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Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by sporadic de-repression of the transcription factor
DUX4 in skeletal muscle. DUX4 activates a cascade of muscle disrupting events, eventually leading to muscle atrophy and
apoptosis. Yet, how sporadic DUX4 expression leads to the generalized muscle wasting remains unclear. Transcriptome
analyses have systematically been challenged by the majority of nuclei being DUX4neg, weakening the DUX4 transcriptome
signature. Moreover, DUX4 has been shown to be expressed in a highly dynamic burst-like manner, likely resulting in the
detection of the downstream cascade of events long after DUX4 expression itself has faded. Identifying the FSHD
transcriptome in individual cells and unraveling the cascade of events leading to FSHD development may therefore provide
important insights in the disease process. We employed single-cell RNA sequencing, combined with pseudotime trajectory
modeling, to study FSHD disease etiology and cellular progression in human primary myocytes. We identified a small
FSHD-specific cell population in all tested patient-derived cultures and detected new genes associated with DUX4
de-repression. We furthermore generated an FSHD cellular progression model, reflecting both the early burst-like DUX4
expression as well as the downstream activation of various FSHD-associated pathways, which allowed us to correlate DUX4
expression signature dynamics with that of regulatory complexes, thereby facilitating the prioritization of epigenetic targets
for DUX4 silencing. Single-cell transcriptomics combined with pseudotime modeling thus holds valuable information on
FSHD disease etiology and progression that can potentially guide biomarker and target selection for therapy.

http://www.oxfordjournals.org/


Human Molecular Genetics, 2019, Vol. 28, No. 7 1065

Introduction

Facioscapulohumeral muscular dystrophy (FSHD) (OMIM:
158900), one of the more common genetic muscle diseases
worldwide, is hallmarked by the sporadic de-repression of the
germline and cleavage-stage transcription factor (TF) DUX4
(OMIM: 606009) in myonuclei of the affected muscle. DUX4 is
located in the D4Z4 macrosatellite repeat array, which normally
varies between 8–100 units and which is epigenetically silenced
in somatic tissue. This silencing is impaired in FSHD muscle;
in 95% of the FSHD cases as a result of a contraction of the
D4Z4 repeat array to a size of 1–10 units (FSHD type 1, FSHD1)
(1), whereas in most of the remaining FSHD cases (FSHD2),
it is caused by mutations in the structural maintenance of
chromosomes hinge domain 1 (SMCHD1) gene, encoding a D4Z4
chromatin repressor (2).

Despite the sporadic nature of DUX4 de-repression, its
presence in muscle has been shown to activate a cascade
of muscle disrupting events, including the reactivation of
cleavage-stage genes (3–5), inhibition of terminal differentiation
(6–9), activation of stress response pathways (10–13) and
activation of the innate immune system (3), eventually leading
to muscle atrophy and apoptosis of affected cells. Yet, with an
estimated ratio of 1:100–1:1000 nuclei expressing DUX4 (DUX4pos)
in primary myotube cultures, transcriptome analyses have
systematically suffered from the majority of DUX4neg nuclei
dampening the transcriptional effects of DUX4 expression,
thereby creating unwanted heterogeneity in the transcrip-
tome signal. Detailed analysis of the (DUX4-associated) FSHD
transcriptome has thus far been facilitated by artificial DUX4
expression (3,14,15) or DUX4 reporter (16) systems that allow
DUX4pos cell selection prior to bulk RNA sequencing. Identifying
the pure FSHD transcriptome, i.e. separating cell-autonomous
and non-cell-autonomous effects in a heterogeneous DUX4pos

cell system and identifying the initial events (apart from DUX4
reactivation) leading to FSHD development, has so far been
challenging.

In recent years, single-cell transcriptomics has delivered
unprecedented insight into cellular dynamics as it overcomes
many of the aforementioned limitations (17). Recent single-cell
omics analyses are not only starting to unravel a significantly
higher level of cellular heterogeneity in cell populations
than previously could have been appreciated (18–22), it also
enables identifying even the most spurious cellular aberrations
that may be involved in disease etiology and development
(23–26).

In this study, we performed single-cell RNA sequencing
(scRNA-seq) on tissue-cultured human primary myocytes
from FSHD patients and healthy control donors to study the
FSHD transcriptome dynamics. We identify a small FSHD-
specific cell population in all four FSHD patient-derived primary
cultures. Transcriptome analysis of this population allowed us
to identify affected pathways that have previously only been
identified in artificial DUX4 overexpression and DUX4 reporter
systems, validating the strength of scRNA-seq in identifying
a purified FSHD transcriptome in primary cell systems. We
furthermore identified a novel set of FSHD-affected genes,
possibly reflecting the advantages of single-cell analysis in a
heterogeneous system. Finally, using the cellular heterogeneity
in FSHD-affected cell cultures to our advantage, we used
pseudotime trajectory modeling to generate more insights into
the transcriptome dynamics during FSHD cellular development
and progression—insights that would not have been accessible
from bulk RNA sequencing technology.

Results

scRNA-seq quality validation
To study the pure DUX4-dependent FSHD transcriptome, we
performed scRNA-seq in primary myogenic cultures from two
FSHD1 patient-derived, two FSHD2 patient-derived and two
healthy control donor-derived muscle biopsies [see Supple-
mentary Material, Table S1 for information on the (epi)genetic
background of all samples]. By immunofluorescent (IF) confocal
microscopy imaging, only the FSHD cultures showed the char-
acteristic sporadic DUX4 expression upon terminal myoblast
differentiation into myotubes (Fig. 1A). Since multinuclear
myotubes are limiting the use of single-cell transcriptomics
systems, and in order to be able to discriminate cell-autonomous
effects of DUX4 expression from non-autonomous effects
because of DUX4 nuclear protein spreading (27), we inhibited
myocyte fusion by calcium chelation with ethylene glycol
tetraacetic acid (EGTA) (28,29). This generated mononuclear
myocytes, which again showed the characteristic sporadic DUX4
de-repression (Fig. 1A).

We performed scRNA-seq on all samples, generating
sequencing data for 712–2245 cells per sample, with a mean read
count of 23 082–124 562 reads [4217–11 797 unique molecular
identifiers (UMIs)] distributed over a median gene count of
1504–2567 genes per cell (Fig. 1B–E; for a detailed overview of
the sequencing summary metrics see Supplementary Material,
Table S2 and Fig. S2). We sequenced sample FSHD1.1 at both low
(10 480 reads; 3581 UMIs; 1128 detected genes per cell) and high
sequencing depth (119 887 reads; 11 297 UMIs; 2175 detected
genes per cell) to assess the effect of sequencing depth on our
scRNA-seq results. This showed a strong correlation between
the two data sets (Spearman R = 0.986), indicating that sequence
depth within this range is not affecting gene expression analysis
(Fig. 1F). Furthermore, cell, read, UMI and gene counts of the
control samples were all within the range of the FSHD samples,
indicating that results in gene expression analysis should not be
biased by sequencing variation (Fig. 1B–E). Finally, comparing the
data of the FSHD1.1 ‘Low Depth’ with both healthy donor control
samples again showed a strong correlation between the overall
expression pattern of all genes [Spearman R: 0.906 (Ctrl.1) and
0.905 (Ctrl.2)] (Fig. 1G and H), highlighting the reproducibility of
our scRNA-seq strategy. Notably, when analyzing the expression
of a panel of 67 known DUX4 biomarkers (14) (in this study
referred to as the DUX4–67 gene set; Supplementary Material,
Table S3) we noticed a strong bias toward the FSHD sample,
indicating that sequencing depth is not biasing the detection
of an FSHD characteristic transcriptome in FSHD versus control
samples (Fig. 1G and H).

We next analyzed cellular heterogeneity within each sample.
Using t-Distributed Stochastic Neighbor Embedding (t-SNE)
to reduce the dimensionality of the high complexity scRNA-
seq data, we projected the single-cell information in two-
dimensional plots (Fig. 1I; Supplementary Material, Fig. S3 and
Supplementary Material, Supplementary Information). As we
used an unsupervised t-SNE analysis of each cell’s individual
transcriptome, cells cluster based on their transcriptome
similarity, allowing for the unbiased identification of cellular
subpopulations and cellular heterogeneity (see Supplementary
Material, Supplementary Materials and Methods). In this
study, we used an in vitro differentiation system, and we
therefore expected the main cause of heterogeneity in the
sample to be due to variation in myogenic differentiation.
We therefore analyzed the expression pattern of myogenic
differentiation markers (Fig. 1I; Supplementary Material, Fig. S3).
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Figure 1. scRNA-seq quality validation per sample. (A) Representative image of IF confocal microscopy of differentiated primary myotubes (top) or differentiated late

myocytes fusion inhibited by EGTA treatment (bottom). Cells were stained for DUX4 (green), nuclei were stained with Hoechst33258 (blue) and differentiated myocytes

and myotubes were identified by staining for MYH1E in red. 20× magnification. From the highlighted areas, the middle panels depict DUX4 staining only. (B–E) Summary

metrics per sample, with (B) the total number of cells analyzed per sample, (C) the mean total read count per cell, (D) the median UMI count per cell and (E) the median

number of detected genes per cell. Both control samples are depicted in yellow, both FSHD1 samples (and the FSHD1.1 ‘Low Depth’) are depicted in dark purple and

both FSHD2 samples are depicted in light purple. For detailed scRNA-seq quality validation per sample see Supplementary Material, Figure S2. (F) Scatterplot depicting

the correlation between the FSHD1.1 ‘Low Depth’ and ‘High Depth’ samples. Data show the rank score of the total UMI count per gene. (G and H) Scatterplots depicting

the correlation between the FSHD1.1 ‘Low Depth’ sample and (G) the CTRL.1 data set or (H) the CTRL.2 data set. Data show the rank score of the total UMI count per

gene. DUX4 biomarker genes (DUX4–67 gene set) are depicted in red, showing a strong bias toward the FSHD sample versus both control samples. A detailed overview

of sequence summary metrics is provided in Supplementary Material, Table S2. (I) A t-SNE projection (Cell Ranger) of sample FSHD1.1, colored based on the expression

levels of four myogenic markers: MYF5, early marker; MYOD1, intermediate marker; MYOG, intermediate/late marker; MYH3, late marker. Color scales depict the

normalized expression levels for each specified gene. For similar t-SNE plots of all other samples, see Supplementary Material, Figure S3.

Cells at all stages of myogenic differentiation could be identified,
ranging from early proliferating myoblasts (high in MYF5
expression) to late-stage differentiated myocytes (high in MYH3
expression), and cells mainly cluster according to their myogenic
differentiation stage, confirming the quality of our scRNA-seq
data. In all samples, we also identified cells that did not show a

myogenic transcriptional phenotype and analysis for expression
of three fibroblast markers (ANPEP, COL1A2 and Vimentin)
suggests that some of these cells may express a more fibroblast-
like phenotype (Supplementary Material, Fig. S3), cells that are
known to be often present in primary cultures generated from
muscle biopsies.
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Figure 2. scRNA-seq identifies an FSHD-specific cell population in all four FSHD samples. (A) t-SNE projections (Cell Ranger) of the six tested samples, colored for

the number of DUX4 biomarkers (DUX4–67 gene set) being expressed per cell. The DUX4-affected population is highlighted with a red arrow. t-SNE plots colored by

cell classification are provided in Supplementary Material, Figure S4B. (B) Scatterplot depicting the number of expressed DUX4 biomarkers and their cumulative read

counts per cell for the six tested samples. DUX4-affected cells are selected based on the threshold of expressing ≥5 DUX4 biomarkers per cell (dashed line). (C) t-SNE

projection (Cell Ranger) of the aggregated data set composed of all six samples, colored for the number of DUX4 biomarkers being expressed in each cell. The DUX4-

affected population is highlighted with a red arrow. (D) Scatterplot as in (B) for the aggregated data set. Individual cells are colored based on their corresponding sample

identity (Sample ID). Dashed line depicts the DUX4 biomarker count threshold used for selecting DUX4-affected cells (≥5 DUX4 biomarkers per cell). (E) The number of

DUX4-affected cells identified per sample.

scRNA-seq identifies FSHD-specific cell populations in
all FSHD cultures

Knowing that DUX4 expression is often difficult to detect, we
analyzed the expression of four DUX4 targets previously rec-
ognized as informative biomarkers of DUX4 activity and FSHD
clinical severity: LEUTX, TRIM43, KHDC1L and PRAMEF2 (3,14,15).
These genes are generally repressed in healthy muscle and
become expressed upon DUX4 de-repression. In all four FSHD
samples we detected this FSHD characteristic molecular phe-
notype, with three samples expressing all four biomarkers and
sample FSHD1.2 expressing three of the four markers (Sup-
plementary Material, Fig. S4). None of these biomarkers was
detected in the healthy control donor samples. Furthermore,
when analyzing the expression of the panel of 67 known DUX4

biomarkers (DUX4–67 gene set) (14), we could identify a small
DUX4-affected cell population in all FSHD samples, whereas
no cells that met these criteria were identified in the control
samples (Fig. 2A, B and E; Supplementary Material, Fig. S4B and
Table S4). The absence of a DUX4-affected cell population in
healthy control samples becomes even more apparent when
aggregating all six samples into one data set, referred to as
the ‘Agg’ data set (see Supplementary Material, Table S2 and
Fig. S5 for sample summary metrics). In this Agg data set we
identified 23 cells as the DUX4-affected cell population based on
the presence of members of the DUX4–67 gene set (Fig. 2C–E), of
which, despite the apparent donor bias marked by the clustering
of cells by sample identity (Supplementary Material, Fig. S5E),
20 cells clustered together as a distinct cell cluster in the t-SNE
plot. Whereas this cluster was comprised of cells from all four

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy400#supplementary-data
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Figure 3. Differential expression analysis identifies a large set of known and novel DUX4-affected genes. (A) Expression heatmaps of the DiffExpr-CoreSet113 gene

set (left) and the FSHD1-Specific27 and FSHD2-Specific45 gene sets (right) in the DUX4-affected cells and non-affected late myocytes. The heatmap depicts the mean

expression level per gene (row-normalized read counts per gene) in the respective population per sample. See Supplementary Material, Table S4 for details on the

depicted gene sets. (B) Vulcanoplot depicting the differential expression results of the Agg data set. The vulcanoplot depicts the expression level Log2FC between the

DUX4-affected cells and the non-affected late myocytes versus the –log10 (adjusted P-value) for each gene. Significantly differentially expressed genes (FDR-corrected

P < 0.05) are highlighted in blue. Infinite increased (INF) or decreased (−INF) expression levels and infinite –log (adjusted P-values) (i.e. P ∼0) are manually set to the

outer limits of the plot and are indicated by the dashed boxes. Genes with a P-value of 1 [i.e. –log (P-value) = 0)] not shown. (C) Venn diagram depicting the overlap

between the 1334 differentially expressed genes in our Agg data set (DiffExpr-Agg1334 gene set) and 2 previously published DUX4 and/or FSHD-associated gene sets.

Venn diagram includes only genes that could be detected as expressed in the DUX4-affected cells and/or non-affected late myocytes in the Agg data set. (D and E) Gene

set enrichment analysis results of the (D) upregulated genes and (E) downregulated genes. Bar graphs depict the –log10 (adjusted P-value) of all KEGG and WikiPathway

pathways significantly affected in the DUX4-affected population (adjusted P < 0.05).

FSHD samples, no cells from the control samples were present
(Fig. 2D and E; Supplementary Material, Fig. S4B).

Our data thus suggested the DUX4-affected population
to be a strong discriminating feature between FSHD-affected
samples and non-affected controls. We continued by validating
this assumption using principal component analysis (PCA). We
hypothesized that if FSHD patient-derived cultures were indeed
significantly different from those of healthy control individuals,
there should be a layer of complexity in the FSHD samples

(i.e. the one that causes the DUX4-affected cells to cluster
separately from the rest in the t-SNE plot) that is not present
in the healthy control samples. We therefore conducted a PCA-
based analysis to identify the top genes responsible for cellular
heterogeneity within each sample (see Materials and Methods).
As expected, the first principal component (PC1) strongly
overlapped between all six samples and included many genes
involved in muscle-related processes and general cellular func-
tions (Supplementary Material, Fig. S6B–D). We next analyzed

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy400#supplementary-data
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the DUX4 target contribution to the first 16 components in each
sample. Interestingly, in all four FSHD samples we could identify
PCs that included a number of genes of the DUX4–67 gene set,
whereas none of the DUX4–67 genes was identified in either
of the two control samples (Supplementary Material, Fig. S6E),
validating the DUX4 population as a strong discriminator for
FSHD-affected samples from non-affected controls.

Next, in search for additional factors that play a role in
discriminating the DUX4-affected population, we overlapped the
top 100 gene sets of those PCs that included at least 5 DUX4–
67 genes and identified 49 genes, referred to as the PC-FSHD49
gene set, that were detected in at least 3 out of the 4 FSHD
samples (Supplementary Material, Fig. S6H). Of these 49 genes,
46 were not detected in any of the PC gene sets of the two control
samples. As this gene set included 28 of the 34 known DUX4
biomarkers detected in our Agg data set, this supports a strong
discriminating role for the known biomarkers in identifying the
DUX4-affected population. Moreover, the additional 21 identi-
fied genes may serve as potential novel biomarkers for DUX4
activity and disease severity. To validate the potential of the PC-
FSHD49 gene set to discriminate the DUX4-affected from the
non-affected cells in each sample, we re-clustered the cells into a
three-dimensional plot, using supervised t-SNE clustering based
on the PC-FSHD49 gene set. Indeed, we found the DUX4-affected
cells largely clustering together, with cells expressing the most
DUX4 biomarkers being separated most from the non-affected
cells in the population (Supplementary Material, Fig. S7).

Finally, although DUX4 de-repression is considered a major
feature of FSHD, additional non-DUX4-associated signatures in
FSHD material may exist (14). Yao et al. (14) identified 86 dif-
ferentially expressed genes in FSHD patient-derived myogenic
cultures when compared with that of healthy control individu-
als, which were insensitive to DUX4 overexpression. These genes
were therefore labeled as non-DUX4-associated genes. Interest-
ingly, similar to the DUX4 targets, in all four FSHD samples we
identified a small cluster of cells expressing several of the non-
DUX4-associated genes, whereas no such cluster was present in
the control samples (Supplementary Material, Fig. S8). Differen-
tial expression analysis in the Agg data set showed that 30 of
the 54 detected non-DUX4-associated genes were differentially
expressed in an FSHD-specific cluster. This suggests that our
scRNA-seq data identify both DUX4-associated and non-DUX4-
associated effects in primary FSHD patient-derived myogenic
cultures.

Primary FSHD cultures express an FSHD transcriptome
highly similar to DUX4 overexpression or reporter
systems

We next performed differential expression analysis between the
purified DUX4-affected population and the non-affected cells
within the same sample. As DUX4 de-repression increases upon
myogenic differentiation, we compared expression with non-
affected stage-matched late myocytes only (‘lateMyos’; ≥5 reads
for MYH3) (Supplementary Material, Fig. S4B).

When analyzing each sample separately, we identified a core
set of 113 genes that was differentially expressed in at least 3
out of the 4 FSHD samples (DiffExpr-CoreSet113 gene set, see
Supplementary Material, Table S4, Wilcoxon rank sum test, FDR-
corrected P < 0.05) (Fig. 3A; Supplementary Material, Fig. S9A
and Table S6). With the small number of DUX4-affected cells
within each sample, being able to robustly detect these 113
genes highlights them as strong markers for DUX4 activity.

Interestingly, we also identified a set of genes being specifically
differentially expressed in the FSHD1 or FSHD2 samples, respec-
tively (FSHD-Specific27 and FSHD2-Specific45 gene sets; Fig. 3A;
Supplementary Material, Fig. S9A, Tables S3 and S6).

Within the Agg data set, when comparing the 23 DUX4-
affected cells with 2934 non-affected late myocytes, we identi-
fied 1334 differentially expressed genes (DiffExpr-Agg1334 gene
set, Wilcoxon rank sum test, FDR corrected P < 0.05), of which 121
genes were downregulated and 1213 genes were upregulated in
the DUX4-affected population (Fig. 3B; Supplementary Material,
Tables S3 and S7). These 1334 genes included 112 of the 113 core
set genes identified above.

To test whether the FSHD transcriptome of primary cul-
tures correlates with DUX4 artificial expression (3,14,15) or DUX4
reporter (16) systems, we compared our differential expression
data with published data. Rickard et al. (16) previously used a
DUX4 reporter system allowing for DUX4pos cell selection prior
to bulk RNA-sequencing and identified 570 genes being differen-
tially expressed in DUX4pos-sorted cells. In addition, Yao et al. (14)
previously identified a set of top 213 genes being differentially
expressed in DUX4-overexpressing cells. Overlapping both data
sets with our DiffExpr-Agg1334 (focusing on genes detected in
the DUX4-affected cells and/or non-affected late myocytes in our
Agg data set) showed a strong overlap between all three data sets
(Fig. 3C; Supplementary Material, Fig. S9C and D and Table S3).
This suggests that the knowledge acquired from FSHD cellular
model systems also applies for primary cultures. Of note, the
low number of detected genes of the Yao et al. (14) gene set may
be explained by this gene set containing many genes located in
repetitive regions and including poorly annotated genes limiting
their detection in our scRNA-seq data set.

We next performed gene set enrichment analysis to identify
the pathways or processes that are affected in our primary
cultures and found (among others) the spliceosome, RNA trans-
port, mRNA surveillance and basal transcription pathways to
be significantly upregulated (Fig. 3D), whereas other pathways
were downregulated, (e.g. apoptosis, gap junctions, TGF-beta
signaling, focal adhesion, integrin-mediated cell adhesion and
the Parkin-Ubiquitin proteasome; Fig. 3E). These pathways have
been previously shown to be affected in the artificial DUX4
expression and reporter systems (14,16), further validating the
correlation between our data and published data acquired from
artificial model systems.

Interestingly, we also identified a novel set of 1103 dif-
ferentially expressed genes (Fig. 3C; Supplementary Material,
Table S7). After selecting for genes being represented with >20
reads, thereby reducing false discovery rates due to stochastic
random read detection, 887 novel genes (compared with Yao et al.
14 and Rickard et al. 16) were found to be differentially expressed
in the DUX4-affected population of our primary cultures.

Transcriptome dynamics during FSHD disease
development and cellular progression

DUX4 has been shown to be expressed in a highly dynamic burst-
like manner, which may result in the detection of DUX4 target
genes long after DUX4 expression has faded (16). Indeed, DUX4
and DUX4 targets (DUX4–67 gene set) showed a wide variety
of combined expression patterns in our scRNA-seq data. We
hypothesized that this reflects the dynamic nature of DUX4
expression and DUX4 target activation. Using this heterogeneity
in our data to our advantage, we used the scRNA-seq data
analysis tool Monocle (30,31) to further unravel the cascade of
events involved in FSHD cellular progression.
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Figure 4. The FSHD-specific pseudotime trajectory models FSHD cellular progression. (A) Generated FSHD-specific pseudotime trajectory model in which cells are

re-ordered based on their relative progression in FSHD disease development, based on the expression dynamics of the PC-FSHD49 gene set (see Materials and Methods

for details). Cells are colored based on their cell population classification. The identified FSHD branch is highlighted by the gray dash-lined box. (B) FSHD-specific

pseudotime trajectory model as in (A), in which cells are colored based on the number of DUX4 biomarkers (DUX4–67 gene set) expressed. (C) FSHD-specific pseudotime

trajectory model as in (A), in which cells are colored based on the expression level of DUX4 and four strong DUX4 biomarkers KHDC1L, LEUTX, PRAMEF2 and TRIM43.

Color scale depicts log-transformed expression values [log10 (expression + 0.1)]. (D) Pseudotime expression heatmap for the DUX4 biomarkers (DUX4–67 gene set) in

the FSHD branch. Cells are ordered based on pseudotime progression. Color scale depicts UMI read counts.

We identified the PC-FSHD49 gene set as a good discriminator
set for the DUX4-affected cells. We therefore re-ordered
the cells based on the expression dynamics of these 49
genes (see Supplementary Material, Table S3) to generate an
FSHD-specific pseudotime developmental trajectory (Fig. 4;
Supplementary Material, Fig. S10). This created a two-branch
trajectory, in which cells are mainly ordered according to
their myogenic differentiation stage (Supplementary Material,
Fig. S10B), but in which a subset of cells branched off into
a second branch. With this second branch including all
previously identified DUX4-affected cells (Fig. 4A), we defined
this branch as the FSHD branch. As expected, we found
the FSHD branch to split from the main trajectory at a
point late in myogenic differentiation, correlating with the
increase in DUX4 de-repression upon myogenic differentiation.
Furthermore, strengthening the model of a burst-like DUX4

expression, we found DUX4-expressing cells to be positioned
early in pseudotime, with most cells locating close to the
branch point. This is in contrast to many of the DUX4 targets,
which are being increasingly expressed during pseudotime
progression, with some targets being activated earlier in the
FSHD branch than others. This dynamic pattern in DUX4 and
DUX4 target expression suggests that our FSHD pseudotime
model reflects the gene expression dynamics during FSHD
cellular progression. To further validate this hypothesis, we ana-
lyzed the expression patterns of the four main DUX4-affected
pathways, i.e. RNA splicing, RNA transport, mRNA surveillance
and basal transcription. Indeed, we found all four pathways
to be increasingly differentially expressed in our FSHD trajectory
branch (Supplementary Material, Fig. S10C). Altogether our data
suggest that our FSHD pseudotime trajectory holds valuable
information for studying FSHD etiology and cellular progression.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy400#supplementary-data
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Figure 5. Expression dynamics of transcription regulatory complexes during FSHD pseudotime progression. (A) Gene set enrichment analysis result of the DUX4-

affected genes (DiffExpr-Agg1334 gene set). Bar graph depicts the –log10 (adjusted P-value) of all significantly affected TF target gene lists from the ENCODE and ChEA

consensus TFs target lists based on crosslinked ChIP-sequencing data (adjusted P < 0.05) (see Materials and Methods for details). (B) Pseudotime expression heatmaps

for (top) the MYC targets, (middle) the SIN3A targets and (bottom) the YY1 targets affected in the DUX4-affected population versus the non-affected late myocytes. The

cells are re-ordered by trajectory-branch, followed by pseudotime progression. The heatmap depicts the 50 cells per branch surrounding the branch point. The 50 cells

per branch are separated by a dashed line and the corresponding branch is depicted in color in the trajectory model below the heatmaps. The Venn diagrams depict the

overlap between the known TF targets and the DUX4-affected gene set (DiffExpr-Agg1334), with the P-value indicating the FDR-corrected P-value (Benjamini Hochberg)

for the gene set enrichment analysis in Enrichr. The schematic overviews of the SIN3 complex and DRC depict the log2FC in the DUX4-affected versus non-affected

late myocytes. Significantly affected genes (FDR-corrected P < 0.05) are highlighted in bold and color. Red indicates a significant increased expression; green indicates

a significant decreased expression. Light gray components indicate genes excluded from analysis due to limited sequencing depth (see Materials and Methods for

details.) (C) Schematic overview of the NuRD complex depicting log2FC as in (B).
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Expression dynamics of transcription regulatory
complexes during FSHD pseudotime progression

We next studied the expression dynamics of known DUX4 reg-
ulatory complexes during FSHD pseudotime progression. One
chromatin regulator that plays a major role in FSHD is SMCHD1
(OMIM: 614982) (32–34). Yet, overall read counts were too low
in the small population of DUX4-affected cells to draw firm
conclusions on SMCHD1 dynamics during FSHD development.
We thus focused our analysis on the expression dynamics of
those complexes for which we had sufficient sequence coverage
(Supplementary Material, Table S8). One example is MYC (OMIM:
190080). MYC transcripts have been shown to be stabilized by
DUX4, resulting in increased MYC protein levels and increased
levels of MYC target genes, ultimately leading to the activation
of apoptotic pathways (35). Although MYC was only trending
toward being upregulated, its target genes were significantly
affected in the DUX4-affected population (DiffExpr-Agg1334),
most of which showed a strong increase during FSHD progres-
sion (Fig. 5A and B).

CHD4 (OMIM: 603277), one of the core components of the
Nucleosome Remodeling Deacetylase (NuRD) complex, was sig-
nificantly reduced in the DUX4-affected cells (Fig. 5C, log2 fold
change (Log2FC) of −2.25). This is in contrast to three MBD3L
protein variants known to be able to replace MBD2/MBD3 in the
NuRD complex, thereby antagonizing NuRD’s repressive capaci-
ties, which were strongly increased in the DUX4-affected pop-
ulation [MBD3L2 (OMIM: 607964) log2FC 12.5; MBD3L3 Log2FC
12.5; MBD3L5 Log2FC 13.0]. These data correlate with a recently
described role for the NuRD complex in DUX4 silencing (36) and
suggest a negative correlation between the repressor activity of
the NuRD complex and DUX4 levels in primary myocyte cultures.

Conversely, we found three of the SIN3 core components to be
significantly increased in the DUX4-affected population (Fig. 5B).
Like the NuRD complex, the SIN3 complex has recently been
implicated in DUX4 transcriptional repression (36), and find-
ing SIN3 complex increasing in the DUX4-affected population
was therefore counterintuitive. Yet, gene set analysis identified
SIN3A target genes as the strongest affected target gene set in
the DUX4-affected population, of which the majority increased
during FSHD pseudotime progression (Fig. 5B), suggesting a posi-
tive role for SIN3A (OMIM: 607776) in FSHD progression. Similarly,
the first regulatory complex identified to play a role in D4Z4
repeat array silencing is the D4Z4 repressor complex (DRC),
composed of YY1, HMGB2 and NCL (37). We found both YY1
(OMIM: 600013) and HMGB2 (OMIM: 163906) to be significantly
upregulated in the DUX4-affected population (log2FC of 2.77
and 3.52, respectively; Fig. 5B). In addition, gene set analysis
identified a significant upregulation of YY1 target genes in the
DUX4-affected population, again suggesting a regulatory role for
YY1 during FSHD pseudotime progression.

Apart from these previously described regulatory complexes,
gene set analysis identified a number of additional TFs to
be significantly affected in the DUX4-affected population
(Fig. 5A). In addition, at least 155 of the 1334 genes (DiffExpr-
Agg1334) were predicted as having transcription regulatory
activity (UniProt Knowledgebase Gene Ontology analysis; see
Materials and Methods). The potential role for these factors in
FSHD remains to be elucidated.

Discussion

We used scRNA-seq technology to study the FSHD transcriptome
in patient-derived primary myogenic cultures. Until now,

differential expression analyses in primary FSHD cultures have
remained a challenge, due to the sporadic nature of DUX4
expression (14). Using previously identified FSHD-associated
gene sets we identified FSHD-specific populations in all
FSHD samples tested. By identifying as few as 23 out of a
total of 4976 cells (ratio of 1:217) as expressing the FSHD
characteristic DUX4 de-repression signature, our data highlight
the power of scRNA-seq in studying FSHD disease etiology and
development.

As DUX4 de-repression is an important hallmark of FSHD,
our study focused on DUX4-associated effects in FSHD. Although
several other 4q35 genes located within the FSHD locus have
been studied in the context of FSHD pathology (e.g. ANT1, FAT1,
FRG1, FRG2, DBE-T and TUBB4Q), we did not detect these genes
within the top 100 gene lists of all first 16 PCs (DBE-T and TUBB4Q
were absent from our complete data set, and FRG2 was only
detected with one read in one cell). This indicates that if these
factors play a role in FSHD, their effect is less discriminating
for FSHD samples versus healthy control individuals than the
DUX4 signature. In fact, there were only 97 genes within our
PC gene lists that were specific to FSHD samples (present in at
least 3 out of 4 FSHD samples and not in control samples), of
which 46 were within the PC-FSHD49 gene set discriminating the
DUX4-affected cells from non-affected controls, indicating the
DUX4 signature to be a major hallmark for FSHD in cultured
myocytes.

We identified 1334 genes being differentially expressed in the
DUX4-affected population compared with differentiation stage-
matched late myocytes. This gene set was enriched for a number
of known affected genes and pathways, validating the identity
of our selected DUX4-affected population and indicating that
DUX4-associated effects in FSHD primary cultures correlate well
with earlier studies using DUX4 reporter and artificial DUX4
expression systems. We also identified a novel set of 1103 differ-
entially expressed genes, of which 887 genes were detected with
>20 reads. The detection of this large number of novel genes is
possibly the result of the unique options provided by scRNA-seq,
as it allows for the selection of a highly purified DUX4-affected
population and enables a comparison with differentiation stage-
matched cells within a sample, thereby reducing detection noise.
As our data are generated from muscle biopsy-derived primary
cultures, these newly identified genes may also reflect the differ-
ences between primary cultures and the previously used ectopic
expression systems. Finally, according to Jagannathan et al. (15)
limited overlap in RNA sequencing data from different studies
may also arise from technical differences.

While recent studies have been increasingly successful in
identifying upregulated DUX4 target genes (of which many are
unique to FSHD), identifying genes that are significantly down-
regulated in the rare DUX4-affected population has remained
a challenge. The stringent selection criteria for both the DUX4-
affected cells and the stage-matched non-affected cells enabled
us to identify a unique set of 121 downregulated genes (of which
92 genes with a Log2FC <−1). These did not overlap with the
top 18 downregulated genes previously identified by Rickard et al
(16). Unfortunately, in our system, the read counts of these 18
genes were too low to validate them as being significantly down-
regulated in the DUX4-affected population (one gene, SYT7,
showed a significant increase in DUX4-affected cells in our data).

De-repression of DUX4 in muscle has been shown to acti-
vate a cascade of muscle disrupting events (3–13). However,
identifying the FSHD transcriptome dynamics, describing the
sequence and magnitude of the downstream cascade of events,
has so far been challenging. Our FSHD pseudotime trajectory

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy400#supplementary-data


Human Molecular Genetics, 2019, Vol. 28, No. 7 1073

seems to faithfully reflect FSHD cellular progression, including
the early burst-like DUX4 expression and the timed downstream
activation of various FSHD-associated pathways.

We identified a number of cells at the root of the FSHD
trajectory that we had not identified using our stringent selec-
tion criteria for the DUX4-affected population and that did not
express detectable levels of DUX4. Although we cannot fully
exclude that these cells may express DUX4 or DUX4 targets
below detection level, one might speculate that the branching
off of cells prior to DUX4 de-repression might reflect the earliest
stages of FSHD cellular development, possibly priming cells for
DUX4 de-repression.

Our scRNA-seq data provide novel insights into the dif-
ferential expression dynamics of transcription regulatory
complexes involved in the silencing of DUX4. Although the
DRC, the NuRD and SIN3 complexes have all been shown
to be involved in DUX4 silencing in somatic cells (36,37),
our data reveal different expression dynamics during down-
stream FSHD cellular progression. While recognizing that
differences in transcriptome levels are not always reflected in
protein levels, it is tempting to speculate that this dynamics
reflects different functions in DUX4 silencing. For exam-
ple, whereas the trend of downregulation of NuRD-specific
core components correlates with the negative correlation
between the NuRD complex and DUX4 expression (36), we
find evidence suggesting an upregulation of both the DRC
and SIN3 repressor complexes, as well as targets genes of
two of their core components. This suggests that although the
latter complexes were shown to be important for maintaining
the D4Z4 in a repressed state (36), they are not sufficient
to do so during myogenic differentiation in FSHD patient-
derived myogenic cultures. Thus single-cell transcriptomics in
this respect may contribute to the selection of targets when
pursuing epigenetic silencing of DUX4 as therapy. Finally, gene
set analysis identifies a potential role for several TFs and
regulatory complexes not previously associated with FSHD.
Single-cell transcriptomics may in this way contribute to further
unravelling the order and magnitude of events that together are
responsible for the significant FSHD-associated muscle wasting
phenotype.

Altogether, we employed scRNA-seq, combined with pseu-
dotime trajectory modeling, to study disease etiology and
progression of FSHD, a disease characterized by extreme
heterogeneity and sporadic, but toxic, expression of DUX4 in
affected cells. Our data show that pseudotime trajectories like
our FSHD pseudotime model may hold valuable information on
disease etiology, development and progression—information
that would not have been accessible from traditional bulk
RNA sequencing technologies and that may prove valuable for
guiding biomarker and target selection for therapy.

Materials and Methods
Cell line information

Human primary myoblast cell lines originated from the Univer-
sity of Rochester biorepository (http://www.urmc.rochester.edu/
fields-center/). Muscle samples were obtained after informed
consent under a protocol approved by the Institutional Review
Board at the University of Rochester. We used primary myogenic
cell cultures derived from muscle biopsies from two FSHD1-
patients, two FSHD2-patients and two healthy control donors.
Detailed information is provided in Supplementary Material,
Table S1.

Cell culture

Myoblasts were cultured in DMEM/F-10 medium (# 41550–
021, Life Technologies, Waltham, Massachusetts, USA), supple-
mented with 20% heat-inactivated fetal bovine serum (#10270,
Gibco/Life Technologies, Waltham, Massachusetts, USA), 1%
penicillin/streptomycin (#15140122, Gibco/Life Technologies,
Waltham, Massachusetts, USA), 10 ng/ml rhFGF (#C-60240,
Bio-Connect, Huissen, Gelderland, The Netherlands) and 1 μm
dexamethasone (#D2915, Sigma-Aldrich, St. Louis, Missouri,
USA).

For terminal myogenic differentiation, myoblast were
cultured for 3 days in DMEM (# 41966–029, Life Technologies,
Waltham, Massachusetts, USA) supplemented with 15% knock-
out serum replacer (#10828–028, Life Technologies, Waltham,
Massachusetts, USA). Myocyte fusion was inhibited by adding
EGTA to the medium to a final concentration of 1.4 mm.

scRNA-seq: sample preparation and RNA sequencing

Differentiated cell cultures were trypsinized and resuspended
in a 10 ml differentiation medium. Samples were centrifuged
for 5 min at 1000 rpm (128 rcf) at room temperature. Cell
pellets were washed once in 10 ml phosphate-buffered saline
(PBS) supplemented with 0.04% (w/v) bovine serum albumin
(BSA #A7906, Sigma Aldrich, St. Louis, Missouri, USA), trans-
ferred through a 50 um cell strainer (#04–004-2327, Sysmex,
Norderstedt, Schleswig-Holstein, Germany) and resuspended in
PBS/0.04% BSA (w/v) to a final concentration of 2000 cells/μl.
Next, samples were prepped for scRNA-seq according to the
ChromiumTM Single Cell 3′ v1 RNA sequencing specification.
For all samples, targeted cell count was 1000 cells per sample.
The generated cDNA was used for Illumina next-generation
sequencing using a NextSeq500-v2 150 cycle kit.

Data analysis and pseudotime trajectory modeling

Sequenced data were analyzed using the 10x Genomics software,
Cell Ranger version 1.2.0 (https://www.10xgenomics.com/)
(default settings), and reads were aligned to the Genome
Reference Consortium Human Build 38. Pseudotime trajec-
tory modeling was performed using the Monocle R package
version 2.6.1 (30,31). Detailed descriptions of data processing,
quality control and downstream data analysis are provided
in the Supplementary Material, Supplementary Materials
and Methods. A schematic overview of all analyses per-
formed in this study, highlighting the gene sets used and/or
identified in that step, the analysis pipelines used and the
figure that depicts the results of each analysis, can be found in
Supplementary Material, Figure S1.

Data availability

The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary
Material, Supplementary Information. Additional data can be
provided by the corresponding author upon reasonable request.
All scRNA-seq data described in this study, along with their asso-
ciated metadata, have been deposited in NCBI’s Gene Expression
Omnibus (GEO) and are accessible through GEO accession num-
ber GSE122873.
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