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Abstract

Highly flexible proteins present a special challenge for structure determination because they are 

multi-structured yet not disordered, so their conformational ensembles are essential for 

understanding function. Because spectroscopic measurements of multiple conformational 

populations often provide sparse data, experiment selection is a limiting factor in conformational 

refinement. A molecular simulations- and information-theory based approach to select which 

experiments best refine conformational ensembles has been developed. This approach was tested 

on three flexible proteins. For proteins where a clear mechanistic hypothesis exists, experiments 

that test this hypothesis were systematically identified. When available data did not yield such 

mechanistic hypotheses, experiments that significantly outperform structure-guided approaches in 

conformational refinement were identified. This approach offers a particular advantage when 

refining challenging, underdetermined protein conformational ensembles.
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Heterogeneous conformational ensembles play critical roles in molecular recognition and 

cellular regulation,[1] yet high-resolution structure determination has typically required 

reducing these ensembles to only a few states. Since the full equilibrium ensemble is often 

key to understanding biochemical function, other experimental techniques have been 

developed to probe the full ensemble distribution rather than either a few low-energy states 

or an equilibrium average.[2] However, these experiments measure only a small number of 

atomic degrees of freedom:[3] for instance, double electron–electron resonance (DEER) and 

single-molecule Förster resonance energy transfer (smFRET) spectroscopy, which utilize 

pairs of labeled amino acids to obtain distance distributions, typically provide data for ≈ 10 

measurements per system. Thus, experiment selection is currently the limiting factor in how 

much information can be obtained on an ensemble.

Prior quantitative approaches to experiment selection have relied on pre-existing high-

resolution structural and kinetic models. Recent studies have shown, retrospectively, that 

leveraging either Markov State Models[4] or normal modes calculated from elastic network 

models[5] can select good labels for DEER experiments. However, for systems where 

traditional structural or kinetic models are incomplete or fundamentally underdetermined 

due to conformational flexibility, it remains challenging to determine which pairs of residues 

should be chosen for labeling. We have therefore developed a general, information-theoretic 

formalism to select optimal spectroscopic experiments. We summarize the theory and show 

the application of this method to three conformationally heterogeneous bacterial proteins.

An optimal set of spectroscopic experiments has two properties: each experiment yields the 

maximum amount of information on the conformational ensemble and minimally redundant 

information with other experiments in the set to avoid wasting labeling and measurement 

effort (Figure 1). The maximum-relevance, minimum redundancy (mRMR) algorithm 

exactly satisfies these criteria.[6a,b] To select N spectroscopic experiments, we maximize the 

mutual information (MI) between the set of spectroscopic observables {Oi} and the 

conformation C:

max
i

1
N Ii Oi, C (1)

where C is the set of n(n–1)/2 pairwise distance variables. We simultaneously minimize the 

pairwise MI between spectroscopic variables Oi and Oj (Figure 1):

min
i, j

1
N2 Ii, j Oi, O j (2)
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where I(X, Y) is the mutual information between random variables X and Y:

I X, Y =
x y

PX, Y x, y log
PX, Y x, y

PX x PY y (3)

This method is particularly useful because it identifies, by design, those observables that are 

maximally underdetermined in a structural ensemble. These underdetermined observables 

are precisely those that would be especially challenging for traditional structure 

determination.

In our study, we make two approximations: we use deliberately undersampled estimates of 

the protein conformational ensemble to select labels for further refinement, and we 

approximate the spectroscopic variable Oi as the Cα−Cα pairwise distance distribution 

between labeled residues. We make the first approximation to demonstrate the strong 

advantage of our method for heterogenous ensembles: by identifying underdetermined 

degrees of freedom we can improve an incomplete estimate of the conformational ensemble 

rather than requiring a well-sampled starting model. The second approximation is an 

implementation rather than theoretical concern and we will discuss how it can be removed. 

The success of the mRMR method and these approximations is demonstrated below on a set 

of flexible bacterial outer membrane proteins.

Beta-barrel membrane proteins are excellent candidates for the mRMR approach because 

many contain flexible regions that are difficult to characterize experimentally, yet have 

regions of secondary structure that make spectroscopic experiments tractable.[7] We have 

performed molecular dynamics (MD) simulations on three bacterial outer membrane 

proteins and applied the mRMR algorithm to select optimal DEER experiments. We have 

chosen FhuA, an E. coli iron transporter,[8] OprG, a pseudomonal small-molecule 

transporter,[9] and Opa60, a neisserial virulence-associated protein that binds cell-surface 

proteins, but does not function as a transporter.[10] The FhuA conformational ensemble has 

been characterized via DEER experiments guided by pre-existing mechanistic hypotheses 

that relate conformational changes of the Ton box domain to ligand recognition;[11] it is thus 

a good test system for determining whether the mRMR algorithm identifies similar labels to 

those identified by spectroscopists. OprG, a more challenging system, has been studied 

using a combination of NMR and mutational experiments,[7c] but the mechanisms by which 

transport is regulated remain unknown. Finally, Opa60 is a particularly challenging system 

since it displays substantial, experimentally underdetermined conformational flexibility that 

controls its binding mechanism.[7b] We have therefore studied this final system 

prospectively: choosing a set of residue–residue pairs using the mRMR algorithm, 

measuring them with DEER, incorporating the experimental data into MD simulation, and 

evaluating this ensemble versus one refined with spectroscopist-selected pairs (SSP). 

Simulations alone lack the fidelity to reliably predict structural ensembles of flexible 

proteins, but can serve as a good platform for hybrid refinement, combining physical 

information with experimental data.
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For each protein, we generated initial estimates of the conformational ensembles using 

ensemble MD simulations that were deliberately undersampled at 2 μs per protein. We used 

the mRMR algorithm on these data to select sets of pairwise distances that optimally report 

on undersampled regions of phase space (Figure 2).

In the case of FhuA, spectroscopists selected label pairs near the N-terminal domain, which 

is conformationally heterogeneous and regulates transport, and the periplasmic side of the 

beta-barrel using a standard triangulation strategy (Figure 2c).[11] Selection via mRMR 

identifies similar residues (Figure 2b), with the addition of one pair spanning just the N-

terminal domain. Label pairs not corrected for redundancy also specifically identify 

distances between the N-terminal domain and one side of the barrel as most informative 

(Figure 2a). DEER analysis independently identified this side of the barrel as interacting 

with the N-terminal domain. These two findings on FhuA, a relatively well-understood 

transport protein, show that the mRMR method can select label pairs that best reflect 

spectroscopic understanding and yield insight into conformational heterogeneity.

Our method provides even greater potential benefit when less is known about the transport 

mechanism, as in the case of OprG, and may help test claims of loop involvement in OprG 

transport. Both the mechanism and the substrates for OprG transport are unclear: OprG may 

transport small, hydrophobic compounds via a lateral gating mechanism or small amino 

acids via the barrel channel; OprG crystal structures support the former hypothesis,[12] while 

recent NMR and mutational studies suggest the latter.[7c] Non-transporting mutants that have 

been studied by NMR spectroscopy have generally more ordered loops, and one loop has 

especially restricted motion, suggesting it may be critical to transport. Interestingly, this loop 

participates in all five informative OprG residue-residue pairs (Figure 2d) and in three of the 

five top-scoring mRMR pairs (Figure 2e). Thus, mRMR analysis yields label pairs that 

reflect existing mechanistic hypotheses and, most importantly, identify experiments to test 

these hypotheses.

As a robust test of mRMR-based label selection, we prospectively tested its ability to select 

DEER experiments and refine the conformational ensemble of Opa60, the most challenging 

protein in our evaluation set. DEER data were acquired using label pairs selected via both 

mRMR and traditional structure-based selection, and we assessed the relative utility of each 

method in refining the ensemble. The long, flexible loops of Opa60 are both critical for 

function[7a,b] and challenging for previous DEER pair selection methods. In contrast to 

FhuA or OprG, no structural or functional data provide strong guidance on which residues 

are responsible for function, in this case receptor engagement. Prior hybrid NMR-MD 

refinement of the apo conformational ensemble did not provide sufficient insight into the 

binding mechanism. Normal-mode approaches developed by Zheng and Brooks have been 

applied to identify informative, non-redundant label sets for DEER that differentiate pairs of 

structures when such structural data exist,[5, 13] but this is not the case for Opa60. 

Furthermore, normal-mode calculations from an Opa60 elastic network model do not 

correlate with flexibility measured via NMR relaxation timescales (Supporting Information, 

Figure S1). Thus, spectroscopists must choose from more than 5000 possible inter-loop 

pairs. We show below that the mRMR selection method radically improves structural 
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refinement compared to standard spectroscopic practices for systems that were previously 

intractable.

We prospectively tested mRMR pair selection by refining the Opa60 conformational 

ensemble[14] using two independently identified label sets: one selected using the mRMR 

algorithm and the other independently chosen by spectroscopists. The top five scoring 

mRMR pairs span multiple combinations of inter-loop distances (Figure 2g), and the top ten 

pairs capture all possible combinations of the loops (Supporting Information, Table S1). By 

contrast, the top ten pairs identified using maximum relevancy alone span a single loop–loop 

pair. Although the maximum-relevancy pairs define the most variable loop, they lose 

important information about the other loop (Figure 2f). The spectroscopist-selected pairs are 

primarily short barrel-loop distances because the length of the loops permits distances too 

long to be measured via DEER, so spectroscopic best practice is to select a more 

conservative set of pairs. However, this aside, the chance of manually selecting a loop-loop 

pair within the top 25 % of those identified via mRMR is only 7 %, showing a strong 

advantage for the systematic selection methods developed here.

Because Opa60 is so conformationally flexible, approximating the label–label distance 

distributions as Cα–Cα distributions introduces little error relative to the backbone motions 

of the protein. However, label flexibility becomes increasingly important to label selection 

as protein flexibility decreases, and explicit labels may be added as follows. First, 

unrestrained simulations of the wild-type protein may be used to calculate initial mRMR 

estimates. Explicit labels are introduced for each top-ranked residue-residue pair, and one 

additional simulation is performed per pair. The mRMR scores are recalculated for each 

simulation to determine the effects of label side-chain conformation on the final mRMR 

rankings. A “forward model” can be used for the spectroscopic observable, such as the 

predicted DEER spectrum,[13b] using the explicit-label simulations.

To assess the quality of mRMR-guided versus structure-guided refinement, we estimated the 

Opa60 conformational ensemble using DEER data on pairs selected via each approach. We 

then compared the resulting ensembles using two independent metrics that we developed to 

quantitatively evaluate “quality of refinement.” As a first metric, we measured how well 

each refined ensemble predicts DEER data held back from refinement as a test set. 

Refinement using mRMR-selected label pairs yielded significantly better agreement with the 

test DEER data: seven of eight test distributions are better captured by the mRMR-guided 

ensemble than the structure-guided ensemble (Figure 3).

We also analyzed the dimensionality of the conformational ensembles obtained from 

refinement using structured-guided versus mRMR-guided DEER data. Given sufficient 

sampling, a better-refined conformational ensemble will have lower dimensionality, 

approaching the “true” ensemble in the lower limit. We therefore developed a quantitative 

measure for the dimensionality of a conformational ensemble (see Methods in the 

Supplementary Information).

Because residue–residue distances yield an overcomplete basis set, we lumped together 

highly related distance variables at different thresholds of relatedness (ε) and calculated the 
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number of independent distance variables required to describe the ensemble at each ε. At 

every ε tested, refinement with mRMR-selected DEER data yielded a conformational 

ensemble of lower dimensionality than with spectroscopist-selected DEER data (Figure 4 

A). This indicates that DEER data from mRMR-selected pairs refine the conformational 

ensemble more efficiently than data from pairs selected according to the current state-of-the-

art methods.

mRMR pair-selection also produces strikingly more informative structural results than 

spectroscopist-guided selection. We determined the major loop conformations in each 

ensemble by clustering loop–loop contact maps. After one iteration, mRMR-guided 

refinement yields four clusters, all of which show one loop protruding laterally and two 

loops closely interacting (Figure 4C). In contrast to mRMR-guided refinement, refinement 

using spectroscopist-selected pairs yields a larger number of structural clusters with poorly 

resolved loop conformations (Figure 4B) that also poorly predict additional DEER 

measurements (Figure 3). The loop conformations resolved by mRMR-guided refinement 

further yield a structural hypothesis for receptor recognition whereby either the two 

contacting loops or the one splayed loop is primarily responsible for receptor binding.

These tests demonstrate that mRMR provides a robust approach to spectroscopic label 

selection, particularly for flexible proteins where structural estimates are more challenging 

and the difference in data quality between optimally selected labels and poorly selected 

labels is greater. When strong mechanistic hypotheses have guided prior DEER experiments, 

mRMR yields label pairs that would test these hypotheses. For proteins such as Opa60 where 

mechanistic understanding is insufficient to guide experiment selection, we show via 

prospective testing that mRMR selection outperforms unaided spectroscopists. Therefore, 

we believe that mRMR will be of general use in guiding spectroscopic experiment selection 

for DEER and for other label-based methods, such as smFRET and paramagnetic resonance 

enhancement. The method can also be extended to differentiate mechanistic hypotheses 

rather than conformations. For systems like OprG where two mechanistic hypotheses exist, 

mRMR could be used to identify which spectroscopic variables optimally distinguish 

conformational features specific to one mechanism or the other. Conformational flexibility 

and heterogeneity are some of the most challenging and exciting frontiers in understanding 

protein structure, and mRMR will increase the ability of these experimental methods to 

efficiently refine such conformational ensembles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The maximum-relevancy, minimum-redundancy (mRMR) method applied to spectroscopic 

observables {Oi}. The optimal set of spectroscopic experiments that report on variables {Oi} 

are maximally informative of the conformation C and minimally redundant with each other. 

Informativeness and redudancy are quantified via mutual information (MI).
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Figure 2. 
Capture of highly informative, minimally redundant residues on three bacterial outer 

membrane proteins with mRMR. Selection via mutual information alone yields informative, 

but redundant, pairs (magenta). Selection via mRMR (blue) removes this redundancy. These 

residues are better distributed across the structures of all three bacterial proteins than the top-

ranking MI pairs or ones selected by spectroscopists according to current practice in the field 

(green). a–c, d–e, and f–h show residues selected for FhuA, OprG, and Opa60, respectively.
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Figure 3. 
mRMR-guided refinement to predict test DEER distributions better than structure-guided 

refinement. Quality of refinement was evaluated by ability to predict additional 8 residue–

residue pairs measured using DEER. Conformational ensembles refined using mRMR-

selected pairs predict these DEER distributions significantly better than ones refined using 

spectroscopist-selected pairs (SSP) in 7 of 8 cases, quantified as inverse Jensen-Shannon 

divergence. Three of these DEER pairs were used for a second round of mRMR refinement; 

the resulting conformational ensemble out-performs both first round ensembles in predicting 

the five pairs not used for refinement. Error bars show 90 % CI from 1000 bootstrap 

samples; * denotes p < 0.01 via two-tailed t-tests.
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Figure 4. 
mRMR-guided refinement to produce ensembles of lower dimensionality than structure-

guided refinement. a) The dimensionality of the conformational ensemble (the number of 

independent distance variables), is plotted at each information theoretic resolution ε. 

Ensembles refined using mRMR-selected pairs are of lower dimensionality than those 

refined using SSPs by 20–25. b) Structures identified by cluster analysis of inter-loop 

contacts are also shown for each ensemble. mRMR refinement yields conformations in 

which a single loop extends from the base of the barrel while the two remaining loops 

interact. SSP refinement yields conformations with no well-defined loop–loop interaction 

patterns.
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