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Abstract

Spectral computed tomography (CT) reconstructs the same scanned object from projections of 

multiple narrow energy windows, and it can be used for material identification and decomposition. 

However, the multi-energy projection dataset has a lower signal-noise-ratio (SNR), resulting in 

poor reconstructed image quality. To address this thorny problem, we develop a spectral CT 

reconstruction method, namely spatial-spectral cube matching frame (SSCMF). This method is 

inspired by the following three facts: i) human body usually consists of two or three basic 

materials implying that the reconstructed spectral images have a strong sparsity; ii) the same basic 

material component in a single channel image has similar intensity and structures in local regions. 

Different material components within the same energy channel share similar structural 

information; iii) multi-energy projection datasets are collected from the subject by using different 

narrow energy windows, which means images reconstructed from different energy-channels share 

similar structures. To explore those information, we first establish a tensor cube matching frame 

(CMF) for a BM4D denoising procedure. Then, as a new regularizer, the CMF is introduced into a 

basic spectral CT reconstruction model, generating the SSCMF method. Because the SSCMF 

model contains an L0-norm minimization of 4D transform coefficients, an effective strategy is 

employed for optimization. Both numerical simulations and realistic preclinical mouse studies are 

performed. The results show that the SSCMF method outperforms the state-of-the-art algorithms, 

including the simultaneous algebraic reconstruction technique, total variation minimization, total 

variation plus low rank, and tensor dictionary learning.
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1. Introduction

The spectral computed tomography (CT) (also called spectroscopic CT, multi-energy or 

color CT) has attracted continuous attentions because it has a great potential for tissue 

characterization, lesion detection and material decomposition [1, 2]. For example, the dual-

energy CT (DECT), as the simplest and commercially available clinical spectral CT, has 

been employed for material differentiation [3], urinary calculi characterization [4], etc. 

Recently, thanks to the emergence and development of photon-counting detectors (PCDs), 

the multi-energy CT moves one step forward in practical applications. For example, the 

MARS (Medipix All Resolution System) research group developed a MARS-CT-3 scanner 

using three pairs of PCDs [5]. However, the charge sharing, Kescape, and fluorescence x-ray 

emission and re-absorption lead to corrupted spectral CT projection datasets with 

complicated noises [6]. This can decrease the signal-noise-ratio (SNR) of the projections and 

further comprise the reconstructed image quality. Thus, a primary task of spectral CT is to 

reconstruct accurate and clean images from the noisy projections. To address this intractable 

problem, lots of spectral CT reconstruction algorithms have been developed. In our opinion, 

all the methods employ some prior knowledge, and the knowledge can be divided into two 

categories: empirical-knowledge and prior-image-knowledge.

Regarding the empirical-knowledge based methods, they first convert the image into 

transform domain with a unified and image-independent transformation, and then focus on 

minimizing an L0-norm or L1-norm of the transform coefficients. Specifically, a satisfied 

image can be obtained by introducing man-made image characteristics as prior knowledge 

into the basic reconstruction model and optimizing the whole objection function. To address 

different problems in practical applications, different empirical-knowledge were reported, 

such as total variation (TV) [7], PRISM (prior rank, intensity and sparsity model) method 

[8], tensor-based nuclear norm [9], piecewise linear tight frame transform [10], total nuclear 

variation (TVN) [11], etc. Indeed, these reconstruction algorithms can obtain a satisfied 

result by enforcing the sparsity over a reconstructed image. Furtherly, the patch-based low-

rank [1] , tensor nuclear norm (TNN) with TV [12], structure tensor TV [13] methods 

consider energy channel images similarity to formulate reconstruction model. However, 

image similarities in non-local spatial space are usually ignored among these methods. It can 

result in blurred edges, and finer structures are lost in the reconstructed images.

A representative group of prior-image-knowledge based methods are achieved by 

constructing a redundant dictionary from high quality images. This group can explore both 

image sparsity and similarity with a dictionary. They can be divided into two steps: 

dictionary training and image reconstruction. The first step is to train a redundant dictionary 

using images reconstructed by an analytic (e.g. FBP) or iterative (e.g. SART) algorithm. The 

second step is to reconstruct spectral images using the trained dictionary. In 2012, Zhao et 
al. applied a dual-dictionary learning (DDL) method for sparse-view spectral CT 

reconstruction [14]. Considering the image similarity among different energy channels, 

Zhang et al. introduced a tensor dictionary learning (TDL) into the spectral CT 

reconstruction [15]. To enhance the capability for clinical applications, very recently, Wu et 
al. incorporated an image gradient L0-norm into the TDL (L0TDL) framework for low-dose 

spectral CT [2]. Note that the final results depend on the image quality in the training 
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process. The higher the quality of training image is, the better the reconstructed image is. 

Another group prior-image-knowledge based methods are realized by introducing a high 

quality spectral image into the optimized reconstruction model to constrain solution, such as 

spectral prior image constrained compressed sensing algorithm (spectral PICCS)[16], TV-

TV and total variation spectral mean (TV-SM) methods [17]. In general, both of the two 

groups need high quality prior images. However, it might be impossible to obtain high 

quality prior images in practice. In addition, this type of reconstruction method can not 

consider image similarity within non-local spatial space.

About ten years ago, the Block Matching 3D (BM3D) was proposed for 2D image denoising 

by considering small image patch similarity within a searching window [18]. Then, it also 

obtained a great success in image deblurring [19], inpainting [20] and compression [21], etc. 

To address the volumetric image denoising issue, the BM3D was extended to BM4D and 

then it was applied to limited-angle MRI reconstruction [22]. Because the BM4D can 

accurately explore the nonlocal similarity of image cubes, it was applied to multispectral 

[23] and hyperspectral denoising [24] with a great success.

To handle the aforementioned spectral CT reconstruction issues, i.e., image edge blurring 

and finer structure losing in the empirical-knowledge based methods and difficulty in 

obtaining high quality prior images in the prior-image-knowledge based methods, we 

propose a spatial-spectral cube matching frame (SSCMF) to explore the spatial-spectral 

space similarity for spectral CT. Compared with the previous other tensor-based or multi-

channel-based methods [15, 25, 26], the proposed SSCMF not only considers image 

structure similarity across spectral channels but also explores the non-local similarity of 

spectral image itself by clustering up a series of similar small cubes. The contributions are 

threefold. First, we establish a tensor cube matching frame based on the BM4D denoising 

procedure. Its insight can be easily considered as a regularizer. We thus call it cube matching 

frame (CMF) for convenience. Such a regularization term not only encodes the sparsity 

insights delivered by the traditional sparsity constraint, but also explores the similarities 

implied in a 3rd tensor. Second, we sufficiently analyze the features of spectral images and 

introduce the CMF regularization term into the spectral CT reconstruction to further explore 

the image similarity and sparsity. This technique is named as spatial-spectral cube matching 

frame (SSCMF). Third, an effective denoising technique is employed to solve the 4D group 

coefficient L0-norm minimization problem in the SSCMF model [27].

The rest of this paper is organized as follows. In section II, we establish the tensor CMF for 

BM4D. In section III, we construct the SSCMF model and adopt an effective denoising 

method for optimization. In section IV, both numerical simulations and real dataset 

experiments are performed to evaluate the proposed SSCMF method. In section V, we 

discuss some related issues and draw the conclusions.
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2. BM4D Denoising Model

2.1. BM4D Algorithm

The BM4D was proposed as a volumetric nonlocal image denoising technique [22]. It can be 

considered as a natural extension of the state-of-the-art BM3D algorithm [19]. Similar to the 

BM3D algorithm, the BM4D algorithm can be implemented in three steps:

i) Grouping similar volumetric cubes. The volumetric image cubes within a given 

image window share similar structures and they can be clustered to one group. 

These cubes in the same group can be further stacked as a 4D data array. During 

the course of grouping the cubes, the noise level σ of the volumetric image 

significantly affects the grouping accuracy[18].

ii) Filtering. This consists of hard-thresholding filtering and collaborating filtering. 

The hard-thresholding filtering is used for image denoising by removing small 

groupwise spectrum coefficients in a 4D transform domain. An initial image can 

be recovered by performing the inverse transformation from 4D coefficients. The 

final denoised volumetric image can be obtained by the collaborating filtering.

iii) Aggregation. The final denoised image cubes will be rearranged into the original 

corresponding locations by adopting a general weighting method for 

redundancy. To illustrate the effectiveness of data redundancy, the matrix 

representation of BM3D was introduced in [19]. To explore the volumetric data 

denoising and realize spectral CT reconstruction, we first provide the tensor 

cube frame for the BM4D

2.2. Tensor Cube Frame of BM4D

Let 𝓧 ∈ 𝓡
NW × NH × ND be a 3rd order tensor and 𝔁 j ∈ 𝓡

n1 × n2 × n3 (n1 ≪ NW, n2 ≪ NH, 

n3 ≪ ND) be an extracted tensor cube, where j = 1,2,…,J and J=(Nw-n1 + 1)(NH – n2 + 1) × 

(ND –n3 + 1). Assuming Ej represents the tensor cube extraction operation 𝔁 j can be 

expressed as

𝔁 j = E j(𝓧) . #(1)

For a tensor cube 𝔁 j, we can determine a tensor searching window 𝓦 j ∈ 𝓡
N1 × N2 × N3 (n1 

< N1 < NW, n2 < N2 < NH, n3 < N3 < ND). The process of determining a search window can 

considered as a special operation on 𝓧. Let 𝒵 j represents the operation of determining a 

search window,the searching window 𝓦 j can be expressed as

𝓦 j = 𝒵 j(𝓧) . #(2)
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We extract R tensor cubes 𝓨 j, r(1 < r ≤ R) in the searching window tensor 𝓦 j. All the 

extracted sensor cubes are stacked to form a 4th order tensor as the jth For simplicity, we 

assume that R is fixed.it assumed that,for each volume pixel in the searching window, there 

is atleast one cube that entersin the group and contains the volumetric pixel. 𝓨 j, r can 

expressed as

𝓨 j, r = ε j, r 𝓦 j , #(3)

where εj,r represents the rth tensor cube extraction operation from the jth searching 

window.infact,the BM4D modeling can be considered as a special form of the 4d 

decorrelating transform.it can be realized by a combination of separable 3D intrablock and 

1D interblock transforms. Let Φ(·)and Ψ(·) be the 3D interblock and 1D intrablock 

transforms,repectively. The 3D transform coefficient 𝓖 j, r of 𝓨 j, r can be written as

𝓖 j, r = Φ 𝓨 j, r . #(4)

There, the 3D coefficients of the jth group can be written as 𝓖 j = 𝓖 j, 1, 𝓖 j, 2, …, 𝓖 j, R . We 

apply the 1D interblock transformation to 𝓖 j and the 4D spectrum of this group 𝔀 j can be 

written as

𝔀 j = Ψ 𝓖 j = Ψ 𝓖 j, 1, 𝓖 j, 2, …, 𝓖 j, R = Ψ Φ 𝓨 j, 1 , Φ 𝓨 j, 2 , …, Φ 𝓨 j, R
= ΨΦ 𝓨 j, 1, 𝓨 j, 2, …𝓨 j, R = ΨΦ ε j, 1 𝒵 j(𝓧) , ε j, 2 𝒵 j(𝓧) , …, ε j, R 𝒵 j(𝓧) .

#(5)

Now, let 𝓔 j be (εj,1,εj,2,…,εj,R). Eq. (5) can be written as

𝔀 j = ΨΦ ε j, 1, ε j, 2, …, ε j, R 𝒵 j(𝓧) = ΨΦ ε j 𝒵 j(𝓧) . #(6)

Here, in order to better understand the process of the BM4D, ψ is denoted as a 4D analysis 

operator and it equal to ΨΦ. Thus, Eq. (6) can be simplified as

𝔀 j = ψ 𝓔 j 𝒵 j(𝓧) . #(7)

Note that Eq. (6) only considers a group constructed from the jth searching window. A set of 

all groupwise coefficients Ω of tensor 𝓧 can be expressed as following
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Ω(𝓧) =
𝔀1
⋮

𝔀J

. #(8)

The synthesis transform of BM4D model can be similarly derived First, the inverse 

intrablock 1D transform and 3D transforms are applied to each tensor group spectrum 𝔀 j. 

Then the obtained tensor cubes estimation are rearranged into their corresponding original 

position. The estimated tensor group from the jth group spectrum can be denoted as 

𝒵 j(𝓧) = 𝓔 j
−1ϑ 𝔀 j , where ϑ is the BM4D synthesis operation and 𝓔 j

−1 represents the 

inverse of extraction operation 𝓔 j with appropriate weighting for redundancy. The final 

image can be further obtained by a weighting strategy i.e., the gropuwise estimation using 

weights αj > 0 therefore, tensor 𝓧 can be recovered as the following expression

𝓧 = α−1
α1𝓔1

−1ϑ 𝔀1
⋮

αJ𝓔J
−1ϑ 𝔀J

, #(9)

where

α = ∑
j = 1

J
α j ∑

E j(𝓧) ∈ 𝓔 𝒵 j(𝓧)
𝒵 j

T𝒵 j

is a weighting tensor. if the uth volume element of 𝓧 belongs to the jth tensor cube, the value 

of corresponding location on 𝒵 j
T𝒵 j would be 1 and otherwise it woul be 0. Therefore, the 

∑E j(𝓧) ∈ 𝓔 j, r(𝒵 j(𝓧))𝒵 j
T𝒵 j can indicate the number of cubes in the jth group containing uth 

tensor element.

2.3 Tensor frame Interpretation of BM4D

For a given group 𝓔 j 𝒵 j(𝓧) , the 4D analysis operator ψ can transform it into the 

coefficient 𝔀 j. In contrast, the BM4D synthesis operator ϑ can transform the group 

coefficient 𝔀 j into the corresponding tensor group 𝓔 j 𝒵 j(𝓧) . The synthesis operator ϑ can 

be treated as an inverse transform of the analysis operartor ψ, i.e., 

𝓔 j 𝒵 j(𝓧) = ϑ ψ 𝓔 j 𝒵 j(𝓧) . Again, the product ϑ and ψ can be expressed as

I = ϑψ, #(10)
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where I stands for the identify transform. However,an independent tensor group 𝓔 j 𝒵 j(𝓧)

is considered in the above analysis,and our goal is to recover the whole tensor 𝓧 from 

overlapped groups 𝓔1 𝒵1(𝓧) , …, 𝓔J 𝒵J(𝓧) T. Considering the weight coefficient tensor 

α, then the tensor 𝓧 can be further recovered

𝓧 = α−1
α1𝓔1

−1ϑψ𝓔1 𝒵1(𝓧)
⋮

αJ𝓔J
−1ϑψ𝓔J 𝒵J(𝓧)

, #(11)

which is in consisitent with Eq. (9).it is necessary to point out that the weight coefficient 

tensor α can be changed with respect to the image noise level σ. This means different noise 

may result im dofferent weight coefficient tensors.

3. Spectral CT Reconstruction based on spatial-spectral CMF

3.1. Spectral CT Imaging Model

Considering the noise in the projection datasets, the acquired or observed data forward 

model of the conventional CT for fan-beam scanning geometry van be approximated as a 

discretized linear system

p = 𝓐 f + η, #(12)

where f ∈ 𝓡N (N = Nw × NH) represents the vectorized 2D image, p ∈ 𝓡T (T = T1 × T2) 

represents the measurements, T1 and T2 are respectively the view and detector numbers, 

𝓐 ∈ 𝓡N × T is the CT projection matrix and η ∈ 𝓡T stands for projection noise. Because the 

matrix 𝓐 is huge, Eq. (12) can not be solved directly by adopting a matrix inverse technique 

due to the memory limitation Alternatively, it can be iteratively solved in terms of the 

following minimization problem

argmin
f

1
2‖p − 𝓐 f‖2

2, #(13)

where ‖.‖ represents the L2 norm Eq. (13) involves the linear programming problem,which 

can be updated with the ART or SART methods. Methods [28] To further optimize the result 

of Eq. (13), a regularization of prior knowledge can be introduced into Eq. (13) Therefore, 

we have

argmin
f

1
2‖p − 𝓐 f‖2

2 + τR( f ) . #(14)
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Note that Eq. (14) consisits of two terms: data fidelity term 1
2‖p − 𝓐 f‖2

2 and regularization 

term R(f), and τ > 0 is a parameter to balance the data fidelity and regularization terms. For 

the regularization term R(f),it can be chosen as TV [29,30] wavelet frame [31], image 

gradient L0-norm [32], low-rank [33],etc.

For the multi-energy CT, multiple projection datasets can be obtained with one scan. This 

means we can reconstruct multiple energy-dependent images of the same object using 

different projection datasets. Let u be the number of energy channels. Similar to Eq. (13), 

spectral CT reconstruction can be modeled as

argmin
𝓕

∑
s = 1

S 1
2‖ps − 𝓐 f s‖2

2 + τR(𝓕), #(15)

where f s ∈ 𝓡N (s = 1,2,⋯,S) is a vectorized image of the sth energy channel of a 3rd order 

tensor 𝓕 ∈ 𝓡
NW × NH × S

, and the projection ps ∈ 𝓡T is a coloumn of P ∈ 𝓡N × S. The first 

term of Eq. (15), (i.e., ∑s = 1
S 1

2‖ps − 𝓐 fS‖2
2) can be considered as data fidelity term for the 

multi-energy CT and it is formulated with summation of data fidelity error from all energy 

channels.

3.2. Spatial-spectral CMF for Spectral CT

For the spectral CT, there are some facts: i) from the aspects of material decomposition, 

patients usually consist of two or three basic materials, i.e., soft tissue, bone and water. Thus, 

the constructed spectral images have a strong sparsity in material composition; ii) the same 

basic material components in a single channel have similar intensity and structures. Different 

material components within the same energy channel share similar structural information; 

iii) multi-energy projection datasets are collected from the same patient by using different 

energy windows. Although images reconstructed from different energy channels have 

different attenuation coefficients, they share the same physical structures; iv) charge sharing, 

K-escape, and fluorescence x-ray emission and re-absorption can cause severe noise in the 

reconstructed images. Considering the advantages of CMF in characterizing 3D image 

similarity and reducing noise, the CMF as a regularizer is introduced into the spectral CT 

reconstruction to generate a spatial-spectral CMF (SSCMF) reconstruction method. Fig. 1 

demonstrates the process of grouping which is a key procedure in the SSCMF method. We 

extract similar tensor cubes within a given spatial-spectral searching window and then stack 

them as the jth group. To clarify the procedure of SSCMF algorithm, Fig. 2 shows flowchart 

for the whole iteration. The proposed SSCMF method can be divided into two steps: image 

reconstruction and CMF constraint. For image reconstruction, we adopt the SART to 

perform back projection. In the CMF constraint step, first, the images reconstructed by the 

SART are grouped and clustered as 4D arrays. Then, the noises in these 4D data arrays can 

be suppressed by the hard-thresholding operation. This process can be considered as the 1st 

estimation. To enhance the denoising capability of the CMF, we perform the collaborative 
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filtering on the original signal and initial estimation, which can be called as the 2nd 

estimation.

3.3. SSCMF Model

Mathematically speaking, the SSCMF model can be constructed as follow

argmin
𝓕

∑
s = 1

S 1
2‖ps − 𝓐 f s‖2

2 + τ‖Ω(𝓕)‖0 , #(16)

where ‖.‖ represents the L0 norm regularization term of the spatial –spectral cube 4D 

transform coefficients. Since this model contains the quasi L0-norm it makes Eq.(16) an NP-

hard problem Here,we employ a strategy in [27] to minimize eq. (16) which can be divided 

into two steps:

𝓕(k + 1/2) = argmin
𝓕

∑
s = 1

5 1
2‖ps − 𝓐 f s‖2

2 + λ
2‖𝓕 − 𝓕(k)‖F

2 ,

𝓕(k + 1) = argmin
𝓕

‖𝓕 − 𝓕(k + 1/2)‖F
2 + τ‖Ω(𝓕)‖0,

#(17a)#(17b)

where λ is acoupling parameter and ‖.‖F represents the tensor frobenius norm Eqs. (17a) and 

(17b) can be called as observation fidelity and model fidelity steps, respectively. Especially, 

different forward system matrix 𝓐 means different imaging problems. For example, when 𝓐
means different imaging problems. For example ,when A corresponds a bluring matrix, Eq. 

(17a) is to update the current intermediate tensor image 𝓕(k + 1/2) so that it can be better 

agree with observation matrix P in the image debluring problem [27]. The regularization 

parameter λ is introduced into Eq(17a) to determine the degree of agreement between 

𝓕(k + 1/2) and P. Eq. (17b) achieves an accurate update which can conform with the prior 

image model or structure as enforced by the penalty function ‖Ω(𝓕)‖0. For the spectral data 

fidelity term, because the update of each energy channel is independent, Eq (17a) can be 

rewritten as

𝓕
k + 1

2 = argmin
𝓕

∑
s = 1

S 1
2‖ps − 𝓐 f S‖

F
2 + λ

2‖ f s − f s
(k)‖2

2 . #(18)

The update of 𝓕
k + 1

2  can be achieved by separetly updating all energy channel image fs(s 
= 1,…,S). Therefore, Eq. (18) is equivalent to
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f s
k + 1

2 = argmin
fs

1
2‖ps − 𝓐 f s‖2

2 + λ
2‖ f s − f s

(k)‖2
2, (s = 1, …, S) . #(19)

To determine the minimization point of fs,the derivate of Eq. (19) should be equivalent to 

zero. We have,

−𝓐T ps − 𝓐 f s + λ f s − f s
(k) = 0, (s = 1, …, S) . #(20)

which can be simplified as

𝓐T𝓐 + λI f s = 𝓐T pS + λ f S
(k) . (s = 1, …, S) #(21)

Eq. (21) is equivalent to

𝓐T𝓐 + λI f s = 𝓐T ps + λ f s
(k) + 𝓐T𝓐 f s

(k) − 𝓐T𝓐 f s
(k), (s = 1, …, S) #(22)

𝓐T𝓐 + λI f s = 𝓐T𝓐 + λI f s
(k) + 𝓐T ps − 𝓐 f s

(k) . (s = 1, …, S) #(23)

Therefore, f s
k + 1

2  can be updated as

f s
k + 1

2 = f s
(k) + β 𝓐T𝓐 + λI −1𝓐T ps − 𝓐 f s

(k) , (s = 1, …, S), #(24)

where β = 1 and it can be any other relaxation factor in the range of (0,2). Eq. (21) indicates 

that λ only affects the iteration step. Considering Eq (24) as the solution of Eq. (17a), λ = 0 

becomes a legal regularization parameter for a unique solution. In this case, Eq. (24) is 

degraded as the SART method [34]. Thus, λ is set as zero in this work.

The first term ‖𝓕 − 𝓕(k + 1/2)‖F
2

 of Eq. (17b) can be considered as the data fidelity to 

balance the final estimation 𝓕(k + 1) and the current estimation 𝓕(k + 1/2). The regularization 

term ‖Ω(𝓕)‖0 enforces the L0-norm sparse constraint over the 4D tensor coefficients to 

suppress noise by removing small coefficients in the 4D transform domain.considering Eqs.

(7) and (8), Eq. (17b) is equivalent to
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𝓕(k + 1) = argmin
𝓕

𝓕 − 𝓕
k + 1

2
F

2

+ τ ψ

𝓔1 𝒵1(𝓕)
⋮

𝓔J 𝒵J(𝓕) 0

. #(25)

Substituting Eq. (10) into Eq .(11) and then Eq. (25) becomes

𝓕(k + 1) = argmin
𝓕

𝓕 − 𝓕
k + 1

2
F

2

+ τ

ψ𝓔1𝒵1
⋮

ψ𝓔J𝒵J

𝓕

0

, #(26)

which can be further written as

𝓕(k + 1) = argmin
𝓕

𝓕 − 𝓕
k + 1

2
F

2

+ τ‖ϱ(𝓕)‖0, #(27)

where ϱ =
ψ𝓔1𝒵1

⋮
ψ𝓔J𝒵J

. The problem of Eq (27) can be treated as a denoising with to solve such 

a problem with an analysis prior defined over the tensor frame shrinkage algorithm [36].In 

this work, we employ a typical technology (i.e., hard-thresholding method [36] to solve Eq. 

(27). The solution can be given as

𝓕(k + 1) = α−1ϱ−1 ϱ 𝓕
k + 1

2

τ

, #(28)

where ϱ−1 represents the inverse operator of the ϱ with appropriate weighting for 

redundancy. The operator ⌊⋅⌋τ denotes the hard thresholding operation and it can be 

calculated as [36]

ϱ 𝓕
k + 1

2

τ

=

0, ϱ 𝓕
k + 1

2 < τ

ϱ 𝓕
k + 1

2 , ϱ 𝓕
k + 1

2 ≥ τ

. #(29)

It is necessary to emphasize that Eq. (29) can be implemented by the BM4D denoising 

algorithm, which is formulated using the frame notation in [22]. For our proposed 
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reconstruction algorithm, the frame shrinkage step Eq. (29) is treated as an approximate 

solution for Eq. (17b). Therefore, Eq. (17b) will be updated by a BM4D-based denoising for 

spectral CT images. Our algorithm mainly explores the similarity of spatial-spectral 

information by utilizing the cube matching frame regularization and its workflow is 

summarized as Algorithm I.

Algorithm I

SSCMF

Input: λ,τ,β,σ,P;

1: Initialization of 𝓕 0, k = 0

2: repeat

3: for s: = 1,2, ⋯,S do

4: Updating f s
(k + 1/2)

 by SART

5: end for

6: Generating frames ψ and ϑ using the 𝓕(k + 1/2)
;

7: Updating 𝓕(k + 1)
 using Eq. (28);

8: Applying positive constraint over 𝓕(k + 1)
;

9: k = k + 1;

10: until convergence

Output: Reconstructed spectral CT image 𝓕

In the Algorithm I, the model fidelity 6–7 steps correspond to the BM4D denoising process 

of image fS
(k + 1/2). They are implemented by adopting a highly available online optimized 

BM4D denoising toolbox [22] (http://www.cs.tut.fi/~foi/GCF-BM3D/). Eq. (28) is 

implemented with a 4D transform shrinkage followed by the wiener collaborative 

filtering.Here, the coefficient shrinkage Eq. (29) is implemented by a hard thresholding 

filtering with the controlling parameter τ in our numerical simulations and preclinical 

experiments ,the cube size is 4 × 4 × 4 and the sliding step is 3. Other parameter setting and 

transform selection are the same as those in the BM4D denosing toolbox (http://

www.cs.tut.fi/~foi/GCF-BM3D/).

4. Experiments

To evaluate the performance of our SSCMF method, simultaneous algebratic reconctruciton 

technique (SART), total variation minimization (TVM), total variation plus low rank (TV

+LR)[8], and tensor dictionary learning (TDL)[15] algorithms are selected and implemented 

for comparison. Both numerical simulations and preclinical spectral datasets are employed 

for stopped after 50 iterations. The relaxation factor β is fixed as 0.03 and other parameters 

are evaluation. For all the iterative methods, the initial images are set as zero and all of them 

are optimized and summarized as in Table 1.
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4.1. Mouse Thorax Phantom Study

A simulated mouse thorax phantom is employed, containing three basic materials: soft 

tissue, bone, and iodine (Fig. 3). As shown in Fig. 3, 1.2% iodine is injected into the mouse 

thorax phantom as contrast agent. A polychromatic 50KVp x-ray source is assumed, and it is 

divided into eight different energy channels: [16, 22) keV, [22, 25) keV, [25, 28) keV, [28, 

31) keV, [31, 34) keV, [34, 37) keV, [37, 41) keV, and [41, 50) keV. The PCD used in the 

experiment contains 512 detector elements, and each element covers a length of 0.1mm. 

Regarding the scanning geometry, the distances from source to rotation center and PCD are 

132mm and 180mm, respectively. 640 projections are uniformly collected over a full scan. 

Each reconstructed energy channel image consists of 512×512 pixels, and each pixel covers 

an area of 0.075×0.075 mm2. The photon number of each x-ray path is set as 2×104, and 

Poisson noise is added in to the received photon number.

a) Reconstruction Results—To compare the performances of all algorithms in 

spectral CT reconstruction, parameters in all algorithms are optimized, and their best results 

are selected for comparison and analysis. Fig. 4 shows the reconstructed images of three 

representative energy channels (1st, 4th and 8th). One can see that the SSCMF algorithm 

always obtain higher quality images compared with other competitors. More specifically, the 

SSCMF method outperforms other algorithms in edge preservation and finer structure 

recovery. This point is further confirmed by two magnified region of interests (ROIs) A 

(bony structure) and B (soft tissue) in Fig. 5. It can be observed that images reconstructed by 

using the SART have the strongest noise. The TVM, TV+LR and TDL methods can reduce 

noise to a certain extent, but the profiles of reconstructed images are not clearer. In contrast, 

the SSCMF method has an excellent performance in noise reduction as well as image edge 

preservation. Fig. 6 plots representative profiles along the yellow line in bony structure A in 

Fig. 5. From Fig. 6, one can infer that the profiles of SSCMF method are closer to the 

ground truths compared with the TVM, TV+LR and TDL algorithms.

To further demonstrate the advantages of the SSCMF method, Fig. 7 shows the 

reconstructed difference images with respect to the references. Note that the reference 

images are reconstructed by the SART from noise-free projections. It can be seen from Fig. 

7 that the reconstructed images utilizing the SART have the largest differences, followed by 

the TVM, TV+LR and TDL. In contrast, the difference images of SSCMF are smaller than 

those reconstructed using other competing algorithms, especially for the 1th energy channel.

To quantitatively evaluate the reconstructed image quality, the indexes of root mean square 

error (RMSE), peak signal-to-noise ratio (PSNR) [37], feature similarity (FSIM) [38] and 

structural similarity (SSIM) [39] are employed. Table 2 summarizes all the quantitative 

results which indicate that the SSCMF can obtain the smallest RMSEs for all channels, 

followed by the TDL and then TV+LR method which has slightly smaller RMSEs than the 

TVM. The SART has the largest RMSEs in all channels because of no prior knowledge. 

These conclusions are also confirmed with the indexes of PSNR, FSIM and SSIM.

b) Material Decomposition—The material decomposition of spectral CT images is a 

nonlinear ill-posed problem. Regarding the material decomposition methods, they mainly 
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can be classified into two categories, i.e., projection-based and image-based methods. The 

projection-based methods model the nonlinear material decomposition problem and usually 

introduce regularization in the material-specific projection domain. Unfortunately, those 

methods are very sensitive to noise, and the decomposed images are highly affected by noise 

[40, 41]. Regarding the image-based methods, they first reconstruct all energy bin images 

independently using a set of different spectra and then obtain basis material images using a 

matrix inversion. Such an image-based method fails to characterize the real nonlinearity 

relationship between the polychromatic projections and the decomposed results. This may 

cause artifacts in the decomposed results [42].

To validate the proposed SSCMF algorithm in terms of material decomposition, the 

reconstructed all channel images are decomposed into three basis materials (soft tissue ,bone 

and iodine contrast agent) utilizing an image-based material decomposition method [43]. 

Fig. 8 shows the proportions of the corresponding three basis materials and the individual 

merged color images. From the 1st row of Fig. 8, it can be seen that more pixels of iodine 

contrast agents are easier to be wrongly classified into the bony regions by the SART, TVM, 

TV+LR and TDL methods than the SSCMF method. For the soft-tissue component 

decomposition (2nd row), the SSCMF result provides more finer structures than those 

achieved by other competing algorithms. In terms of the iodine contrast agent decomposition 

component, the TDL and SSCMF methods have similar high accuracy. To quantitatively 

evaluate the material decomposition results, the RMSE, PSNR, SSIM and FSIM values of 

each basis material from all reconstruction methods are listed in Table 3.

c) Convergence Analysis—The SSCMF model contains the L0-norm minimization of 

4D groupwise coefficients, which is NP-hard and makes the convergence complicated. In 

this study, we only numerically analyze the convergence of the proposed method. 

Specifically, the averaged RMSE and PSNR vs. iteration number are given in Fig. 9. By 

comparison, the SSCMF algorithm can converge to an optimized solution quickly with a 

smaller RMSE or a higher PSNR. Because the spectral CT projection datasets contain severe 

noise, the RMSE values of SART decrease rapidly and then increase slowly. Fig. 9 indicates 

that the RMSEs can maintain subsequently stable after 40 iterations for all the reconstruction 

methods.

d) Parameters Selection—The parameters of SSCMF mainly include the estimated 

image noise level σ and the hard-threshold value τ. σ depends on the estimated noise at 

current iteration. That is to say, the higher the image noise levels is, the greater the σ value 

is. In this study, σ is set as a constant. Regarding the hard-threshold value, τ it is used to 

suppress noise by removing small coefficients in the 4D transform domain. A greater value 

of τ can enforce the anti-noising capability and lose more image details. Correspondingly, a 

smaller value of τ can decrease the anti-noising capability and keep more image details. 

Here, to investigate the performance of the SSCMF method with respect to different 

parameter settings, we quantitatively compare the RMSEs and SSIMs from all channels with 

respect a small σ (σ = 0.005) have large RMSEs and small SSIMs in all energy chanσ nels. 

A greater σ to one parameter, as shown in Fig. 10. Fig. 10 (a) and (b) show that the 

reconstructed images with (σ = 0.1) may lead to similar conclusions. This means an 
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appropriate σ value can result in smalls RMSEs and large SSIMs. For this case, the optimal 

is around 0.016, which matches the noise level in the reconstructed image. From Fig. 10 (c) 

and (d), we can see that a smaller can result in a of SSIM, a greater τ might obtain better 

results. For this case, the optimal τ is around 11 and it was smaller RMSE in low energy 

channel and larger RMSE in high energy channels. In terms of the index set as 12.

e) Low-dose Reconstruction—To evaluate the performance of SSCMF in the case of 

low-dose reconstruction, the photon number of each x-ray path is reduced to 5×103. The 

lower the photon number of each x-ray path is, the higher the Poisson noise in projection is. 

Fig. 11 shows the reconstructed images. From Fig. 11, it can be seen that the images 

reconstructed by the TVM, TV+LR and TDL methods loss some finer structures and details, 

especially in the high-energy channels. Compared with the TVM and TV+LR results, the 

images reconstructed by the SSCMF algorithm have clear image edges.

f) Contrast Agent Concentration Analysis—To validate the performance of the 

proposed SSCMF method for different concentrations of iodine, 0.6%, 2.4% and 4.2% 

iodine concentrations are injected into the mouse thorax phantom, respectively. Fig. 12 

demonstrates the reconstructed results, and it can be seen that the proposed SSCMF has a 

good performance with the selected iodine contrast concentration. The higher the iodine 

concentration is, the larger the image contrast is. In clinical applications, it is appropriate to 

select the iodine contrast concentration so that the final material decomposition results can 

separate three basis materials.

g) Computational Cost Analysis—Regarding the computational costs of all the 

optimization algorithms, i.e., TVM, TV+LR, TDL and SSCMF methods, they can be 

divided into two major procedures: backprojection reconstruction and regularization 

constraint. The computational cost of multi-energy projection datasets reconstruction step 

mainly depends on the number of energy channels. The higher the number of energy 

channels is, the larger the time consumption is. Regarding the regularization term, different 

regularization constraints have different computational costs and they also depend on the 

parameter settings. For example, the computational cost of CMF depends on the tensor cube 

size, search tensor cube window size, the cube sliding step, etc. In general, the 

computational cost to update the regularization term is less than that is consumed by the 

back projection reconstruction. In this study, all the aforementioned methods are 

programmed by Matlab (2017b) with GPU techniques on a PC (8 CPUs @3.40GHz, 32.0GB 

RAM, Intel(R) HD Graphics 530). Here, the back projection reconstruction step 

consumes114.58 seconds in all algorithms. For the TV, TV+LR, TDL and CMF 

regularization terms, they cost 1.64, 0.52, 10.65, 38.23 seconds, respectively. The CMF 

regularization term requires more time than the TV and TV+LR regularizations because it is 

performed on overlapped small image tensor cubes. Because the number of TV iteration is 

20 and it needs to operate on each channel image independently, the TV regularization needs 

more computational costs than the TV+LR method.
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4.2. Preclinical Mouse Study

A mouse with injected gold nanoparticles (GNP) was scanned by a MARS micro spectral 

CT system. The system includes one x-ray source and one PCD. The distances from the x-

ray source to the PCD and rotation axis are 255 mm and 158 mm, respectively. The PCD 

horizontally consists of 512 elements, and each element covers a length of 0.11 mm, 

resulting in an FOV with a radius of 9.21mm. 371 raw projections are collected in a full 

scan. A strategy of multiple scans is adopted, and 13 energy channel datasets are obtained. 

The projections for the central slice in fan-beam geometry Each reconstructed channel 

image is a matrix of 512×512, covering area of 18.41×18.41mm2. are extracted and 

employed to verify the advantages of the SSCMF algorithm in practical applications.

Fig. 13 shows the reconstructed results of four representative energy channels (1st, 5th, 9th 

and 13th). From the 1st row of Fig. 13, it can be seen that the images reconstructed by the 

SART are corrupted by severe noises and lose some details. Although the reconstructed 

images using the TVM and TV+LR methods (2nd and 3rd rows in Fig. 13) contain less noise, 

the soft tissue structures are blurred to some degree, especially the obvious blocky effects in 

the TVM reconstruction. In contrast, the TDL and SSCMF methods achieve a great success 

in recovering finer structures as well as preserving image edges (see the 4th and 5th rows).

To further demonstrate the advantages of the SSCMF method, a bony ROI A and soft tissue 

ROI B are extracted and magnified as in Fig. 14. For the magnified bony ROI A, one can see 

that the image structures indicated by the red arrows “1” and “2” can hardly be distinguished 

in the images reconstructed by the SART, TVM and TV+LR methods. The image structure 

indicated by the red arrow “2” is slightly blurred in the images reconstructed by the TDL 

technique. However, the images reconstructed by the SSCMF have clearer edge features. As 

for the soft tissue ROI B, we can see that the images reconstructed by the SSCMF are 

smoother with more image details. The region marked with the arrow “3” indicates the 

unique merits of the TDL and SSCMF in recovering fine structures. The image edge 

structures indicated by arrow “4” is more clearer using the SSCMF than that obtained from 

the TDL method.

Regarding the material decomposition, Fig. 15 shows three decomposed basic materials 

(tissue, bone and GNP) and color rendering images. For the bone material, the profile of 

SSCMF is clearer than those obtained from the SART, TVM, TV+LR and TDL methods. In 

addition, the SSCMF can also provide more accurate tissue decomposition results without 

blocky artifacts. In the rendered color images, the edges of the SSCMF method are more 

obvious than other competing algorithms.

To further analyze the impacts of the parameters on the reconstructed image quality in 

practical series of different parameter settings. From Fig. 16, it can be seen that a small σ 
value (0.005 and 0.01) applications, Figs. 16 and 17 show the reconstructed mouse images 

using the SSCMF method with a can reduce the algorithm robustness and a greater σ value 

(0.028, 0.04 and 0.06) can smear finerτ structures and image edges. Regarding the selection 

of parameter , a similar conclusion can be made.
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5. Discussions and Conclusions

Although the SSCMF method reconstructs excellent results for the spectral CT, there are still 

some issues to be addressed. First, there are numerous parameters in the BM4D denoising 

procedure to be optimized for Eq. (25), including the tensor cube size, tensor cube searching 

window size, the number of tensor cubes, etc. In this work, we only empirically optimized 

the main parameters based on extensive experiments. However, the theoretical analysis of 

optimization for all parameters is still open. Second, different similarity measurements for 

cubes may generate different groups and further result in different reconstruction results. In 

this study, the sum of squared differences between two input tensor cubes is considered as 

the similarity measurement [22], which can be read as

d 𝓨 j, r, 𝓨 j, l =
‖𝓨 j, r − 𝓨 j, l‖F

2

L3 ,

where L3 is a normalized factor. Of course, there are other methods to quantify such 

similarity, such as SVM-KNN [44], PCA basis [45], etc. In our future work, we will 

investigate the reconstructed results with respect to different similarity measurements. Third, 

because the BM4D denoising codes are only implemented on CPU, we will transplant this 

procedure to GPU to speedup the convergence. Fourth, we only employ a simple strategy to 

solve Eq. (16). In fact, there are many other available methods, such as split-bregman 

method [8], alternative direction minimization method (ADMM) [46], etc. Fifth, because a 

volumetric CT image has 3D similar structures, the proposed CMF regularization term can 

be directly applied for 3D volumetric CT reconstruction. Furthermore, a 4DCT image not 

only has similarity in 3D volumetric space but also has structural and intensity similarities 

among different time frames. Moreover, as for the cone-beam spectral CT reconstruction, it 

is necessary to extend the established CMF to 5D so that it can explore both the 3D 

volumetric structures and 1D spectral similarities.

In this study, the numbers of energy channel are 8 and 13 in numerical simulation and 

clinical experiment, respectively. In practice, the number of energy channel may be smaller. 

To evaluate the proposed method for the case with less channels, the aforementioned 

spectrum in numerical simulation is divided into four different energy channels: [16, 25) 

keV, [26, 33) keV, [34, 40) keV, [41, 50) keV. Fig. 18 shows all channel images 

reconstructed by using the SSCMF method. It can be observed that the SSCMF algorithm 

still perform well in reconstructing high quality images from less energy channels.

In summary, to take advantages of the similarity of nonlocal spatial-spectral cubes in 

spectral CT images, we first propose a CMF for BM4D procedure, and then it is introduced 

into the spectral CT reconstruction model as a new regularizer. By incorporating the CMF 

into basic spectral CT reconstruction model, the reconstructed image quality is dramatically 

improved. The advantages of the SSCMF method are twofold. First, it can explore both the 

nonlocal similarity of an image and structural similarity among different spectral channels 

by grouping similar spatial-spectral cubes. This makes it a great success for the SSCMF 

method to preserve image edges and recover finer structures. Second, performing 
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collaborative filtering on the raw group and 1st estimation can improve the algorithm 

robustness. Both numerical simulations and realistic preclinical mouse experiments confirm 

these merits of the proposed SSCMF method by comparing with the SART, TVM, TV+LR 

and TDL methods.
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Fig.1. 
Illustration of grouping spatial-spectral cubes.
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Fig.2. 
The flowchart of SSCMF method.
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Fig 3. 
The mouse thorax phantom. (a) is the 1st channel image in [0, 3] cm−1 reconstructed by the 

SART with full-scan noise-free projections. (b) is the merged color image where green, red 

and blue stand for soft tissue, bone and iodine, respectively.
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Fig. 4. 
Reconstructed results of three representative energy-channel images. The 1st to 3rd row 

images correspond to the 1st, 4th and 8th channels, and their display windows are [0, 3], [0, 

1.2] and [0, 0.8] cm−1, respectively.
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Fig. 5. 
Magnified ROIs A (bony structure) and B (soft tissue) in Fig. 4.
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Fig. 6. 
Representative profiles along the yellow line in bony ROI A in Fig. 5. (a), (b) and (c) are for 

1, 4 and 8 channels, respectively.
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Fig. 7. 
Same as Fig. 4 but the difference images with respect to references. The display window is 

[−0.2, 0.2] cm−1.
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Fig. 8. 
Three basic materials decomposed from the reconstructed results in Fig.4. The 1st to 3rd 

rows represent bone, soft tissue and iodine. The 4th row images are color renderings, where 

red, green and blue represent bone, soft tissue and iodine, respectively. For the 1st to 3rd 

rows, the display windows are [0, 0.1], [0.2, 0.8] and [0, 0.5] cm−1, respectively
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Fig. 9. 
Convergence curves of averaged RMSE (a) and PSNR (b) vs. iteration number.
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Fig. 10. 
Quantitative results of all energy channels with respect to different parameters.
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Fig. 11. 
Same as Fig.4 but reconstructed with 5×103 photons per x-ray path.
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Fig. 12. 
Results reconstructed by the SSCMF method with different iodine concentrations. From 1st 

to 3rd columns, the iodine concentrations are 4.2%, 2.4% and 0.6%, respectively. The 1st to 

3rd row images correspond to the 1st, 4th and 8th channels, and their display windows are [0, 

3], [0, 1.2] and [0, 0.8] cm−1, respectively
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Fig. 13. 
Reconstructed results of four representative energy-channels. From the 1st to 4th columns, 

the images are for different energy-channels (1st, 5th, 9th and 13th). From the 1st to 4th rows, 

the images are reconstructed using the SART, TVM, TV+LR and SSCMF methods, 

respectively. The display window for all the reconstructed images are [0, 0.8] cm−1.
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Fig. 14. 
The magnified ROIs A and B in Fig.13.
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Fig. 15. 
Three decomposed basic materials of the Fig. 13. From the 1st to 3rd rows, the images are for 

bone, soft tissue and GNP, respectively. The 4th row images are merged color images, where 

red, green and blue represent bone, soft tissue and GNP, respectively. For the 1st to 3rd rows, 

the display windows are [0.1, 0.5], [0, 1] and [0, 0.5] cm−1, respectively.
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Fig. 16. 
Reconstructed results with different σ. The 1st and 2nd rows represent different channels (1st 

and 13th). From the 1st to 5th columns, the images are reconstructed with different σ and a 

fixed τ = 0.35. The display window is [0, 0.8] cm−1.
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Fig. 17. 
Same as Fig. 16 but with different τ and a fixed σ = 0.016.
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Fig. 18. 
Reconstructed results from 4 energy channels. From left to right, the images are for 1–4 

energy channels and their display windows are [0, 2] cm−1, [0, 1.2] cm−1, [0, 1.0] cm−1 and 

[0, 0.6] cm−1, respectively.
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Table 1.

Reconstruction parameters for both numerical simulations and preclinical datasets.

Photon number σ τ

Mouse thorax phantom 2×104 0.016 12

5×103 0.05 10

Preclinical dataset 0.02 0.35
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Table 2.

Quantitative image quality evaluation results.

Index Method 1st 2nd 3rd 4th 5th 6th 7th 8th

RMSE
(10−2)

SART 11.88 8.50 6.85 6.23 6.07 6.35 6.00 5.72

TVM 3.80 2.57 1.98 1.73 1.55 1.53 1.37 1.21

TV+LR 3.69 2.34 1.73 1.40 1.22 1.34 1.14 0.98

TDL 3.40 2.14 1.54 1.22 1.05 1.07 0.96 0.87

SSCMF 2.68 1.62 1.18 1.03 0.88 0.88 0.78 0.73

PSNR

SART 18.50 21.40 23.28 24.11 24.33 23.94 24.44 24.86

TVM 28.40 31.81 34.08 35.26 36.17 36.31 37.23 38.34

TV+LR 28.67 32.60 35.25 37.09 38.29 37.43 38.86 40.13

TDL 29.37 33.38 36.23 38.24 39.57 39.39 40.32 41.25

SSCMF 31.44 35.83 38.53 39.74 41.10 41.14 42.11 42.76

SSIM

SART 0.9125 0.8838 0.8647 0.8273 0.7737 0.7251 0.6801 0.6291

TVM 0.9901 0.9876 0.9835 0.9746 0.9595 0.9407 0.9220 0.8918

TV+LR 0.9909 0.9877 0.9843 0.9759 0.9684 0.9583 0.9318 0.9152

TDL 0.9909 0.9924 0.9943 0.9901 0.9896 0.9874 0.9724 0.9506

SSCMF 0.9915 0.9956 0.9962 0.9949 0.9930 0.9911 0.9892 0.9865

FSIM

SART 0.8822 0.8345 0.8223 0.8037 0.7797 0.7567 0.7384 0.7177

TVM 0.9780 0.9730 0.9713 0.9647 0.9497 0.9326 0.9246 0.9133

TV+LR 0.9870 0.9836 0.9815 0.9722 0.9564 0.9365 0.9347 0.9238

TDL 0.9822 0.9860 0.9876 0.9844 0.9811 0.9774 0.9597 0.9308

SSCMF 0.9871 0.9909 0.9885 0.9855 0.9824 0.9794 0.9761 0.9711
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Table 3.

Quantitative evaluation results of three decomposed basis materials.

Index Method Bone Soft tissue Iodine contrast agent

RMSE
(10−2)

SART 1.27 6.77 4.96

TVM 0.70 2.61 1.95

TV+LR 0.85 2.67 1.87

TDL 0.77 2.10 1.20

SSCMF 0.50 1.90 1.19

PSNR

SART 37.92 23.39 26.08

TVM 43.11 31.68 34.20

TV+LR 41.40 31.47 34.59

TDL 42.25 33.55 38.12

SSCMF 46.06 34.44 38.50

SSIM

SART 0.9118 0.6176 0.7596

TVM 0.9976 0.8923 0.9470

TV+LR 0.9949 0.8654 0.9544

TDL 0.9982 0.8424 0.9628

SSCMF 0.9984 0.9687 0.9661

FSIM

SART 0.9899 0.8098 0.9084

TVM 0.9985 0.9699 0.9578

TV+LR 0.9981 0.9760 0.9581

TDL 0.9986 0.9753 0.9604

SSCMF 0.9988 0.9755 0.9604
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