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Abstract
Porous materials have become one of the best options for the development of optical sensors, since they maximize the interaction

between the optical field and the target substances, which boosts the sensitivity. In this work, we propose the use of a readily avail-

able mesoporous material for the development of such sensors: commercial polycarbonate track-etched membranes. In order to

demonstrate their utility for this purpose, we firstly characterized their optical response in the near-infrared range. This response is

an interference fringe pattern, characteristic of a Fabry–Pérot interferometer, which is an optical device typically used for sensing

purposes. Afterwards, several refractive index sensing experiments were performed by placing different concentrations of ethanol

solution on the polycarbonate track-etched membranes. As a result, a sensitivity value of around 56 nm/RIU was obtained and the

reusability of the substrate was demonstrated. These results pave the way for the development of optical porous sensors with such

easily available mesoporous material.
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Introduction
Sensors are present in our daily life in order to detect and

monitor chemical, biological and physical agents of interest in

medical diagnosis, security, biodefense or industrial procedures,

among other fields of application. For the design and fabrica-

tion of these sensing devices, huge efforts have been made in

recent years to develop different transducers suitable for each

application. According to the transducer type, sensors can be

classified into several categories. Among all of them, optical

sensors stand out because they exhibit a high sensitivity, the

capability of multiplexing and direct real-time detection, minia-

turization possibilities, immunity to electromagnetic interfer-

ence and cost-effectiveness [1]. Additionally, by proper functio-

nalization, label-free and specific detection can be achieved

[2-4].

Optical sensors whose working principle is based on the detec-

tion of changes in the refractive index (RI) are the most widely

used ones. Among them, those that base the sensing process on
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Figure 1: Field emission scanning electron microscope (FESEM) images of the surface of a PCTE membrane employed in our assays. (a) Randomly
distributed pores cover the surface. (b) The diameter of the pores is around 30 nm, as indicated by the manufacturer.

the interaction of an evanescent field with the target substance

are the best known [2]. However, this kind of optical sensor

presents a limited sensitivity, as only part of the light interacts

with the substances of interest. To overcome this limitation,

porous materials are a good option. Since they allow the recog-

nition to happen inside the structure, the whole optical field

interacts with the target substances. Furthermore, as the porous

structure implies an increase in the surface-to-volume ratio,

more receptors and, consequently, more analytes bind to the

surface in biosensing applications. This allows the optical field

to interact with much more matter, increasing the sensitivity as

well [3,5].

Porous silicon is the most explored material for the fabrication

of porous optical sensors. It can be easily fabricated and there

are several well-known chemical strategies to modify its sur-

face [6]. However, in recent years, new porous materials such

as polymers [7] or metals [8] have attracted the attention of

scientists. Nevertheless, all these porous materials require

longer and more complex fabrication processes.

In this work, we propose an alternative, porous transducer that

is commercially available for the development of optical

sensors: polycarbonate track-etched (PCTE) membranes. PCTE

membranes, which are typically used for size-based filtration

[9,10], are reminiscent of the porous structure of a monolayer of

porous silicon, a material that has an optical response of a

Fabry–Pérot (FP) interferometer. This porous silicon structure

has long been used for sensing [6] and we hypothesized that

PCTE membranes might have the same optical response and be

useful for sensing purposes, too.

To study the utility of PCTE membranes for sensing purposes,

we characterized their optical response in the near infrared

(NIR) region, optimized the material by placing a polished

silicon surface under the PCTE membrane, and performed

sensing experiments with different concentrations of ethanol. In

this way, we have demonstrated for the first time to our know-

ledge that PCTE membranes are suitable for sensing RI varia-

tions. Therefore, this study provides a new porous transducer

adequate for the development of optical sensors.

Results and Discussion
Optical response of PCTE membranes: a
Fabry–Pérot interferometer
A FP interferometer is an optical structure consisting of two

parallel reflective surfaces with a gap between them. When light

travels through the structure, it reflects and generates interfer-

ence that lead to the appearance of an interference fringe

pattern.

This configuration has been emulated with porous silicon and

has long been used for sensing purposes [6]. When porous

silicon is illuminated an interference fringe pattern appears with

maxima at particular wavelengths (λm) given by the following

formula:

(1)

where m is an integer, d is the layer thickness and neff is the

effective RI of the porous layer [6]. When the porous structure

is filled with a given substance or molecules, neff changes and

λm shifts, which is used to sense the presence of the substance

or molecule.

In Figure 1, it can be seen that PCTE membranes have a porous

structure similar to that exhibited by porous silicon. Therefore,

we hypothesized that PCTE membranes could have an optical

response similar to that of a FP interferometer and might be

useful for sensing purposes as well.
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Figure 2: (a) Reflectivity spectra of PCTE membranes surrounded by air, positioned over a silicon substrate and covalently bound to it. Detail of the
spectrum between 2200 and 2400 nm for the PCTE membrane (b) surrounded by air, (c) placed over silicon and (d) covalently attached to it. The
same vertical scale has been used for the three spectra for a better comparison of the SNR.

Firstly, we checked if PCTE membranes exhibit an interference

fringe pattern when exposed to light. For that aim, we per-

formed vertical reflectivity measurements with an FTIR micro-

scope (30 scans were taken for each measurement with a resolu-

tion of 4 cm−1) [3,7,11]. We effectively observed that an inter-

ference fringe pattern appears when the PCTE membrane is

surrounded by air. However, the reflectivity was around

0.052 a.u., the peak-to-peak amplitude of the lobes was around

0.005 a.u. in the best case (see Figure 2a, dark blue curve), and

the spectrum was notably noisy, with a signal-to-noise ratio

(SNR) value of 3.52 (see Figure 2b). All these issues are disad-

vantageous for the future employment of these membranes as

optical sensing structures for two reasons. First, the noise can

hide tiny displacements of the spectra that could occur during

the sensing event. Second, most solutions contain water and it is

well known that its absorption coefficient in the NIR region is

high [12]. If we place these aqueous solutions on the PCTE

membrane in order to detect the presence of any component in

it, part of the incident light will be absorbed by water and will

not arrive to the PCTE membrane. This will cause the reflec-

tivity signal to have an even lower intensity.

To maximize and improve the reflectivity signal, we placed the

PCTE membranes on a polished silicon surface, which has a

reflectivity signal of 0.24 a.u. and a flat spectrum in the NIR

region where we are interested in carrying out the measure-

ments (see Figure 2a, light blue curve). Furthermore, although

other metals have a higher reflectivity, silicon offers an advan-

tage: it might provide a mechanical support to the labile mem-

brane. By means of the chemical protocol developed by Aran

and co-workers [13], the PCTE membrane can be covalently at-

tached to the silicon surface employing (3-aminopropyl)tri-

ethoxysilane (APTES) as a crosslinking reagent, which would

avoid folding or displacement of the membrane during the

sensing experiments.

When measuring the optical response of a PCTE membrane

simply placed on silicon, i.e., not covalently bound, we observe

that the reflectivity of the PCTE membrane increases up to

0.2 a.u. (a 4-fold increase), the peak-to-peak amplitude of the

lobes increases up to 0.014 a.u. (see Figure 2a, light green

curve) and the SNR improves up to 9.88 (see Figure 2c).

Finally, we studied the effect of the APTES-mediated covalent

attachment of the PCTE membrane to the silicon substrate on

the reflectivity spectrum. What we could conclude is that the

APTES attachment preserves and even improves the reflec-

tivity spectra of the PCTE membranes in order to perform

sensing experiments. The reflectivity is around 0.2 a.u., the

peak-to-peak amplitude of the lobes is around 0.044 a.u., which

is better than the previous measurement with no APTES treat-

ment, and the SNR increases up to 36.92 (see Figure 2d).
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Figure 3: Evolution of the reflectivity spectrum of the PCTE membrane when placing pure ethanol on it. (a) For the whole characterization range (be-
tween 1110 and 2500 nm). (b) Detail of the spectral region between 2200 and 2500 nm.

Sensing of refractive index variations
Once it was demonstrated that the spectral response of the

PCTE membranes is as expected (i.e., that for a FP interferome-

ter) and that the covalent attachment to a silicon substrate im-

proves the reflectivity spectrum and offers a mechanical

support, our aim was to demonstrate their suitability for use in

sensing applications. To this end, we placed a 10 µL drop of

pure ethanol on the area of the PCTE membrane illuminated by

the light beam of the FTIR microscope and let it evaporate at

room temperature. We recorded the spectrum of the sample

before the deposition of the drop and during the evaporation

process every minute (i.e., the time required by the FTIR to

perform a measurement with the configuration previously

described). In this way, we can follow the shift experienced

by the spectrum at a given point of the PCTE membrane in real

time.

When the air present in the porous structure is replaced by

ethanol, the neff of the structure increases, as ethanol has a

higher RI than air. From Equation 1, we see that this is ex-

pected to provoke a shift of the spectrum towards longer wave-

lengths. Conversely, as ethanol evaporates, the air will start to

fill the pores again and neff of the structure will become smaller,

which should make the spectrum return to its initial position.

Regarding the spectrum, the best region to monitor how the po-

sition of its maxima changes when exposed to ethanol is be-

tween 2200 nm and 2500 nm. In this region, the peaks have a

better quality factor and their amplitude is maximum, which

will ultimately improve the sensitivity. In order to facilitate the

identification of the peaks, the spectra were smoothed using the

smooth function in MATLAB after acquisition.

In Figure 3b, we can see that when ethanol fills the pores a shift

of the spectrum of 19.29 nm occurs towards longer wave-

lengths (for the maximum at ≈2400 nm). While evaporating, we

can clearly see how the spectrum returns to its initial position

gradually, and after 3 minutes, the sample seems to be almost

dry as it reaches again the position in the beginning of the mea-

surement. The differences in reflectivity intensity during the

measurement process are due to the layer of liquid created on

the top of the sample. It increases the diffuse component of light

reflected by the sample, thus reducing the number of beams

arriving to the lenses of the FTIR microscope.

Immediately after the sensing of pure ethanol, another 10 µL

drop of 50% (v/v) solution of ethanol in water was placed on

the PCTE membrane. We then repeated the previous process:

we let the drop evaporate at room temperature and registered

the spectrum every minute with the FTIR microscope. Figure 4

shows the reflectivity spectra measured while carrying out this

experiment. Here we observe a shift of 18.34 nm for the

maximum peak located at ≈2400 nm. Compared with the shift

observed for pure ethanol, this shift is 0.95 nm smaller. The

lower RI of the 50% ethanol solution, obtained by using the

model proposed in [14], compared with the RI of pure ethanol

obtained from [15], determines this smaller shift.

Nevertheless, the differences between the magnitudes of the

two shifts with two different concentrations of ethanol might be

larger. We also have to take into account that the spectrum was

recorded every minute. Hence, we cannot assure that the shift

registered for the first FTIR measurement after the deposition of

the drop is the maximum shift achieved by the spectrum, as the

liquid could have slightly evaporated during this time lapse [16]
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Figure 4: Evolution of the reflectivity spectrum of the PCTE membrane when placing a 50% ethanol solution on it. (a) For the whole characterization
range (between 1110 and 2500 nm). (b) Detail of the spectral region between 2200 and 2500 nm.

Table 1: Summary of the refractive index values for each substance filling the pores, measured spectral positions for them during the experiment and
calculated sensitivity values.

Solutions Refractive index
(λ = 2400 nm)

Maximum position (nm) Sensitivity
(nm/RIU)Minute 0 (air) Minute 1 Minute 2 Minute 3

100% ethanol 1.3415 2389.49 2408.78 2403.42 2389.61 56.49
50% ethanol 1.3263 2390.09 2408.43 2401.28 2390.07 56.21

air 1.000

allowing the air to refill the pores. To check this, we calculated

the sensitivity of our sensor (summarized in Table 1). As we

performed both measurements on the same point of the sample

and under the same conditions, the differences might only be at-

tributed to the different evaporation behavior of the two solu-

tions. For pure ethanol, we obtained a sensitivity of 56.49 nm/

RIU, while for 50% ethanol solution we obtained 56.21 nm/

RIU. Since they are very similar values, we can assume that the

pores are equally filled by both solutions when the first FTIR

measurement is done and that the differences in the shift only

come from the different refractive index of the two solutions.

These two sensing assays demonstrate the utility of PCTE

membranes as optical sensors. The material behaves like a FP

interferometer, whose spectral shift towards longer or shorter

wavelengths depends on the increase or decrease of the RI of

the medium, respectively. We could also see differences in the

magnitude of those shifts depending on the RI of the liquid put

on the sample. This indicates the capability of PCTE mem-

branes not only to detect a change in the RI, but to quantify it.

Regarding sensitivity, our sensor is notably less sensitive than

its homologous counterpart, porous silicon [5]. This might be

explained by the fact that our sensors only have a 0.4% of

porosity, while porous silicon typically has porosity in the range

of 50%. However, even with such a low porosity value, we

were able to clearly see the presence of ethanol in the medium.

Furthermore, our porous structure presents an important advan-

tage: it is ready to use. This material could reduce the costs and

time of manufacturing. For future work, we will continue

searching for a suitable way to improve the sensitivity of the

device.

In this initial development stage, we tried to detect different

concentrations of ethanol. Once we know we are able to use

PCTE membranes for sensing chemicals, a wider study with

different substances at different concentrations will be carried

out. Furthermore, as polycarbonate surfaces can be chemically

modified to bind molecules [17-19], this also paves the way to

selectively detect analytes and to develop specific optical

sensors for specific applications.

Conclusion
For the first time, to our knowledge, we have demonstrated

the utility of commercial PCTE membranes in the development

of optical porous sensors. By means of the PCTE membranes,
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we could detect changes in the RI of the medium. Furthermore,

we observed differences in the response depending on the

magnitude of such changes, which indicates the utility of

PCTE membranes not only for detection, but also for quantifi-

cation.

This work means the discovery of a new, cheap and readily

available transducer for the development of optical sensors.

Moreover, as polycarbonate can be modified to be chemically

reactive [17-19], this endows these optical sensors with versa-

tility to fabricate devices for the selective detection and/or mon-

itoring of chemical, physical or biological agents of different

nature in different application fields.

Experimental
All materials and reagents were purchased from Sigma-Aldrich

(St. Louis, MO, USA), unless otherwise noted. Firstly, the sur-

face morphology of Whatman® 800307 PCTE membranes

(19 mm diameter with pores of 30 nm diameter, 11 µm thick-

ness and a refractive index of 1.5551 at 2400 nm (obtained

using the dispersion equation provided in [20])) was character-

ized with a FESEM Hitachi S-4500 (Hitachi, Ltd., Chiyoda,

Japan). In order to bind the PCTE membranes to a 1 × 1 cm

polished silicon surface we slightly modified the APTES

protocol previously described by Aran and co-workers [13].

Briefly, the PCTE membrane was firstly activated by oxygen

plasma in a plasma asher (PVA TEPLA 200, PVA TePla AG,

Wettenberg, Germany) for 1 min (50 W, 1.5 mbar). Immedi-

ately after, it was immersed in an aqueous solution of APTES at

80 °C for 20 min. Then, the membrane was removed from the

solution and dried out on a cleanroom wipe. Once dried, it was

dropped onto the newly activated silicon surface by piranha

treatment (H2SO4/H2O 3:1) for 10 min.

A Bruker FTIR microscope (Bruker Corporation, Billerica,

MA, USA) was employed to measure the optical response

of the PCTE membranes in air and when different concentra-

tions of ethanol (Scharlab, Barcelona, Spain) are placed

on it. The reflectivity measurements were performed in the

NIR range (1110–2500 nm) with a resolution of 4 cm−1. To en-

hance the SNR, 30 scans were collected every minute to

perform a continuous monitoring of the spectrum shift evolu-

tion. For the fitting and the graphical representation of the

spectra, MATLAB R2016b (The MathWorks, Inc., USA) was

used.
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