovascular diseases dramatically in-
creases in overweight or obese individuals compared to
individuals with normal BMI. A recent longitudinal study
carried out in almost 60,000men andwomen demonstrate
BMI as the strong predictor of future changes in blood
pressure. A 5 kg/m2 higher BMI at age 30 was associated
with a 2.12 mmHg increase in mean arterial pressure over
10 years (Van Hemelrijck et al. 2018), thus confirming
several other previous reports on obesity-induced risk for
hypertension (Rabkin et al. 1997; Huang et al. 1998;
Forman et al. 2009; Juonala et al. 2011). This obesity-
related increase in blood pressure roughly translates to a
12% increased risk for coronary heart disease (CHD) and
24% increased risk for stroke. A similar outcome is also
observed in the aging population. The National Health
and Nutrition Examination Survey (NHANES III) and
longitudinal aging studies like Framingham Heart study
(Franklin 1999) and the Baltimore Longitudinal study
(AlGhatrif et al. 2013) have shown a continuous increase
in systolic blood pressure and a gradual decrease in
diastolic blood pressure with age (systolic hypertension).
In the aging population of 65 years or older, cardiovas-
cular diseases are the number one cause of all reported
deaths and hypertension contributes at least in part to this
phenomenon (Writing Group et al. 2016). Although an
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increase in BMI is positively associated with the increase
in blood pressure in obesity and aging, it is important to
note that not everyone with a higher BMI develops hy-
pertension by clinical standards. Genetic factors and fat
distribution pattern could explain the observed interindi-
vidual variability in blood pressure responses to weight
gain. Studies have shown that visceral/retroperitoneal fat
but not subcutaneous fat accumulation results in an unfa-
vorable metabolic phenotype leading to hypertension
(Koh et al. 2011; Elffers et al. 2017). On the other hand,
individuals with normal BMI who exhibit ectopic fat
deposition in tissues like the liver, heart, and muscle
may also develop hypertension as part of the metabolic
syndrome (Levelt et al. 2016). Since a traditional BMI
measurement does not account for fat distribution patterns
and ectopic fat deposition, BMI alone may not be a useful
clinical tool for assessing the risk of developing
hypertension.

Although numerous factors contribute to the patho-
genesis of hypertension, sympathetic nerve overactivity
appears to be a common central denominator in aging
and obesity. Multiple lines of evidence, including direct
nerve recordings of muscle sympathetic nerve activity
(MSNA) in postganglionic nerve fibers, urinary nor-
adrenaline excretion, norepinephrine (NE) spillover,
and heart rate variability (HRV) suggest an overactive
SNA in aging and obesity (Pfeifer et al. 1983; Smith and
Minson 2012). Some studies have also reported a de-
creased sensitivity of arterial baroreceptor reflex in aged
(Ebert et al. 1992) and obese (Indumathy et al. 2015)
humans, which augments the risk for cardiovascular
diseases. Also, the SNA responses to different regions
or vascular beds are heterogeneous in nature. In obesity,
sympathetic outflow is increased to the muscle and
kidney (Fig. 1), while SNA to the heart and mesentery,
i.e., splanchnic circulation remained unaltered (Vaz et al.
1997; Grassi et al. 2000; Esler et al. 2006; Lambert et al.
2007). Regional differences in SNA was also observed
in healthy aging where MSNAwas increased similar to
obesity, but the changes in splanchnic, renal, and cardiac
SNA followed a dissimilar trend compared to obesity
(Jones et al. 1997; Kaye and Esler 2005). However, it
should be noted that this sympathetic signature is spe-
cific to obesity-related hypertension and aging and it
varies with other models of hypertension (Ang II-salt)
and heart failure (Osborn and Kuroki 2012). Most of the
SNA studies in animals were restricted to direct nerve
recordings in acute, anesthetized preparations. Howev-
er, emerging technology has made it possible to perform

chronic SNA recordings in conscious animals which
will undoubtedly advance our understanding on the role
of region-specific SNA in disease conditions (Stocker
and Muntzel 2013). The translatability of selective ab-
lation of sympathetic nerves to a specific region or
vascular bed is evident from the ongoing clinical trials
on renal denervation in humans for essential hyperten-
sion, although the results are conflicting (Bhatt et al.
2014; de Beus et al. 2017; Warchol-Celinska et al.
2018). Nonetheless, such studies have proven that
targeted sympathetic nerve ablation is clinically feasible
and provide hope for extending such techniques to other
disease conditions like aging and obesity-related
hypertension.

A strong association exists between SNA and feeding
which could explain the underlying basis for SNS over-
drive with fat accumulation in obesity and aging. SNA is
inversely related to feeding, wherein SNA is activated
with overfeeding or spontaneous food intake (Fagius
and Berne 1994;Welle 1995) and decreased with fasting
(Griggio et al. 1992; Young and Landsberg 1997). This
suggests that SNA activation might be a homeostatic
mechanism to prevent excess fat storage by stimulating
lipolysis in adipose tissue in obesity. Elevations in cir-
culating levels of leptin, insulin, and free fatty acids act
as adiposity signals which cross BBB and through
receptor-mediated mechanisms drive SNS outflow to
metabolic tissues to stimulate β-adrenergic thermogen-
esis. Paradoxically, this protective mechanism of tonic
sympathetic activation to stimulate thermogenesis pose
adverse effects on cardiovascular system including, but
not limited to, increases in arterial pressure, reduced
peripheral blood flow, and hypertrophy of larger arter-
ies. In addition, although physiologically appropriate at
the initial stages, chronic SNS activation causes desen-
sitization of β-adrenergic signaling in the adipose tissue
which counterproductively affects both basal and acute
energy intake-induced thermogenesis in the adipose
tissue. This results in a vicious cycle of increased sus-
ceptibility for accruing fat mass amidst heightened SNS
activity (Seals and Bell 2004; Perez et al. 2016).

Emerging evidence shows that aging exacerbates the
deleterious effects of obesity on the central nervous
system and in the cerebral vasculature by promoting
neuroinflammation (Bailey-Downs et al. 2013; Tucsek
et al. 2014a, b; Tarantini et al. 2018; Valcarcel-Ares et al.
2018). Tuscek et al. showed that obesity in aging pro-
motes blood-brain barrier disruption, microglia activa-
tion and impairs long-term potentiation responses in the
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hippocampus, all of which contributes to cognitive de-
cline in mice. In another study, the same group has
demonstrated that aging exacerbates obesity-induced
oxidative stress, microvascular rarefaction, and impair-
ment in cerebral blood flow responses in the hippocam-
pus. Based on these studies, we can expect that lean and
obese elderly will exhibit dissimilar sympathetic pheno-
types in lean versus obese patients with essential hyper-
tension as reported previously (Esler et al. 2018). Un-
derstanding the mechanism by which obesity enhances
the cardiovascular risk in the elderly is important so that
we could reverse the deleterious effects of obesity as
shown by others (Csipo et al. 2018). Nevertheless,
physiological healthy aging and pathological obesity
share remarkable similarities in terms of SNS activity
and its effect on cardiovascular outcomes. Based on
these evidences, it is plausible to consider obesity as
an accelerated aging phenomenon.

Common mediators of sympathoexcitation

Leptin

Leptin is a circulating adipokine secreted in direct pro-
portion to adipose tissue mass. After its release from the

adipocytes, leptin enters the circulation and crosses the
BBB to bind to its receptors in the hypothalamic and
brainstem regions that are important for the control of
metabolic and cardiovascular functions. The primary
role of leptin is to reduce appetite and increase energy
expenditure by the activation of sympathetic outflow to
several vascular beds (Mark 2013; Hall et al. 2015).
However, in obesity, the metabolic action of leptin,
i.e., to suppress appetite is impaired whereas its cardio-
vascular actions, i.e., to stimulate SNA remain unaltered
(Kuo et al. 2001; Correia et al. 2002; Engeli and Sharma
2002). This mechanism is referred to as Bselective leptin
resistance.^ In this context, leptin has been suggested to
play an important role in causing hypertension by
overactivation of the SNS in obese animals.

The central actions of leptin have been implicated
in increased sympathetic outflow and development of
obesity-related hypertension in animals (Marsh et al.
2003; Rahmouni and Morgan 2007; Mark et al. 2009;
Barnes and McDougal 2014). Intracerebroventricular
(ICV) administration of leptin has been shown to
increase mean arterial pressure and renal SNA in
rabbits, with even higher increases under obese con-
ditions (Prior et al. 2010). Also, overexpression of
leptin results in hypertension in mice without affect-
ing adipose tissue mass, indicating that leptin can

Aging Obesity-related 
Hypertension 

sympathetic nerve activity

Fig. 1 A comparison of regional
patterns of sympathetic nerve
activity in healthy aging and
obesity-related hypertension in
humans. The sympathetic outflow
to the skeletal muscle vasculature
(LSNA) is activated in both aging
and obesity-related hypertension.
Cardiac (CSNA) and splanchnic
SNA (SSNA) are augmented in
aging, whereas they are unaltered
in obesity-related hypertension.
On the other hand, renal SNA
(RSNA) does not change with
age, but it is elevated in obesity-
related hypertension.
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mediate hypertension independent of obesity
(Aizawa-Abe et al. 2000). Leptin receptors are dis-
tributed in various nuclei, including the arcuate nu-
cleus, PVN, dorsomedial hypothalamus, ventromedi-
al, and lateral hypothalamus. Among these nuclei,
leptin receptors in the arcuate nucleus, specifically
in the proopiomelanocortin (POMC)-expressing neu-
rons, appear to mediate the sympathoexcitatory ac-
tions of leptin as conditional knockdown of leptin
receptors in this subpopulation of neurons confers
protection from leptin-mediated hypertension (do
Carmo et al. 2011). However, the findings in animals
were not translated well in humans. Although humans
respond to leptin administration with enhanced
MSNA, this occurred without changes in blood pres-
sure and heart rate (Shek et al. 1998; Machleidt et al.
2013). Conclusive evidence that leptin increases SNA
and cause hypertension in obese humans is still lack-
ing. An in-depth analysis on the cellular and molecu-
lar mechanisms by which leptin causes hypertension
in obesity and how these results should be interpreted
in humans are discussed elsewhere (Kotsis et al. 2010;
Head et al. 2014; do Carmo et al. 2016).

Leptin resistance documented with obesity-related hy-
pertension is also observed in aging. Reduced leptin
receptor expression and altered signal transduction path-
ways have been suggested to mediate leptin resistance in
the elderly (Balasko et al. 2014). Weight gain or increase
in fat mass is associated with leptin resistance in aged
animals. The question remains whether aging alone leads
to selective leptin resistance independent of obesity or fat
distribution pattern. To answer this, Barzilai and col-
leagues compared leptin sensitivity in lifelong calorie-
restricted aged mice (lean and metabolically similar to
young mice) to ad libitum–fed aged mice. Although aged
mice had the fat mass comparable to young mice, the
ability of leptin to regulate appetite and peripheral me-
tabolism was still impaired suggesting aging indepen-
dently reduces leptin sensitivity (Gabriely et al. 2002).
However, the role of leptin resistance in age-related
sympathoexcitation has not been investigated in detail.

Renin-angiotensin system

Obesity-related hypertension in animals is associated
with increased activity of the renin-angiotensin system
(RAS) in the central sympathoregulatory nuclei, includ-
ing PVN, OVLT, and RVLM (de Kloet et al. 2014). The
major effector protein of angiotensinergic signaling,

angiotensin II (Ang-II) binds to its receptors angiotensin
II receptor type 1 (AT1R) in the brain and stimulates
sympathetic outflow. Deletion of AT1a receptors in the
PVN of high-fat-fed mice abrogated the development of
hypertension despite obesity in these animals (de Kloet
et al. 2013). In obesity-prone rats fed with a high-fat
diet, the AT1R blockade in the RVLM inhibited SNA
through antioxidant mechanisms (Konno et al. 2012).
Further, central Ang-II appears to be a critical down-
streammediator of leptin-induced neuroinflammation in
obesity-related hypertension (discussed in the next sec-
tion). Even though Ang-II has been shown to be in-
volved in mediating obesity-related hypertension
through a central pathway, the exact mechanisms are
largely unknown and need to be investigated.

Brain RAS has also been implicated in the pathogen-
esis of age-related increase in arterial pressure. In aging,
an autonomic imbalance characterized by reduced para-
sympathetic activity is created as a result of an age-
related decline in Ang (1–7) generated by angiotensin-
converting enzyme 2 (ACE2) by metabolizing Ang-II
(Diz et al. 2008). In contrast, there is overactivity of the
SNS influenced by circulating or brain Ang-II along
with leptin. Although age-related changes in the expres-
sion of Ang-II-AT1R axis has been implicated in arterial
aging (Yoon et al. 2016), there is a paucity of studies
investigating the effects of Ang-II or RAS system in the
RVLM or PVN with aging.

Neuroinflammation/oxidative stress

Both aging and obesity are associated with chronic low-
grade systemic inflammation characterized by higher
circulating pro-inflammatory cytokines secreted from
adipose tissue and increased infiltration of macrophages
in peripheral tissues (Perez et al. 2016). These peripheral
pro-inflammatory signals are transmitted to the brain via
the circumventricular organs of the hypothalamus and
brainstem and in regions of BBB leakage where it
activates microglia (Thaler et al. 2012) and astrocytes
(Hsuchou et al. 2009; Buckman et al. 2013) promoting
neuroinflammation. Cai and colleagues have demon-
strated that blockade of the nuclear factor κB (NF-κB)
pathway, a key transcription factor involved in initiating
pro-inflammatory cytokine expression, in the
mediobasal hypothalamus lowers arterial blood pressure
in obese mice (Purkayastha et al. 2011). In the same
study, the authors show that acute activation of NF-κB
and its upstream activator IκB kinase-β in the
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mediobasal hypothalamus increases blood pressure by
increasing sympathetic outflow suggesting neuroin-
flammation independent of obesity can also promote
hypertension (Purkayastha et al. 2011). Central RAS
has been implicated in mediating obesity and leptin-
induced neuroinflammation in the regions regulating
SNA. Diet-induced obesity increases the number of
Iba1+ microglia and expression of AT1a receptors in
the SFO and selective deletion of AT1a receptors in the
PVN at least partially reversed glial fibrillary acidic
protein (GFAP) immunoreactivity in the PVN of high-
fat-fed mice (de Kloet et al. 2014). Further, obesity-
related RAS activation and neuroinflammation have
been demonstrated to increase the sensitivity to subse-
quent Ang-II-elicited hypertensive responses (Xue et al.
2016). Gene expression changes associated with neuro-
inflammation in the RVLM have also been documented
in aged rats (Balivada et al. 2017); however, their mech-
anistic role in age-related SNS dysregulation has not
been investigated (Fig. 2).

In addition to neuroinflammation, oxidative stress
characterized by increased production of reactive oxy-
gen species also contributes to the pathogenesis of neu-
rogenic hypertension. It is believed that inflammation
and oxidative stress go hand in hand where they mutu-
ally amplify each other in a disease setting. HF feeding
has been associated with increased reactive oxygen
species (ROS) production in the hypothalamus. On the
other hand, ICV infusion of tempol or NADPH oxidase
inhibitor decreased renal SNA and arterial pressure
much greater in obese animals compared to lean animals
(Nagae et al. 2009). The same mechanism holds true for
hindbrain as well, where microinjection of tempol in the
RVLM produced a greater depressor effect in obese
prone versus obese resistant animals (Kishi et al.
2011). A recent study by Zucker and colleagues showed
that selective deletion of nuclear factor erythroid 2-
related factor (Nrf2), a master transcriptional regulator
of anti-oxidant genes, in the RVLM increases mean
arterial pressure, urinary norepinephrine and baseline
renal sympathetic nerve activity in normal mice sug-
gesting that Nrf2 is a critical modulator of redox status
in the sympathetic neurons in the RVLM and contributes
to sympathoregulation. (Gao et al. 2017). Adaptive ac-
tivation of the Nrf2-ARE signaling pathway has also
been demonstrated to confer protection against obesity-
induced oxidative stress and inflammation. In addition
to obesity, decreased Nrf2 signaling and ARE transcrip-
tional activity has also been implicated in the

pathogenesis of several age-related diseases, suggesting
that Nrf2 signaling plays a pivotal role in cellular resil-
ience during stress conditions in aging and obesity. In
fact, a recent study by Tarantini et al., demonstrated that
Nrf2 deficiency mimicks the aging phenotype by exac-
erbating obesity-induced cerebromicrovascular dys-
function, impairment in synaptic function, and neuroin-
flammation (Ungvari et al. 2011; Tarantini et al. 2018).
These studies suggest that Nrf2 dysfunction in key
brainstem regions may be a potential mechanism for
age and obesity-related neuroinflammation leading to
SNS overactivity and should be addressed in future
studies.

Cellular senescence—a unifying theme linking obesity
and aging

Cellular senescence is an anticancer mechanism that
results in irreversible growth arrest in proliferating cells
in response to several stimuli including, but not limited
to, DNA damage, oxidative stress, mitochondrial dys-
function, oncogene activation, and telomere erosion (van
Deursen 2014; Chinta et al. 2015; Palmer et al. 2015). In
addition to growth arrest, senescent cells acquire
senescence-associated secretory phenotype (SASP) and
secrete pro-inflammatory cytokines, chemokines, growth
factors, and proteases. This senescence associated
secretome could be a potential contributor to neuroin-
flammation in aging and obesity. Through SASP, senes-
cent cells can also affect the structure and function of
neighboring cells and alter the tissue microenvironment
in a paracrine manner. In addition to SASP, senescent
cells are also characterized by an increase in cell and
nuclear size, expression of cyclin-dependent kinase in-
hibitors (p16Ink4a, p21Cip1, p15, p19), senescence-
associated β-galactosidase activity (SA-β-gal), reduced
nuclear levels of laminB1, which is a nuclear envelope
protein, reduced levels of high-mobility group box 2
(HMGB2), and senescence-associated heterochromatin
foci (SAHF) (Rodier and Campisi 2011).

Senescent cells accumulate with age in all kinds of
tissues, including the brain, and have been implicated in
the pathogenesis of age-related diseases like cancer,
osteoarthritis, and neurodegenerative diseases (Tan
et al. 2014). This association is supported by murine
studies showing delayed onset of age-related diseases
when senescent cells were eliminated (Baker et al.
2011). In addition to diseases related to aging, cellular
senescence is gaining significant attention in recent
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years as a target for aging-independent conditions like
obesity and hypertension (Westhoff et al. 2008; Schafer
et al. 2016). In fact, several stressors known to induce
senescence in aging have also been implicated in
obesity-induced senescence. A summary of the signal-
ing pathways involved in senescence induction during
aging and obesity is provided in Fig. 3. Recent studies
demonstrate the accumulation of senescent immune
cells like macrophages (Schafer et al. 2016) and T-
cells (Shirakawa et al. 2016) in the visceral adipose
tissue of high-fat diet–fed mice contributing to inflam-
mation and insulin resistance in obesity. Also, in DOCA
salt-treated rats, hypertension was associated with

increased p16Ink4a expression in the kidneys and hearts
(Westhoff et al. 2008). Similar results were also ob-
served in humans, where kidney biopsies from patients
with hypertensive nephrosclerosis showed increased
p16 expression, suggesting the possibility of cellular
senescence as a target for the treatment of hypertension
(Westhoff et al. 2008).

While several studies link cellular senescence in pe-
ripheral tissues with age-related diseases and obesity,
studies on the existence of senescent cells in the brain
and its involvement in neurodegenerative diseases are
just emerging. Neurons are post-mitotic and do not
undergo senescence, but replication competent glial
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Fig. 2 Possible central mechanisms linking aging and obesity to end-organ damage. RAS, renin angiotensin system
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Fig. 3 Signaling pathways regulating senescence in aging and
obesity. Several stimuli can trigger the initiation of senescence
program in aging and obesity. Based on available literature, path-
ways known to induce senescence in obesity and aging are denot-
ed by blue and red arrows, respectively. Pathways that are un-
known or unexplored are indicated using a question mark (e.g.,
activation of p16 in obesity-induced DNA damage has not been
studied yet). Signaling pathways most commonly activated by
known stressors include p53/p21 (indicated by straight lines) or
p16 (indicated by dotted lines) or both. Stressors like reactive
oxygen species (ROS) and telomere shortening are known to
activate the DNA damage response (DDR) signaling, in which
ATM/R and ARF stabilizes p53 and activates cyclin-dependent
kinase (Cdk) inhibitor, p21. Activated p21 inhibits Cdk2 resulting

in cell cycle arrest. Activation of p16 can also inhibit cell prolif-
eration through the inhibition of Cdk4/6 complexes. Both p16 and
p53/p21 pathways converge to prevent inactivation of retinoblas-
toma (Rb) family proteins to result in permanent growth arrest.
Irrespective of the stressor, senescent cells acquire senescence-
associated secretory phenotype (SASP) to secrete pro-
inflammatory cytokines, chemokines, and proteases. It is impor-
tant to note that much of what we know about the signaling
pathway-inducing senescence are based on studies in peripheral
tissues while the central pathways leading to senescence in the
brain are largely unknown. We believe that senescent cells and
SASP in the brain could potentially contribute to neuroinflamma-
tion and in turn, increases in SNS activity observed in obesity and
aging
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cells are prone to senesce with age. Glial cells play a
supporting role in neuronal function through regulation
of neurotransmission (glutamate-glutamine cycle),
myelination, synaptogenesis, secretion of neurotrophic
factors that promote neuronal survival, immune modu-
lation, and maintenance of BBB. Hence, senescence in
glial cells, in addition to affecting its own structural and
functional characteristics, may also impede neuronal
function. In fact, senescent astrocytes have been impli-
cated in the pathogenesis of Parkinson’s disease (Chinta
et al. 2018) and Alzheimer’s disease (Bhat et al. 2012).
Unpublished data from our lab provides evidence for
accumulation of senescent cells in the aging brainstem
which could potentially contribute to neuroinflamma-
tion and age-related sympathoexcitation. However, it is
still not known whether there is induction of senescence
in the brain during obesity, and if so, what kind of cells
undergo senescence and what role does it play in
obesity-related sympathetic overactivity.

Conclusions

Chronic elevations in SNA appear to be a common
mechanism in obesity and aging and contribute to the
development of a plethora of cardiovascular diseases
including hypertension. However, it should be noted
that the sympathetic outflow is not homogenous across
target tissues and that the sympathetic signature differs
with obesity and aging. These differences may have
clinical significance as selective ablation of sympathetic
nerves is gaining significant momentum in recent years.
It is also important to distinguish the effects of aging per
se versus obesity in aging on the observed perturbations
in SNA. Although not discussed, consideration should
also be given to additional factors influenced by obesity
like insulin, adiponectin, non-esterified fatty acids
(NEFA), and baroreflex sensitivity in mediating
sympathoexcitation. Lastly, it is important to address
glial cell–specific mechanisms and understand how
changes in glia-neuron crosstalk contribute to sympa-
thetic nerve overactivity in aging and obesity. In this
context, cellular senescence in glial cells is emerging as
an important area for investigation in modulating SNA,
not only in aging and obesity but also in other models of
neurogenic hypertension and heart failure.
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