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Abstract

The use of outcome-dependent sampling with longitudinal data analysis has previously been 

shown to improve efficiency in the estimation of regression parameters. The motivating scenario is 

when outcome data exist for all cohort members but key exposure variables will be gathered only 

on a subset. Inference with outcome-dependent sampling designs that also incorporates incomplete 

information from those individuals who did not have their exposure ascertained has been 

investigated for univariate but not longitudinal outcomes. Therefore, with a continuous 

longitudinal outcome, we explore the relative contributions of various sources of information 

toward the estimation of key regression parameters using a likelihood framework. We evaluate the 

efficiency gains that alternative estimators might offer over random sampling, and we offer insight 

into their relative merits in select practical scenarios. Finally, we illustrate the potential impact of 

design and analysis choices using data from the Cystic Fibrosis Foundation Patient Registry.
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1 | INTRODUCTION

Because of the natural constraint of limited financial and patient resources, the development 

of novel and statistically efficient study designs continues to be a priority for scientific 

investigators. For example, patient registries and other cohorts can provide readily accessible 

sources of longitudinal data; however, when novel candidate biomarkers are discovered, 

limited availability of biological specimens together with financial constraints may require 

investigators to target only a subset of patients for detailed additional study. In such cases, 

outcome-dependent sampling (ODS) designs, which collect new covariate data on a subset 

of individuals who are selected based on characteristics of their outcome variables, can 
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provide an efficient and cost-effective strategy to conduct biomarker substudies that leverage 

existing cohort information.

Methods that selectively subsample highly informative individuals have a long history of 

offering efficiency gains over simple random sampling. The fundamental case-control study 

has been frequently used as a cost-effective way to study the association between rare binary 

outcomes and key exposures.1 In the more general regression setting, ODS designs typically 

require appropriately tailored estimation to account for purposeful subsample selection, and 

a naïve analysis may yield biased estimation. To avoid this complexity, continuous outcomes 

are sometimes dichotomized and then simply analyzed using logistic regression. However, 

dichotomization will generally yield reduced power to detect an association and makes 

comparisons across different studies difficult if there is not a standardly accepted and 

meaningful cutpoint.2–4 When the association of an exposure with a continuous longitudinal 

outcome is of primary interest, ODS designs and analysis strategies offer the prospect of 

valid inference and increased efficiency at a reduced cost compared with traditional 

methods.5,6

Although ODS designs and analysis methods have been proposed in the statistical literature, 

there is incomplete applied guidance regarding how to choose a specific sampling design, 

and limited study of the statistical information that is recovered using various analysis 

approaches. In particular, some strategies may not use covariate information or outcome 

information on nonsubsampled subjects. Therefore, we provide a careful mathematical and 

numerical characterization of both the design and the likelihood-based analysis choices.

We focus in this manuscript on detailing all of the candidate elements that could be used for 

a full likelihood or Bayesian analysis. We recognize that alternative estimation approaches 

could be used to account for the design-based biased sample such as inverse probability 

weighting (IPW)7 or regression calibration approaches.8,9 However, these semi-parametric 

strategies generally sacrifice potential efficiency gains for protection against model violation 

(robustness), and our primary goal in this manuscript is to evaluate the full information 

potential of various design choices. Therefore, likelihood-based analysis provides a 

theoretical bound for efficiency comparisons. Future work that compares likelihood-based 

and semiparametric alternatives is certainly of interest.

In this manuscript, we first detail the information that is potentially available from all 

aspects of the data including the conditional distribution of covariates given a subject was 

sampled. For the first time in the statistical literature, we explicitly consider the likelihood 

contribution for the longitudinal outcomes of those subjects not selected for detailed 

exposure evaluation. In addition, we provide new results clarifying when the conditional 

distribution of covariates given sampling contains any information relevant to target 

parameters. Second, we consider the relative efficiency of these analysis alternatives under 

sampling design choices where different thresholds that trigger sampling are considered or 

where different sampling fractions are considered. Our comprehensive evaluation of design 

and likelihood-based analysis options provides insight for applied statisticians who may 

wish to consider use of ODS with longitudinal cohort data and for researchers seeking to use 

collected data more completely.
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2 | MOTIVATION AND BACKGROUND

Cystic fibrosis (CF), a genetic disease manifesting primarily in pulmonary dysfunction, 

affects about 30 000 people in the United States. The Cystic Fibrosis Foundation Patient 

Registry (CFFPR) collects detailed longitudinal data on health outcomes, clinical care, and 

demographics of CF patients receiving care at accredited centers.10 Many patients also 

contribute biological specimens upon enrollment in the registry. When a novel biomarker is 

discovered, the registry can provide a rich resource for studying the association between new 

markers or exposures and relevant longitudinal outcomes such as lung function over time.

Within the CFFPR, suppose we wish to study the association of lung function denoted as Yi 

= vec(Yij), measured repeatedly at times Ti = vec(Tij), with a novel marker Mi to be 

ascertained at baseline; call this collection of covariates Xi = [Ti, Mi], and suppose the 

marginal distribution of covariates is indexed by a parameter Γ. Moreover, we assume that 

for practical reasons, Mi can only be ascertained in a subset of patients for whom Yi is 

already known. We denote the subset with the indicator Si = 1 for sampled subjects and Si = 

0 for nonsampled subjects. We also assume that we choose the subset based strictly on the 

outcome or some summary of the outcome that is conditionally independent of covariate 

values or ω(Yi) = P(Si = 1|Yi, Xi) = P(Si = 1|Yi). If θ is the collection of regression 

parameters and variance components of interest from the greater CFFPR population, we can 

write the likelihood from the observed subset data using Bayes rule:

L(θ, Γ; Y, X, S) = ∏
si ∈ 1

f Yi, Xi Si = 1; θ, Γ

= ∏
si ∈ 1

P Si = 1 Yi, Xi ⋅ f Yi Xi; θ ⋅ g Xi; Γ
P Si = 1; θ, Γ

= ∏
Si ∈ 1

ω Yi ⋅ f Yi Xi; θ ⋅ g Xi; Γ
P Si = 1; θ, Γ .

(1)

By design, ω(Yi) is strictly a function of the observed outcome, so it does not depend on θ 
and can be ignored in maximizing the likelihood. The scaling factor P(Si = 1), however, 

involves both the distributions of Xi and Si|Xi (henceforth written simply as [Xi] and [Si|Xi]), 

and since the latter is related to θ under biased sampling, this term must be taken into 

account for valid inference on θ. While the marginal distribution g(Xi) is unrelated to θ, 

g(Xi) is involved in the scaling factor P(Si = 1) and cannot be ignored in analysis as is 

typically done under random sampling designs.

Previous work has analyzed ODS designs using likelihood approaches similar to that 

outlined above. Zhou et al11–13 and Weaver and Zhou14 demonstrated the potentially 

increased efficiency of ODS designs relative to a random sample for cross-sectional data 

with scalar continuous outcomes. For cross-sectional data, Zhou et al11,15 used an empirical 

likelihood estimate of g(Xi); a profile likelihood for the same problem was used for clustered 

data by Neuhaus et al.16,17 For longitudinal data, Schildcrout et al5 sidestepped the issue of 
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modeling or estimating g(Xi) by further conditioning on the exposure Xi, possibly at the 

expense of a loss of additional information, and then maximizing an “ascertainment-

corrected” likelihood to produce an estimator of θ. Importantly, Schildcrout et al5 showed 

that the sampling design options have potentially large impacts on regression parameter 

estimation efficiency and could lead to a doubling in efficiency compared with a random 

sample for targeted parameters.

The approaches discussed above all analyzed only those individuals whose exposure was 

ascertained (Si = 1) and discarded all unsubsampled subjects (Si = 0). However, including 

unsubsampled individuals in the analysis would yield an expanded likelihood function that 

could also be maximized to obtain valid and possibly more efficient estimators of θ. While 

unsubsampled subjects do not have their exposure measured and cannot directly provide 

information on the relationship between the expensive covariate and the outcome, the 

observed outcomes of unsubsampled individuals provide information on the population-level 

mixture of covariate-specific mean outcomes or marginal means. Thus, including these 

individuals in estimation and inference has the potential to improve inference on some 

parameters or combinations of parameters, at added computational but no additional 

logistical cost. A complete likelihood was explored by Weaver and Zhou14 for univariate 

outcome data using an estimated likelihood approach. Later work by Song et al18 similarly 

produced a “restricted maximum likelihood” estimator for cross-sectional data that used all 

individuals. Pseudoscore19 and semiparametric maximum likelihood estimation20 methods 

that included unsubsampled individuals were also found to perform well in simulations. 

More recently, Schildcrout et al6 examined the ability of imputation strategies to recover 

information from unsubsampled individuals for ODS designs with longitudinal data.

Likelihood-based ODS methods are not the only analysis approach for longitudinal data 

with covariates that are missing by design. In particular, weighting methods, such as the 

classic Horvitz-Thompson estimator7 and augmented IPW estimators,21 provide a class of 

alternatives that may be used that are robust to model misspecification and may in some 

cases achieve semiparametric efficiency. The likelihood-based ODS methods we consider 

here rely on characterization of the tails of the normal distribution; given this fact, concerns 

about balancing robustness with efficiency are reasonable and worthy of investigation. 

However, we restrict the focus of the current work to likelihood-based estimators only, with 

the goal of characterizing the parametric efficiency that may come from various sources of 

information toward the estimation of key regression parameters in a likelihood framework.

Collectively, this body of work has demonstrated that likelihood-based ODS designs can 

provide substantial efficiency gains for regression parameters of interest compared with a 

random sample. However, approaches to creating valid likelihood-based estimators have 

varied with respect to both the specific design and the choice of analysis for the resulting 

biased subsample. Decisions about which likelihood to maximize and whether to include 

information from the exposure and/or unsubsampled individuals have been explored in some 

circumstances, but not systematically for longitudinal data. Hence, researchers are likely 

unsure of which estimator to implement and under what specific ODS design. For a 

continuous longitudinal outcome, this paper explores the contributions of various sources of 

information toward the estimation of key regression parameters in a likelihood framework. 
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For simplicity, we assume the ascertained exposure to be binary in simulations, although the 

statistical arguments extend easily to exposures with an arbitrary number of levels.

The following framework could easily accommodate the presence of additional inexpensive 

covariates that are measured for all subjects; for simplicity, these are omitted here. Section 3 

introduces 6 likelihood-based regression parameter estimators that we compare, while 

Section 4 presents operating characteristics of these estimators and guidance on selecting 

design parameters. In Section 5, we illustrate the results with an application to a hypothetical 

biomarker substudy using the CFFPR dataset and finally offer a discussion of our results in 

Section 6.

3 | METHODS

3.1 | Notation and design

In this section, we explore a collection of valid candidate likelihood-based estimators of the 

regression parameters of interest based on the usual linear mixed model for longitudinal 

data. Specifically, suppose we have a cohort of N subjects, each measured ni times, so that 

for the ni × 1 continuous outcome vector Yi, i = 1, …, N, the linear mixed model of interest 

as proposed by Laird and Ware22 is

Yi = Xiβ + Zibi + ϵi,

where Xi = [1, Ti, Mi, Mi × Ti] is the ni × 4 design matrix. We define the vector of times Ti = 

vec(Tij), j = 1, …, ni, and Mi the retrospectively ascertained time-invariant covariate. The 4 × 

1 vector β contains the regression parameters of interest, while Zi is the design matrix for 

the intercept and slope random effects. The vector bi = (bi0, bi1)T is assumed to be 

multivariate normally distributed with 2 × 1 mean vector 0 and covariance matrix D 

consisting of diagonal elements σb0
2 , σb1

2 T
 and off-diagonal covariance 

Cov  bi0, bi1 = ρσb0
σb1

. The ni × 1 vector of errors ϵi is assumed to be conditionally 

independent and normally distributed with common variance  σe
2. We transform the variance 

components to γ = log σb0
2 , log 1 + ρ

1 − ρ , log σb1
2 , log σe

2 T
 for ease of estimation, and the 

parameter vector on which we focus is denoted θ = (β, γ)T.

For this work, we assume that all N members of the cohort have completely observed 

outcome vector Yi and that Mi is an expensive covariate that is ascertained only for a 

subsample of NS individuals. We consider a simple time-invariant covariate, such as a novel 

marker retrospectively measured on a stored biological sample. For subjects who are 

subsampled, the complete information vector on (Yi, Ti, Mi) is available; for the remaining 

N − NS = NNS subjects who are not subsampled, only the vector (Yi, Ti) is known.

For longitudinal or clustered data, specification of the biased ODS sampling design presents 

an added level of complexity compared to cross-sectional data, since different aspects of the 
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vector Yi can be chosen to indicate sampling. One simple way to define an ODS scheme for 

longitudinal data is to transform the outcome vector into a low-dimensional summary that 

provides a natural ordering for subsampling. For example, for binary outcome data, this has 

been accomplished by preferentially sampling based on the number of cases in a cluster16,17 

or based on clusters whose members are not all 0 or 1.23 For continuous longitudinal 

outcomes considered here, we follow the example of Schildcrout et al5 by defining a class of 

subsampling variables Qi, which is a low-dimensional summary of the outcome vector Yi 

and often would be chosen as a linear combination of the longitudinal outcome, Qi = WiYi 

for some m×ni matrix Wi. Briefly, we consider subsampling based on a regression feature 

using the vector Qi = Xti
TXti

−1Xti
TYi, where Xti = [1, Ti]. Here, the summary is simply the 

result of regressing outcome vector Yi on time for each cohort member. We choose to focus 

subsampling on only one element of Qi, either the individual intercept or slope, although 

bivariate subsampling based on Qi is also possible.5 The resulting values of the sampling 

variable qi ∈ ℝ1 will fall into 1 of 3 regions: region 1 (−∞, a1), region 2 [a1, a2), or region 3 

[a2, ∞), where a1 and a2 are predetermined constants. Within each region, subjects are 

subsampled with constant probability ωk(q) = P(Si = 1|qi ∈ Rk), k = 1, 2, 3, which may 

differ by stratum but is assumed to be a constant chosen by design. As in previous work, we 

generally wish to oversample subjects with extreme values of qi. Although we choose to 

examine only ODS designs based on these 2 simple features, other approaches to biased 

sampling could be equally valid provided the design is adequately considered in the analysis 

stage.

3.2 | Likelihood

Under the longitudinal data scenario described above, the complete observed data likelihood 

can be written as

(2)

As seen in Equation 2, the unconditional observed data likelihood can be factored into terms 

corresponding to several conditional likelihoods that could be used to yield estimators of θ. 

For the present, we consider only complete balanced designs; Ti may be assumed to be 

independent of other variables in this case. Under random sampling, the distributions of [Xi|

Si] and [Si] do not depend on θ and add no information to inference; conventional regression 
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approaches condition upon Xi and Si for this reason. Under biased sampling, however, both 

may contain information about θ and could potentially be incorporated in the maximization 

to yield efficiency gains. Similarly, including unsubsampled individuals in the analysis, 

either conditionally upon or jointly with covariate information, would yield a likelihood 

function that could also be maximized to obtain valid estimators of θ.

3.3 | Analysis: subsampled only

Equation 2 shows that a variety of valid likelihoods derived from the complete data 

likelihood could be used as a basis for inference. One simple analysis option would be to 

consider the conditional likelihood (which we refer to as “subsampled only, no covariates”, 

or SO,NC)

ℒSO, NC(θ; Y, X, S) = ∏
Si = 1

f Yi Xi, Si = 1; θ , (3)

considered by Schildcrout et al,5 which uses information from subsampled individuals only, 

conditional upon the marker value and sampling. The resulting conditional log-likelihood 

can be written as a term that treats subsampled data as if it had come from a random sample, 

together with an “ascertainment-correction” term AC0(Mi, Ti; θ) ≡ P(Si = 1|Mi, Ti; θ), 

which accounts for the biased sampling design.

A second option for analyzing only subsampled individuals is to add information from the 

marker value conditional on sampling by analyzing the joint conditional likelihood 

(“subsampled only, with covariates”, or SO,WC). This approach may be attractive since the 

conditional distribution [Xi|Si] may contain additional statistical information that could 

potentially increase efficiency; however, it additionally requires estimating the parameter Γ 
that indexes the marginal distribution of Xi (for binary marker Mi, this is simply the marker 

population prevalence p). We can write the joint conditional likelihood as

ℒSO, WC(θ, Γ; Y, X, S) = ∏
Si = 1

f Xi Si = 1; θ, Γ ⋅ f Yi Xi, Si = 1; θ . (4)

The bias induced by the sampling design can again be corrected through an ascertainment 

correction; in contrast to SO,NC, in this case, Γ must also be estimated. Moreover, the 

distribution upon which the SO,WC likelihood is based can be related to the SO,NC 

likelihood in the following way:
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f Y i, Xi Si = 1; θ, Γ = f Y i Xi, Si = 1; θ ⋅ P Xi Si = 1; θ, Γ

= f Y i Xi, Si = 1; θ ⋅
P Si = 1 Xi; θ ⋅ P Xi; Γ

P Si = 1; θ, Γ

= f Y i Xi, Si = 1; θ ⋅
AC0 Mi, T i; θ ⋅ P Xi; Γ

AC1 Ti; θ, Γ .

(5)

The marginal probability of being sampled, AC1, can be viewed as the expectation of the 

covariate-specific ascertainment correction AC0(Mi, Ti; θ) taken over the distribution of Mi 

conditional on Ti and assuming Ti is fixed by design, since

AC1 Ti; θ, Γ = ∫ P Si = 1, Mi = m; Ti, θ, Γ dm

= ∫ P Si = 1 Mi = m, Ti; θ ⋅ f Mi Ti; Γ dm

= ∫ AC0 Mi = m, Ti; θ ⋅ f Mi Ti, θ, Γ dm

= 𝔼
Mi Ti

AC0 Mi, Ti; θ, Γ .

It can be shown (Appendix S1) that in complete and balanced design situations (ie, when all 

individuals are observed ni ≡ n times and those observation times are the same across all 

individuals), the second term in Equation 5 is essentially a reparameterization of Γ, the 

parameters that index the marginal distribution of Mi. As such, this term provides no 

information about θ for complete and balanced designs, and the resulting estimators SO,NC 

and SO,WC will be the same with respect to the target parameter θ, although SO,WC 

additionally estimates the marginal distribution parameter Γ (the marker population 

prevalence p = P(Mi = 1) for binary Mi). When the design is not balanced, and cohort 

members may be observed at times that differ from one another, AC0(Mi, Ti; θ) may vary by 

marker/time combination, and the inclusion of covariates in inference may offer some 

additional information in this case.

3.4 | Analysis: inclusion of unsubsampled subjects

While estimators SO,NC and SO,WC exclusively use information from subsampled 

individuals, the inclusion of unsubsampled subjects may provide additional statistical 

information. While unsubsampled subjects do not have the marker measured and cannot 

directly provide information on the relationship of the expensive covariate with the outcome, 

the observed outcomes of unsubsampled individuals provide information on the population-

level mixture of marker-specific mean outcomes. For example, for a binary marker Mi, at 

baseline, the mean outcomes for subjects with Mi = 0 and Mi = 1 under the usual linear 

mixed model are β0 and β0 + βM, respectively. If p is the prevalence of the marker, 

observing the mean of Y among all cohort members at baseline would then give an estimate 
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of 𝔼 Yi1 |T i1 = 0 = β0 + βMp; the variance of Yi1 is likewise related to combinations of 

regression parameters.

To illustrate the potential contributions of subsampled and unsubsampled subjects to 

inference, we generated simulated data under regression parameters βT = (β0, βT, βM, βM×T) 

= (−1.5, −0.15, 3, −0.15) for N = 1000 cohort members each with ni = 6 observations, of 

whom NS = 250 were randomly subsampled; the marker population prevalence was 25%. 

Figure 1 shows representative contours from subsampled and unsubsampled subjects’ 

contributions to the profile log-likelihood for these parameters under random sampling and 

illustrates the possible impact of including these individuals in the analysis. Notably, the log-

likelihood contribution of unsubsampled subjects (middle panel of Figure 1) describes a 

ridge of linear combinations of the parameters related to the baseline mean of Y among all 

subjects, subject to constraints imposed by the observed variance. Adding information from 

the unsubsampled subjects to the usual log-concave likelihood contributions from 

subsampled subjects (top panel of Figure 1) has the potential to affect both estimation (ie, 

orientation) and precision (the area of a 95% confidence region obtained by inversion), as 

seen in the bottom panel.

Incorporating the entire cohort of subsampled and unsubsampled subjects into the analysis 

and without including covariate information, we obtain estimator SU,NC (“subsampled/

unsubsampled, no covariates”) by maximizing over the following likelihood:

ℒSU, NC(θ, Γ; Y, X, S) = ∏
Si = 1

f Yi Xi, Si = 1; θ ⋅ ∏
Si = 0

f Yi Si = 0; θ, Γ .

Maximizing this conditional likelihood involves estimating the marginal marker 

distribution’s parameter Γ; however, information on Γ is available only through the mixture 

distribution contributed by unsubsampled individuals. While this parameter is formally 

identifiable, it may not be easily estimable. To address this concern, for binary Mi, we also 

evaluated another version of this estimator (denoted SU,NC + PI) that maximizes the same 

likelihood but uses a plug-in estimator of Γ = p based on inverse probability of sampling 

weighting, p = ∑i = 1
N Mi ⋅ 𝕀 Si = 1

N ⋅ ω qi
. Via the weak law of large numbers, we expect the plug-in 

estimator to be consistent for p, since it has the proper expectation and finite variance.

𝔼M, Q, S, T M ⋅ 𝕀(S = 1)
ω(q) = 𝔼M, Q, T

M
ω(q)𝔼S[𝕀(S = 1 M, T, Q ∈ RK)] = 𝔼M[M] = p .

Just as estimator SO,WC added the covariate information to the conditional likelihood of 

estimator SO,NC, we could likewise add covariate information to estimator SU,NC. In 

contrast to the analyses that considered only subsampled individuals, including covariate 

information may prove beneficial when analyzing the entire cohort, since the covariate 

information from subsampled individuals can help to inform about the mixture distribution 

of unsubsampled subjects, which in turn informs inference about θ. Therefore, we also 
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consider maximizing the likelihood conditioning only on sampling status (“subsampled/

unsubsampled, with covariates”, or SU,WC):

ℒSU, WC(θ, Γ; Y, X, S) = ∏
Si = 1

f Xi Si = 1; θ, Γ ⋅ f Yi Xi, Si = 1; θ ⋅ ∏
Si = 0

f Yi Si = 0; θ, Γ .

Finally, we could analyze the unconditional likelihood (Equation 2), incorporating 

information from all subjects, marker values, time, and sampling status. We refer to the 

resulting estimator as “UC” (unconditional).

In summary, we have delineated a series of likelihood-based estimators of θ that exploit 

different parts of the unconditional likelihood and hence differ in the information used. Each 

conditional and unconditional likelihood ℒ may then be maximized to produce a valid 

estimator of θ by solving the system ∑i = 1
N dℒi(θ)

dθ = 0 (or ∑i = 1
N dℒl(θ, Γ)

d(θ, Γ) = 0 for likelihoods 

that additionally estimate Γ) using the Newton-Raphson algorithm; the covariance of θ can 

then be estimated by ∑i = 1
N dℒi(θ)

dθ ⋅
dℒi(θ)

dθ

T
. Intuitively, we expect that including 

unsubsampled individuals in inference will result in additional statistical efficiency, while 

utilizing covariate information among subsampled subjects will not add precision under 

balanced designs. A careful evaluation of the gains in efficiency, balanced against the 

complexity of implementation, that are available for this class of designs is necessary to 

inform practice; we provide a comparison of these estimators with respect to consistency 

and efficiency in Section 4.

4 | ASSESSMENT OF OPERATING CHARACTERISTICS

4.1 | Setup and data-generating mechanism

Previous work by Schildcrout et al5 showed large efficiency gains from an ODS design 

compared with a random sample of the same size, while Weaver and Zhou14 demonstrated 

the added utility of analyzing unsampled individuals for cross-sectional data. Here, we 

evaluate the added incremental benefit of including information about covariates and/or 

information about unsubsampled subjects for longitudinal data with a continuous outcome 

and an expensive binary time-invariant covariate. We compare the behavior of the 

likelihood-based estimators described in Section 3 to a random sample of the same size with 

respect to bias and efficiency, both analytically and through simulation.

For each replication, we generated independent and identically distributed data for N = 1000 

subjects from the linear model

Yi j = β0 + βTti j + βMmi + βM × Tti jmi + b0i + b1iti j + ei j,

where β = (β0, βT, βM, βM×T) = (10, −0.25, −0.75, 0.5), i = 1, …, 1000, j = 1, …, ni, where 

ni was either 6 or 11 and observation times were equally spaced. The expensive binary time-
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invariant marker, Mi, had a prevalence of 10%. Random effects bi = (b0i, b1i) were 

multivariate normally distributed with mean 0 and 2 × 2 covariance matrix variance D, with 

variances σb0
2  and σb1

2  on the diagonal and covariance off-diagonal element of 0 (ρ = 0). 

Errors eij were generated to be conditionally independent and normally distributed with 

mean 0 and variance σe
2. We examined estimator performance under 2 variance component 

scenarios: one with low subject-to-subject heterogeneity σb0
2 = 4, σb1

2 = 0.25, σe
2 = 1  and one 

with high subject-to-subject heterogeneity σb0
2 = σb1

2 = σe
2 = 4 . Simulation results reported 

here are based on 1000 replications.

Subjects were selected for marker ascertainment based on the 2×1 vector of subject-specific 

regression coefficients Qi = Xti
TXti

−1XtiYi, where Xti = [1, Ti]. We considered 2 sampling 

schemes, selecting either subjects for subsampling based on the value of their subject-

specific intercept or their subject-specific slope, both of which we derived from regressing 

each cohort member’s outcome vector on observation times. In each case, we selected a 

subsample of 250 on average, with an average of 100 individuals from the lowest 20th 

percentile, 50 individuals from the middle 60%, and 100 individuals from the highest 20th 

percentile of the subsampling variable qi (either individual intercept or slope). Both 

intercept- and sloped-based outcome-dependent samples were analyzed using the 

approaches described in Section 3. To ensure that estimates obeyed parameter constraints 

such as positive variance, we transformed the variance components as described in Section 

3.1 and used the Newton-Raphson algorithm to maximize over the parameter vector θ = (β, 

γ)T, plus the transformed population marker prevalence, logit(p), for estimators that required 

it. We compare the estimates resulting from each ODS design/analysis combination with the 

estimate obtained from a random sample of 250 individuals and with the estimate obtained 

from a usual linear mixed model using all 1000 individuals from the original simulated 

cohort. Although the prospect of more efficient estimation of regression parameters is the 

primary motivation for this class of designs, we compare results of each estimator over the 

entire parameter vector θ, to more completely characterize the possible benefits; in some 

applications in which characterizing the heterogeneity of participant outcomes, the 

parameters in γ may likewise be of interest.

4.2 | Validity and relative efficiency: simulation

We evaluated each estimator in terms of the average percent relative bias and efficiency 

relative to a random sample of the same size (on average). Results are presented for a 

constant cluster size of ni = 6; results when ni = 11 were qualitatively similar and are not 

shown. For all design and analysis methods, and under both low and high subject-to-subject 

heterogeneity, estimates for regression and variance parameters showed little bias, generally 

<5% (Tables S1 and S2). Analysis methods that additionally estimated the population 

prevalence p of the expensive covariate were likewise unbiased, with the exception of 

estimator SU,NC. This method experienced convergence issues related to the parameter p a 

substantial fraction of the time, which led to widely variable estimates of p, although the 

other parameters of interest continued to be correctly estimated.
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Consistent with results seen by Schildcrout et al,5 estimator SO,NC offered major efficiency 

gains over random sampling for selected regression parameters, which depended on the 

subsampling design used (Figure 2). When the subject-specific intercept was chosen as the 

subsampling variable, the greatest efficiency gains occurred for time-invariant covariate 

parameters β0 and βM (relative efficiencies up to 3.44 and 1.56, respectively; see Table S1), 

while time-varying covariate parameters βT and βM×T had the greatest gains when a subject-

specific slope was used (relative efficiencies up to 3.43 and 1.48, respectively). As 

previously discussed, when only subsampled individuals’ information was analyzed, 

incorporating covariate information (estimator SO,WC) into inference did nothing to change 

the relative efficiency of the estimator compared with the conditional version (estimator 

SO,NC). In fact, these 2 estimators were numerically equivalent, up to convergence of the 

respective algorithms, as expected.

Adding unsubsampled individuals to the analysis produced substantial gains in efficiency for 

some regression parameters and for all variance components, regardless of the ODS design. 

For variance components, estimators that included unsubsampled subjects (estimators 

SU,NC, SU,WC, and UC) recovered nearly all the information from the full cohort; for 

regression parameters, only β0 and βT had improved efficiency. Augmenting information 

from unsubsampled individuals without also considering covariate information (estimator 

SU,NC) produced an estimator that often had convergence issues. Unlike the situation when 

only subsampled individuals were considered, analyzing the joint likelihood improved 

efficiency over the conditional likelihood when unsubsampled individuals were included 

(Estimators SU,WC vs SU,NC). However, using a plug-in estimator of p (estimator SU,NC 

+ PI) was nearly as efficient as incorporating covariate information formally into the 

likelihood (estimator SU,WC). Almost no benefit was seen in analyzing the unconditional 

likelihood (estimator UC) over a likelihood approach that conditioned on sampling status 

and time (estimator SU,WC).

We also evaluated the benefit of ODS design and analysis choices for the time-specific 

difference in expected outcome, 

Δt = μ1(t) − μ0(t) ≡ 𝔼(Y M = 1, T = t) − 𝔼(Y M = 0, T = t) = βM + βM × T ⋅ t. Percent bias and 

relative efficiency for Δt under high subject-to-subject heterogeneity are summarized in 

Table S3. For baseline (t = 1) comparisons, the highest relative efficiency came from 

intercept-based designs; for t = 6, when Δt is more highly weighted toward the time-related 

parameter βM×T, the greater efficiency came from slope-based designs. In neither case did 

the analysis approach appear to have a substantial impact on the relative efficiency. Results 

were similar under low subject-to-subject heterogeneity, as seen in Table S4.

4.3 | Evaluation of design features

Each of the estimators examined here is a maximum likelihood estimator and as such will be 

asymptotically unbiased for θ under correct model specification. The asymptotic relative 

efficiency of the estimators can likewise be found through an analytical comparison of the 

information in each estimator. For estimators that included only subsampled individuals, we 

calculated this directly; for estimators involving all cohort members, we used a numerical 

approach to ascertain relative efficiency. In addition to the intercept- and slope-based ODS 

Zelnick et al. Page 12

Stat Med. Author manuscript; available in PMC 2019 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



designs described above, we also investigated the relative efficiency obtained from an ODS 

design that used the intercept-based criterion to choose half of the subsample and the slope-

based criterion to choose the other half.

Intuitively, sampling more individuals with extreme subject-specific intercepts and/or slopes 

should yield larger efficiency gains and would change the sampling probabilities used in 

each region. The relative efficiency of the ODS designs considered here depends not only on 

θ itself but also on 2 key ODS design parameters, where the oversampling regions are 

defined to be (eg, cutpoints for qi) and the sampling fractions (ω(q)) for each region. For a 

simulated cohort of 10 000 individuals and for estimators SO,NC and SU,WC, Figures 3 and 

4 show the relative efficiency for regression parameters obtained when varying these key 

ODS design parameters. In Figure 3, the oversampling region is kept constant and we 

illustrate the effect of varying the number oversampled in that region. As expected, sampling 

more subjects from the top 20th percentile increases efficiency for parameters related to the 

subsampling variable. Alternatively, one may fix the sampling number in each region but 

vary how extreme those regions are; Figure 4 shows the effect of this. Again, the greatest 

efficiency gains occur for parameters the design has specifically targeted (ie, β0 and βM for 

intercept-based designs and βT and βM×T for slope-based designs) and for designs that have 

a large number of individuals subsampled from the most extreme regions of q. These 

illustrations demonstrate the impact that design choices, as well as analytical strategy, may 

have on regression parameter efficiency.

5 | APPLICATION TO CFFPR DATA

We illustrate the relative merits of the likelihood-based estimators discussed here with an 

application to data from the CFFPR, which collects detailed information on the health 

outcomes, clinical care, and demographic characteristics of patients with CF receiving care 

at accredited centers.10 We mimic a project that would selectively evaluate stored baseline 

specimens for a subset of patients and link these data to longitudinal trajectories of lung 

function. For this illustration, we identified a cohort of 3141 CFFPR patients between the 

ages of 8 and 16 who had at least 6 consecutive annual longitudinal spirometry 

measurements available and whose initial spirometry measurement after the age of 8 

occurred between 1990 and 2006. The average age of participants at the first visit considered 

was 8.8 years old, with the cohort split equally between boys and girls. Seventy percent of 

the cohort tested positive for the bacterium Staphylococcus aureus at the first visit; selected 

summary statistics for this cohort can be found in Table S5. We evaluated the impact of ODS 

design and analysis of a hypothetical substudy to investigate the longitudinal association 

between the presence of the bacterium S aureus at baseline and FEV1 (L), a measure of lung 

function. We assume that only a subsample would be assayed for S aureus.

In this context, the parameters of interest include the effect of the presence of S aureus at 

baseline and the difference in the slopes of lung function trajectory between those with and 

without baseline S aureus. Since assaying in reality was conducted on all patients for this 

cohort of 3141, we can evaluate the performance of hypothetical substudies that use ODS 

design and analysis relative to the gold standard of analyzing the entire cohort. For 

substudies in a large cohort such as the CFFPR cohort, covariate information such as an 
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expensive or technologically complex biomarker assay will generally be ascertained only in 

a small subset; hence, ODS techniques can be of use in choosing and analyzing the cohort 

subset. We evaluated ODS design and analysis approaches for conducting a substudy of 600 

patients on average, selected either by random or biased sampling based on subject-specific 

intercept or slope. Average parameter estimates and standard errors over 1000 resamplings 

of the data are presented in Table 1.

As shown in Table 1, patients infected with S aureus at baseline had FEV1 scores that were 

about 13 mL lower at baseline (indicating worse lung function) than patients who were not 

infected, although not significantly so. On average, patients’ lung function tended to 

improve over time, probably as a result of physical growth. However, lung function for 

patients infected by S aureus at baseline improved 11 mL less than those who were bacteria 

free at baseline, a small but statistically significant effect present in the full cohort (P = .03) 

that was not detected by a random sampling design. In fact, only slope-based substudy 

designs that targeted the interaction regression parameter detected this difference. Likewise, 

only ODS designs that incorporated information from unsubsampled individuals detected a 

statistically significant nonzero value of ρ, the correlation between an individual’s baseline 

lung function and change in lung function over time. Thus, those with higher lung function 

at baseline tended to have somewhat more of an increase in lung function over the time 

analyzed here.

In general, the inclusion of unsubsampled individuals in the analysis produced smaller 

standard errors for all parameters; however, the smallest standard errors overall 

corresponded to the design (estimator SU,WC with slope-based design) that both targeted 

the parameter of interest and incorporated unsubsampled individuals. Overall, the patterns 

observed in the empirical standard errors from the CFFPR analysis tended to agree with 

simulation results in Section 4.2. Diagnostic plots of subject-specific intercepts and slopes 

(Figure S1) suggest that the distribution of random effects was not inconsistent with 

bivariate normality, the violation of which may impact the expected performance of 

likelihood-based ODS estimators.

6 | DISCUSSION

In this paper, we have explored the incremental utility of multiple sources of information in 

the analysis of ODS designs in the longitudinal data setting. In the case of a simple binary 

marker, we have shown benefit, sometimes substantial, of incorporating additional sources 

of information into inference. All of the likelihood-based estimators investigated here 

accounted for the biased sampling design through an ascertainment correction approach. 

Other valid strategies of estimation exist: for example, the inverse IPW approach,7 which 

produces estimators that are valid under mild conditions but often inefficient in modest 

samples.21 Previous work by Neuhaus et al24 and our own preliminary simulations (not 

shown) suggest that misspecification of the random effects distribution not involving 

covariates leads to little bias in regression coefficient estimates. When the random effects 

distribution depends on a covariate the bias in estimated regression coefficients has been 

shown to be potentially large25; we speculate this problem may be worse under ODS designs 

since misspecification occurs in multiple components of the likelihood. An exploration of 
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estimators that balance robustness to misspecification and efficiency in the ODS setting, and 

comparison with likelihood-based estimators, merits investigation in future work.

While we have chosen to examine the operating characteristics of a simple binary covariate, 

we expect the lessons learned here to be broadly similar for a categorical or continuous 

covariate; estimation in these cases should be mostly straightforward. For a k-level marker, 

the same strategy could easily be applied as for the binary case, estimating the k-1 

parameters that index Γ instead of the single parameter we have considered here. For 

markers with a large number of levels, or for continuous markers, a strategy that adopts a 

parametric model for the marker and then integrates over the missing covariate using 

estimates from the parametric model could be used as a natural extension of the work 

presented here. Finally, although we have not considered here the effect of multiple 

exposures or confounders, these too could be accommodated under the proposed framework; 

in this scenario, a profile likelihood approach may be used to good effect in order not to 

estimate the marginal joint likelihood of exposures and confounders.

In evaluating these estimators, we have followed the example of Schildcrout et al5 and 

conditioned on the marginal sampling status Si. In contrast, some previous work11,17 

conditioned on being sampled from stratum k. Although not considered explicitly here, we 

expect that finer conditioning would produce a loss of information relative to the 

conditioning explored here.

We have observed that ODS analysis choices have the potential to improve efficiency for 

targeted regression parameters, sometimes dramatically, at minimal cost. However, the 

utility of incorporating covariate information into inference depends on the choice of 

subjects to analyze. When analyzing subsampled individuals only, we have shown that in the 

case of complete and balanced designs, there is no benefit. When there is variability in 

measurement times across categories of the marker, there may be a small amount of 

information to be gained by adding in covariate information. When all cohort members are 

analyzed, however, we have observed sometimes substantial increases in efficiency, as 

observed covariate information among subsampled individuals allows for a more precise 

characterization of the mixture distribution among unsubsampled subjects.

The benefit of including unsubsampled individuals in inference has been previously 

explored for univariate outcomes and suggested for longitudinal data. We formally found 

this benefit to carry over to longitudinal data, albeit for selected regression parameters only. 

Analysis of all subjects allowed nearly full information to be recovered for the variance 

components, which may be of interest in some applications. This type of analysis also 

improved inference on some regression parameters, although minimally for those related to 

the unobserved covariate; greater efficiency for these parameters will need to be addressed 

primarily through careful choice of ODS designs that promote efficiency for them, not 

through analysis. We have additionally illustrated the effects of some ODS design choices; a 

more thorough examination of these practical design parameters in the future will be helpful 

to the researcher implementing these methods. For researchers planning substudies based on 

existing longitudinal data, there appears to be utility in both careful design and analysis of 
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biased sampling approaches. Overall, our results suggest that thoughtfulness at both design 

and analysis stages will be rewarded, sometimes substantially.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Profile log-likelihood contours showing the contribution of unsubsampled subjects under 

random sampling and true regression parameter βT = (β0, βT, βM, βM×T) = (−1.5, −0.15, 3, 

−0.15). Marker prevalence for the cohort of 1000 was 25%, and 250 subjects were 

subsampled. The characteristic “ridge” in the middle panel reflects the fact that only the 

estimated population-level mean outcome is observed in these subjects. While many 

different combinations of regression parameters could give rise to the observed data, adding 

this information to an analysis based on subsampled subjects alone (top panel) may 

potentially improve inference for some parameters. The inclusion of unsubsampled 

individuals both changes the precision and orientation of a 95% confidence region obtained 

by inversion (bottom panel)
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FIGURE 2. 
Relative efficiencies of outcome-dependent sampling estimators via simulation, under low 

subject-to-subject heterogeneity, compared with a random sample of NS = 250. The vector γ 
represents transformed variance components, where 

γ = log σb0
2 , log 1 + ρ

1 − ρ , log σb1
2 , log σe

2 T
. For comparison, note that analyzing full cohort (N 

= 1000) would give a true relative efficiency of 4
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FIGURE 3. 
Relative efficiencies of estimators SO,NC and SU,WC for various outcome-dependent 

sampling designs, varying the number subsampled from the top/bottom 20th percentiles. The 

“bivariate” sampling design subsampled half of subjects based on subject-specific intercept 

and half based on subject-specific slope. Note that here, N = 500 corresponds with a random 

sampling design
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FIGURE 4. 
Relative efficiencies of estimators SO,NC and SU,WC for various outcome-dependent 

sampling designs, varying the oversampling percentile from which 1000 subjects are 

subsampled. The “bivariate” sampling design subsampled half of subjects based on subject-

specific intercept and half based on subject-specific slope. Note that here, an oversampling 

percentile of 40% corresponds with a random sampling design
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TABLE 1

Parameter estimates and empirical standard errors of likelihood-based estimators for the Cystic Fibrosis 

Foundation Patient Registry dataset (N = 3141)

β0 βT βS aureus βS aureus×T

Estimator Est. (SE) P Est. (SE) P Est. (SE) P Est. (SE) P

Full cohort 1.200 (0.012) <.001 0.184 (0.0029) <.001 −0.013 (0.015) .39 −0.011 (0.0035) .001

Random sample 1.201 (0.025) <.001 0.185 (0.0061) <.001 −0.013 (0.030) .67 −0.012 (0.0073) .11

SO,NC intercept 1.213 (0.019) <.001 0.181 (0.0057) <.001 −0.014 (0.023) .54 −0.012 (0.0066) .06

SU,NC + PI intercept 1.202 (0.014) <.001 0.184 (0.0042) <.001 −0.013 (0.020) .52 −0.011 (0.0060) .07

SU,WC intercept 1.201 (0.014) <.001 0.184 (0.0041) <.001 −0.013 (0.020) .52 −0.011 (0.0059) .06

UC intercept 1.200 (0.013) <.001 0.184 (0.0042) <.001 −0.012 (0.019) .52 −0.011 (0.0060) .06

SO,NC slope 1.191 (0.024) <.001 0.185 (0.0041) <.001 0.013 (0.029) .67 −0.013 (0.0049) .007

SU,NC + PI slope 1.185(0.017) <.001 0.185 (0.0032) <.001 0.009 (0.024) .71 −0.012 (0.0046) .007

SU,WC slope 1.185 (0.017) <.001 0.185 (0.0032) <.001 0.009 (0.025) .70 −0.013 (0.0046) .007

UC slope 1.185(0.017) <.001 0.185 (0.0032) <.001 0.009 (0.025) .71 −0.012 (0.0046) .007

log σb0
2 log 1 + ρ

1 − ρ
log σb1

2 log σe
2

Full cohort −2.06 (0.029) <.001 0.10 (0.042) .02 −5.00 (0.030) <.001 −3.94 (0.013) <.001

Random sample −2.07 (0.140) <.001 0.10 (0.110) .35 −5.01 (0.067) <.001 −3.94 (0.050) <.001

SO,NC intercept −1.87 (0.110) <.001 0.08 (0.073) .25 −4.91 (0.057) <.001 −3.84 (0.047) <.001

SU,NC + PI intercept −2.03 (0.016) <.001 0.09 (0.008) <.001 −5.01 (0.005) <.001 −3.94 (0.006) <.001

SU,WC intercept −2.03 (0.009) <.001 0.09 (0.005) <.001 −5.01 (0.005) <.001 −3.94 (0.003) <.001

UC intercept −2.06 (0.008) <.001 0.10 (0.009) <.001 −5.01 (0.005) <.001 −3.94 (0.003) <.001

SO,NC slope −1.83 (0.110) <.001 0.12 (0.072) .09 −4.96 (0.052) <.001 −3.78 (0.041) <.001

SU,NC + PI slope −2.06 (0.014) <.001 0.10 (0.008) <.001 −5.00 (0.008) <.001 −3.94 (0.005) <.001

SU,WC slope −2.06 (0.011) <.001 0.10 (0.006) <.001 −5.00 (0.008) <.001 −3.94 (0.003) <.001

UC slope −2.06 (0.011) <.001 0.10 (0.005) <.001 −5.01 (0.004) <.001 −3.94 (0.002) <.001

Abbreviations: S aureus, Staphylococcus aureus. For “full” estimator, standard errors are derived from analysis of full Cystic Fibrosis Foundation 
Patient Registry cohort. All other estimators are based on an average subsample of 600 patients, and results are averaged over 1000 resamplings. 
Empirical standard errors are the estimator’s standard deviation over all resamplings.
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