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Abstract

Sufficient connexin-mediated intercellular coupling is critical to maintain gap junctional 

communication for proper cardiac function. Alterations in connexin phosphorylation state, 

particularly dephosphorylation of connexin 43 (Cx43), may impact cell coupling and conduction 

in disease states. Cx43 dephosphorylation may be carried out by protein phosphatase activity. 

Here, we present an overview of the key phosphatases known to interact with Cx43 or modulators 

of Cx43, as well as some possible therapeutic targets to regulate phosphatase activity in the heart.
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1. Introduction

It has been well established that appropriate levels of protein phosphorylation are essential 

to maintain cardiac function and play an important role in the development of cardiac 

arrhythmias. Phosphorylation states of key substrates are modulated by protein kinases 

(PKs) and protein phosphatases (PPs) via posttranscriptional and posttranslational 

mechanisms [1–6]. Although the focus of studies on protein phosphorylation has been 

primarily on the role of PKs in cardiovascular diseases (CVDs) and their potential as 

therapeutic targets [3], more recent research has shown an emerging interest in the role of 

PPs and the potential of phosphatase-regulating drugs [7–19].

The most ubiquitous serine/threonine phosphatases, such as PP1, PP2A, and PP2B are 

known to contribute to the majority of phosphatase activity in the heart [4]. Dysregulation of 

these and other PPs have been found in numerous CVDs, including heart failure (HF), and 

may play a critical role in reduced intercellular coupling and arrhythmia development via 

connexin protein dephosphorylation [8–10].
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Gap junctional channels, composed of connexins, are specialized membrane structures. 

These gap junction channels critically influence electrical and chemical signal propagation 

throughout the heart [20,21]. Conduction slowing arises from decreased depolarizing 

currents and/or decreased gap junctional coupling, which could underlie reentry occurring in 

various arrhythmias, such as during the transition from ventricular tachycardia to the fatal 

cardiac arrhythmia ventricular fibrillation [22–25] or during atrial fibrillation induction 

and/or maintenance in acute ischemia or HF [26,27]. Thus, the following review explores the 

importance of protein phosphatase regulation in connexin phosphorylation states, the impact 

of dysregulation in HF and altered conduction, and the implications for protein phosphatases 

as therapeutic targets.

2. Cardiac connexin dysregulation

Cell-to-cell electrical coupling in the heart occurs mainly via gap junctions. These 

membrane structures consist of intercellular hemi-channels formed from an assembly of 

connexins that connect adjacent cells and allow for electrical and chemical communication. 

Connexins are four-pass transmembrane proteins with two extracellular loops (EL), one 

cytosolic loop, and both the N-terminus and C-terminus towards the cytosol. Six connexin 

subunits assemble to form a connexon hemichannel, and interaction between the ELs of 

adjacent cells combines two hemichannels to form a gap junction channel. In addition to 

their primary role in hemichannel formation, connexins also interact with scaffolding 

proteins at the C-terminus, and may play a role in key signaling pathways and cell cycle 

regulation [11,12,28–30]. Connexin 43 in particular has been shown to interact with the 

scaffold protein zonula occludens-1 (ZO-1), which regulates gap junction formation and 

properties [21,31–35]. Thousands of gap junction channels may assemble together to form 

macromolecular complexes known as gap junction plaques, which facilitate electrical 

current propagation from cell to cell, enabling coordinated cardiomyocyte contraction. The 

hemichannels that comprise gap junctions may open or close in response to numerous 

triggers, including changes in transmembrane potential, changes in intracellular or 

extracellular ion concentrations, or alterations in phosphorylation status of connexin proteins 

[11,12,28–30].

Connexin 43 (Cx43) is the major connexin expressed in the ventricles, but is also present in 

atrial and endothelial cells. Connexin 40 (Cx40) and connexin 45 (Cx45) are also expressed 

in cardiac tissue, but are predominantly found in the atria [6,11] and atrioventricular 

conduction system [36,37], and are less abundant overall. The relative amounts, composition 

and distribution of these connexins have been shown to influence the conduction properties 

of cells [38,39].

Reduced Cx43 abundance is found in myocardial ischemia and HF. Downregulation of Cx43 

expression occurs in myocardial ischemia in rat and rabbit hearts [40,41], as well as HF 

models in dog and rabbit, and in failing human hearts [8,20,42–45]. In left ventricular (LV) 

myocytes isolated from a rabbit model of nonischemic HF (combined aortic insufficiency 

and aortic constriction), we found that total Cx43 protein was decreased by 34% in HF 

compared to controls [8]. In further studies conducted in Cx43 knockdown rabbit myocytes 

with reduced expression but preserved phosphorylation state, we found reduced cell 
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coupling, evaluated by Lucifer Yellow (LY) dye transfer, compared with controls. Cx43 was 

also overexpressed in HF rabbit myocytes to levels comparable with normal myocytes. 

Overexpression of Cx43 improved cell coupling in HF myocytes when compared with HF 

controls [42]. We recently also discovered that downregulated Cx43 also plays an important 

role in slowing of conduction and enhanced atrial arrhythmogenicity in the aged atrium [46]. 

These studies, in addition to studies in Cx43 heterozygous knockout mice, support the idea 

that decreased expression of Cx43 can result in slow conduction and increased susceptibility 

to cardiac arrhythmias [8,20,40–48].

Cx43 is a phosphoprotein that is predominantly phosphorylated in the control state. Cx43 

can be phosphorylated by a number of kinases and dephosphorylated by protein 

phosphatases such as PP1 and PP2A [6,10]. Posttranslational phosphorylation of Cx43 is 

thought to influence intercellular coupling through gap junction remodeling, and 

dysregulation of Cx43 phosphorylation occurs in disease states [8,11,12,28,29,42, 47–49]. 

Cx43 can be phosphorylated at at least 17 serine sites and two tyrosine sites located at the C-

terminus via several kinases, including protein kinase A (PKA), protein kinase C (PKC), 

casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK), Ca2+/calmodulin-

dependent protein kinase II (CaMKII), and Src kinases (Fig. 1) [12,28,29,46, 49,50]. The 

level of kinase activation and related Cx43 expression and phosphorylation affects gap 

junctional conductance. PKA activation, in particular, has been shown to increase 

conductance and improve cell-to-cell communication [51], whereas increased activation of 

PKC decreases gap junctional communication [52]. Phosphorylation by CK1, MAPK, and 

Src kinases appears to influence intercellular communication by promoting Cx43 

localization and gap junction assembly [50].

Emerging evidence suggests that dephosphorylation of Cx43, in opposition to this kinase 

activity, leads to reduced gap junctional communication and increased arrhythmic 

susceptibility [8,12,29,41,42,47,48]. Dephosphorylation of Cx43 (by phosphatases) has been 

shown to decrease gap junctional communication, whether assessed in neonatal rat 

ventricular cell pairs with activation of endogenous phosphatases [9], or in perfused whole 

rat hearts during myocardial ischemia [40,41]. We found a 64% increase in 

nonphosphorylated Cx43 in HF rabbits compared to controls (in which Cx43 was primarily 

phosphorylated) [8]. Dephosphorylation of Cx43 has also been shown to occur in models of 

ischemia, and is associated with reduced gap junctional communication, slow conduction, 

and increased arrhythmogenicity [8,40–42,53]. Thus, connexin phosphorylation and 

dephosphorylation play an important role in regulating gap junction channel function and the 

development of cardiac arrhythmias in diseased hearts.

Findings on the effects of Cx43 phosphorylation at specific amino acid sites (primarily 

serine sites) have been contradictory. Prolonged ischemia, electrical uncoupling, and slow 

conduction have been associated with Cx43 dephosphorylation at Ser306 [54,55], Ser297 

[54], Ser365 [56,57] and Ser368 [41,54], while phosphorylation at Ser279 and Ser282 has 

also been correlated with decreased conduction and dye coupling [58,59]. Phosphorylation 

by PKC, which may phosphorylate Ser365, Ser368, Ser369, Ser372, and Ser373 [60], has 

been associated with increased macroscopic electrical coupling [61], but has also been 

associated with reduced single channel conductance and a decrease in dye coupling [52,61]. 
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Moreover, studies on the interactions between Cx43 phosphorylation sites have also found 

conflicting results. PKA phosphorylation at Ser364 and/or Ser365 has been found to 

enhance phosphorylation [60], yet other studies have found that dephosphorylation of 

Ser365 is necessary for PKC-induced phosphorylation of Ser368 [56, 57,62]. Decreased 

conduction, gap junction channel closure, and associated arrhythmias have also been linked 

to increased tyrosine phosphor-ylation of Cx43 [21,32,33,63,64], particularly 

phosphorylation of Tyr265 [65–67]. These findings, many of which seem contradictory, 

emphasize the complex role of Cx43 phosphorylation in the regulation of gap junctions.

Though not as prevalent or extensively studied, Cx40 and Cx45 may also play a role in 

cardiac gap junctional communication. Like Cx43, Cx40 is regulated by posttranslational 

phosphorylation [68,69], and may be phosphorylated by PKA and PKC [69]. Cx40 

phosphorylation by PKA in SKHep1 cells resulted in increased gap junction conductance 

and metabolic coupling [69]. Decreased Cx40 phosphorylation in micro-vascular endothelial 

cells, both during sepsis and with PKA inhibition, has been associated with decreased 

electrical coupling, which can be prevented by PKA activation [70]. Taken together, these 

studies suggest that Cx40 phosphorylation state may influence gap junctional conduction 

and could play a role in atrial arrhythmias. Indeed, recent studies have started to investigate 

the role of Cx40 in atrial fibrillation, and have found multiple Cx40 mutations associated 

with altered conduction properties [71–76]. The relationship between these mutations, 

altered conduction, and connexin phosphorylation remains to be explored.

Cx45 has been shown to be serine phosphorylated by CaMKII, CK1, PKA, and MAPK in 

HeLa cells [77,78]. Phosphorylation by PKA and MAPK were associated with decreased 

junctional conductance [78], suggesting that phosphorylation of Cx45 may influence 

conduction properties. Overall, the roles of both Cx40 and Cx45 phosphorylation in gap 

junctional communication, particularly in myocardium, merits further research.

3. Phosphatases and dephosphorylation of Cx43

Phosphorylation state of gap junctions is critical in regulating gap junction coupling between 

adjacent myocytes. Although phosphorylation occurs by protein kinase activity, the 

phosphorylation status of Cx43 is counteracted by protein phosphatases (Fig. 1). Since Cx43 

phosphorylation sites are mostly serine sites at the C-terminus, dephosphorylation of Cx43 

occurs mainly via serine/threonine protein phosphatases (PPs), particularly PP1 and PP2A in 

cardiac tissue [28,29,49].

Increased PP activity has been associated with CVDs, including HF, and atrial and 

ventricular arrhythmias [8,26,27,42,43]. We demonstrated that both PP1 and PP2A 

colocalize with Cx43 in cardiac tissue, and that the level of PP2A colocalized with Cx43 

increased 2.5-fold in HF compared to controls, while the level of PP1 in HF remained the 

same [8]. This increased PP2A activity at the level of Cx43 in HF was associated with slow 

conduction and reduced intercellular coupling by slower LY dye transfer [8,42,43]. Non-

phosphorylatable Cx43 gap junctions in S3A knock-in mice showed slow conduction and 

increased ventricular arrhythmias, while phosphatase-resistant Cx43 gap junctions in S3E 

knock-in mice were resistant to conduction slowing and less susceptible to arrhythmogenesis 
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[12]. Thus, the mechanisms underlying protein phosphatase regulation of connexins are 

worth further investigation.

4. Phosphatase regulation

Inhibiting phosphatase activity, particularly PP2A, may improve intercellular coupling in 

HF, ischemia, and other cardiac conditions by increasing Cx43 expression and 

phosphorylation state. Intrinsic or extrinsic PP inhibition, as well as modulation of upstream 

regulators of PP activity, may be effective therapeutic approaches to reduce PP activity, 

improve Cx43 dysregulation, and ultimately modify conduction.

4.1. PP1 and PP2A

PP1 and PP2A can be directly inhibited by small molecule serine/threonine phosphatase 

inhibitors. Although some of these inhibitors are selective for PP1 and PP2A, they all may 

also inhibit PP4, PP5, and PP6 to an extent, which may have undesirable effects [13]. The 

most selective and widely available PP inhibitors are okadaic acid, calyculin A, and 

fostriecin.

Studies suggest that okadaic acid at a concentration (10 nmol/L) inhibits PP2A, but not PP1 

[79,80]. We used okadaic to successfully inhibit PP2A in vitro, enhance Cx43 

phosphorylation, and improve intercellular coupling in HF [8,43].

Fostriecin has been reported to be highly selective for PP2A over PP1 [14]. However, 

okadaic acid and calyculin A, but not fostriecin, were found to reduce ischemia-induced 

Cx43 dephosphorylation [15]. Fostriecin is of particular interest since it is being investigated 

as a cancer treatment to inhibit PP2A. Fostriecin has been safely administered to patients in 

pharmacokinetic studies and clinical trials, supporting its possible use in clinical 

applications [19].

Overall, studies on the effects of small molecule PP inhibitors on PP2A at the level of Cx43 

have been limited, but evidence to date supports the value for additional research to explore 

their potential clinical utility as antiarrhythmic agents. However, further investigation is 

necessary to identify more selective means to target PPs with higher specificity in order to 

elucidate the activity of particular phosphatases.

4.2. PAK-1

PP2A may be indirectly inhibited by modulation of upstream regulators, such as p21-

activated kinases (PAKs). PAKs are a family of six serine-threonine kinases (PAK-1 to −6) 

that phosphorylate a variety of substrates [81–83]. PAK-1, −2, and −4 have been shown to 

play important roles in cardiac function [81–84]. PAK-1 in particular has been shown to co-

localize with PP2A and to modulate PP2A activity [43,85–87]. We showed that PAK-1 

associates with Cx43, and that both total and activated PAK-1 were enhanced at the level of 

Cx43 in HF in rabbit and human LV [43]. Our further study in myocytes overexpressing 

active PAK-1 suggests that enhanced PAK-1 contributes to increased PP2A activation, 

resulting in increased Cx43 dephosphorylation and associated with decreased intercellular 

coupling [43]. PAK-1-mediated regulation of Cx43 through PP2A may therefore be a 
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therapeutic target for prevention of ventricular arrhythmias in HF through improved inter-

cellular coupling.

4.3. B56α and ankyrin-B

Another possible target for indirect inhibition of PP2A is the interaction between B56α and 

ankyrin-B. B56α is a regulatory subunit of PP2A [16–18]. Cardiomyocyte-directed 

overexpression of B56α was associated with enhanced PP2A activation [17], and mice 

deficient in B56α showed increased PP2A activity, slow conduction and increased heart rate 

variability [18]. B56α binds ankyrin-B in vivo, and B56α and ankyrin-B co-localize in 

cardiomyocytes. Reduced ankyrin-B has been associated with disorganized B56α 
distribution [16]. Although the role of B56α-PP2A and its association with ankyrin-B at the 

level of Cx43 is unknown, existing research implicates ankyrin-B in the localization of 

B56α-PP2A, which could have effects on PP2A activity and, subsequently, Cx43 

phosphorylation. The interaction between ankyrin-B and B56α-PP2A may therefore be 

another attractive target for therapeutic intervention to reduce Cx43 dephosphorylation and 

improve electrical coupling.

4.4. Calcineurin (PP2B)

Calcineurin (PP2B), a calcium dependent phosphatase, may indirectly contribute to Cx43 

dephosphorylation through dephosphorylation of Inhibitor 1 (I1) and subsequent activation 

of PP1 [88]. Increased calcium in guinea pig myocardium resulted in decreased Cx43 

phosphorylation at specific sites and PP1 activation, with reduced gap junctional 

communication and slow conduction [56]. Furthermore, inhibition of calcineurin A by 

cyclosporine A in rats prevented Cx43 dephosphorylation after myocardial ischemia [40]. 

Calcineurin may therefore be another target to reduce Cx43 dephosphorylation indirectly 

through PP1 regulation.

4.5. Src and tyrosine phosphatases

While phosphorylation state of serine residues is known to be critical in regulating the 

function of gap junction channels, tyrosine residues have also been found to be involved in 

gap junction coupling. A study in a canine model of myocardial infarction (MI) found that 

downregulation of Cx43 is associated with an upregulation of phosphorylated c-Src, a 

tyrosine kinase, through competition for a binding site on ZO-1 [31]. Increased c-Src 

activity has also been associated with increased tyrosine phosphorylated Cx43 and reduced 

gap junctional conduction in cardiomyopathy [32]. Inhibition of c-Src with Src inhibitors, 

such as the pyrazolopyrimidine PP1, has been shown to increase Cx43 expression, improve 

conduction, and reduce arrhythmic inducibility [21,33] implicating c-Src and its role in 

tyrosine phosphorylation as a potential therapeutic target to mitigate Cx43 dysregulation.

The tyrosine kinase v-Src has also been implicated in the closure of gap junction channels, 

both by direct tyrosine phosphorylation of Cx43, and by indirect serine phosphorylation of 

Cx43 via MAPK and PKC activation at sites that are not phosphorylated in normal gap 

junctions [63,64]. Phosphorylation at these sites has been correlated with decreased coupling 

and conduction [58,59]. Recently, it has been shown that the T-cell protein tyrosine 

phosphatase (TC-PTP, or PTPN2) can interact with Cx43 directly to decrease v-Src-induced 
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phosphorylation and increase gap junctional communication. However, TCPTP had no effect 

on MAPK phosphorylation and therefore could not completely reverse the gap junctional 

effects of v-Src [89]. Cx43 dephosphorylation that occurs during chemical ischemia in 

astrocytes has been associated with c-Src and ERK phosphatase MKP-1 [90]. Though it is 

not clear whether MKP-1 interacts directly with Cx43, it is reasonable that MKP-1 may be a 

potential target to regulate Cx43 phosphorylation, either through direct interaction with 

Cx43, or through MAPK signaling. While Src kinases and their effects on tyrosine 

phosphorylation and MAPK signaling contribute to reduced Cx43 expression and 

phosphorylation [21,31–33,58,59,63,64,89,90], many details of their interactions remain 

unknown. Further studies are needed to elucidate the relationship between Cx43, Src kinases 

and MAPK, which may reveal other potential targets to regulate the phosphorylation of 

Cx43.

5. Conclusion

Investigations into the role of protein phosphatases in connexin-mediated gap junctional 

communication have been much more limited than studies of protein kinases. However, 

there is growing evidence that protein phosphatases play a significant role in the gap 

junctional conduction changes that occur in disease states, particularly HF and ischemia. 

Further explorations into the role of these phosphatases and their associations with Cx43 

may provide mechanistic insights that highlight potential therapeutic targets to develop novel 

therapies to reverse Cx43 dephosphorylation and improve intercellular coupling in CVDs.
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Fig. 1. 
Connexin 43 phosphorylation overview. A. An overview of a connexon formed from 

connexin 43 (Cx43). B. A schematic of the interactions between Cx43 and key kinases and 

phosphatases. Shown are: a) serine/threonine kinases (orange), including protein kinase A 

(PKA), protein kinase C (PKC), casein kinase 1 (CK1), mitogen-activated protein kinase 

(MAPK), and Ca2+/calmodulin-dependent protein kinase II (CaMKII); b) serine/threonine 

phosphatases (green), including protein phosphatase 1 (PP1), protein phosphatase 2A 

(PP2A), calcineurin (PP2B), and p-21 activated kinase-1 (PAK-1); c) the tyrosine kinase 

(purple) Src kinase (Src); d) the tyrosine phosphatase (light blue) Src homology region 2 

domain-containing phosphatase (SHP); e) the dual specificity phosphatase (pink) mitogen-

activated protein kinase phosphatase 1 (MKP-1); and f) related proteins (dark blue) 

including zonula occludens-1 (ZO-1), inhibitor 1 (I1), and ankyrin-B (Ank-B). The 

phosphate groups are indicated by P. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)

Hood et al. Page 13

J Mol Cell Cardiol. Author manuscript; available in PMC 2019 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Cardiac connexin dysregulation
	Phosphatases and dephosphorylation of Cx43
	Phosphatase regulation
	PP1 and PP2A
	PAK-1
	B56α and ankyrin-B
	Calcineurin (PP2B)
	Src and tyrosine phosphatases

	Conclusion
	References
	Fig. 1.

