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Abstract

Many Bayes factors have been proposed for comparing population means in two-sample 

(independent samples) studies. Recently, Wang and Liu (2015) presented an “objective” Bayes 

factor (BF) as an alternative to a “subjective” one presented by Gönen et al. (2005). Their report 

was evidently intended to show the superiority of their BF based on “undesirable behavior” of the 

latter. A wonderful aspect of Bayesian models is that they provide an opportunity to “lay all cards 

on the table.” What distinguishes the various BFs in the two-sample problem is the choice of 

priors (cards) for the model parameters. This article discusses desiderata of BFs that have been 

proposed, and proposes a new criterion to compare BFs, no matter whether subjectively or 

objectively determined: A BF may be preferred if it correctly classifies the data as coming from 

the correct model most often. The criterion is based on a famous result in classification theory to 

minimize the total probability of misclassification. This criterion is objective, easily verified by 

simulation, shows clearly the effects (positive or negative) of assuming particular priors, provides 

new insights into the appropriateness of BFs in general, and provides a new answer to the 

question, “Which BF is best?”
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1. Introduction

The recent statement by the American Statistical Association on the use of p-values 

(Wasserstein and Lazar, 2016) notes, “By itself, a p-value does not provide a good measure 
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of evidence regarding a model or hypothesis” (p. 132), and notes that alternative measures of 

evidence, including Bayes factors (BFs), can and should be used. This article applies to BFs 

for any scenario; however, to maintain focus, we consider the important special case of the 

two-sample comparison, perhaps the most common type of study where either p-values or 

Bayes factors may be used to summarize the evidence comparing the groups. For this type of 

study we call model M1:

Y ir indN(μi, σ2), i = 1, 2; r = 1, …, ni (1)

And we call the (null) model M0:

Y ir iidN(μ, σ2), i = 1, 2; r = 1, …, ni (2)

Standard, textbook testing of M0 against M1 is based on the t-statistic

t = nδ
1/2δ (3)

where nδ = (n1
−1 + n2

−1)−1
 is the effective sample size, δ = (y1 − y2)/sp is the estimated effect 

size, and sp is the usual pooled standard deviation. The corresponding p-value is given by p 
= 2Pr( Tν > |t| ), where Tν has the T-distribution with ν = n1 + n2 – 2 degrees of freedom. 

By classical frequentist thinking, one rejects M0 in favor of M1 when p < 0.05.

Related to the recent statement of the ASA on p-values, there is a long line of research that 

is critical of common uses of p-values that will not be repeated here. Bayes factors (BFs) 

have been touted as a viable alternative to frequentist testing going back at least to Jeffreys 

(1961). The Bayes factor is a statistic that measures the relative plausibility of the data under 

M1 versus M0:

BF = P(data M1)/P(data M0) (4)

Thus, BF >1 (<1) suggests that the data favor M1 (M0). Calculating the BF in (4) requires 

prior distributions for the parameters under M0 and M1 in models (1) and (2), and 

integrating these out:

P data |Mi = ∫ Pi(data |θi)Πi(θi |Mi)dθi (5)

Here, ∏i(θi|Mi) is the prior distribution of the parameter vector under model Mi, i = 0, 1.

The null model for the two-sample comparison states that δ = 0, where δ = (μ1 − μ2)/σ is the 

well-known effect size parameter. Defining γ = (μ1 + μ2)/2, the primary focus will be on δ 
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throughout and thus we regard γ and σ2 as nuisance parameters. The Bayesian model 

requires a joint prior distribution on (δ, γ, σ2), which we write as p(δ, γ, σ2) = p(δ | 

σ2)p( γ)p(σ2); we are thus assuming independence of δ and γ. Depending on the BF 

considered, we may assume δ is independent of σ2 as well. Many approaches that we 

discuss involve placing a standard diffuse (improper) prior on (γ, σ2):

p(γ, σ2) ∝ σ‐2 (6)

In this setting, we categorize BFs as either “objective” or “subjective” depending on the 

assumed prior for δ. A subjective prior might involve a web search, a literature search, or 

identification of relevant data from similar studies for information about the effect sizes 

from similar studies that can be converted into a prior distribution for δ. An objective prior 

for δ does not refer to scientific knowledge, but instead is selected so that properties of the 

posterior are “nice” in various ways; see the desiderata given below. Comparing these two 

approaches begs the often-debated question, “Should priors be chosen for convenience or to 

reflect prior knowledge?” which we address in this article.

In addition to Jeffreys (1961), Bayes factors are discussed by Kass and Raftery (1995). 

General “objective” Bayesian methods are discussed by Berger and Pericchi (1996, 2001); 

failings of BFs due to use of “local priors” under the alternative hypothesis are discussed by 

Johnson and Rossell (2010), and a development of BFs based on the criterion of uniformly 

most powerful Bayesian tests is given by Johnson (2013A, 2013B).

While general BFs have been around for decades and apply to a variety of problems, specific 

BFs for the two-sample comparison have appeared more recently, including Gönen et al. 

(2005), Johnson and Rossell (2010), Rouder et al. (2009), Johnson (2013A), and Wang and 

Liu (2016). Of these, the only explicitly subjective method is by Gönen et al. Nevertheless, 

objective methods choose priors as well, and our goal is to lay bare the scientific 

consequences of these choices. Specifically, we use methods related to the standard 

“Classification Theorem” for minimizing the total probability of misclassification (TPM), 

and apply it to compare BFs. A main contribution of our article is that this theorem provides 

a new, scientifically relevant answer to “which BF is best.”

Although Classification Theorem-related methods can be used to evaluate any BF in any 

setting, we evaluate only a sampling of recently proposed two-sample BFs. We do not 

consider Bayesian analyses for the two-sample comparison that are found in gene expression 

analysis (see e.g. Do, Müller and Vannucci, 2012), where there are thousands of two-sample 

tests, and typical methods for flagging genes as “significant” involve borrowing strength 

from the entire set of all tests (Fox and Dimmic, 2006; Guindani, Müller and Zhang, 2009; 

Shahbaba and Johnson, 2013). Nor do we consider Bayes/frequentist hybrid statistics 

espoused by Brad Efron (2010) and others involving BF-like quantities that similarly utilize 

all the information in a large collection of concurrent tests.

In Section 2, we give desiderata for BFs, both “objective” and “subjective.” In Section 3, we 

discuss particular BFs from recent literature that apply to the two-sample comparison. In 
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Section 4, we show how to compare BFs using methodology inspired by the Classification 

Theorem; the application of the theorem to the present study is that the BF that uses the 

“correct prior” most often classifies the data as coming from the correct model. By “correct 

prior” we simply mean that the analysis is performed using the same prior distribution that is 

assumed (implicitly or explicitly) to give rise to the current study data. In Section 5, we 

provide a Bayesian simulation study to compare particular, recently proposed BFs, as a 

function of the “correct prior,” as well as the ordinary frequentist t-test; however, the study 

we describe can be easily applied to other BFs that we did not include. Meta-analytic effect 

size data reviewed in Section 6 suggest that scientists have prior information when they 

design their studies that they can use for prior selection. Section 7 provides additional 

comments and extensions.

2. Properties BFs “Should Have”

Objective BFs typically involve priors chosen to give the resulting BFs “nice” properties, 

often frequentist. They generally do not incorporate subjective, scientific information. 

Objective priors are often termed as “diffuse,” “reference,” “flat,” or “non-informative” 

among others. As a cautionary note, we mention that so-called “non-informative” priors may 

be “dis-informative”: A uniform (“non-informative”) prior on the unknown prevalence of 

HIV infection among blood donors would stipulate a 50% chance that the prevalence is 

above 0.5 and a 95% chance that it is above 0.05.

On the other hand, subjective Bayesian methods incorporate scientific information in the 

form of a prior distribution, which is combined with a likelihood function via Bayes theorem 

to obtain the posterior distribution, which gives the subjective Bayesian inference. Like 

objectivists, subjective Bayesians are also concerned about the sensitivity of inferences to 

the choice of prior distribution, and will generally report the effects of alternative priors.

Several desiderata of BFs have been discussed in the literature, including Bayarri et al. 

(2012), Johnson and Rossell (2010), and Johnson (2013A, 2013B). Those in the following 

list are essentially objective properties, not necessarily good ones, which is why “should 

have” in the title of this section is in quotes. Our main contribution is to offer a new 

desideratum, one that is inherently subjective in nature, and which we argue may be 

scientifically more relevant.

D1: Consistency:

As the sample sizes grow (for both samples), the BF should grow without bound if the 

alternative hypothesis is true, and it should converge to zero if the null is true.

D2: Finite Sample Consistency (FSC):

FSC means that for fixed sample sizes, as |t| tends to infinity, the BF should also tend to 

infinity.
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D3: Robustness to Prior:

A standard motivation for using BFs rather than posterior probabilities P(Mi |data) is that BF 

does not depend on the priors P(Mi). But in addition, the BFs should be reasonably 

insensitive to the within-model priors Πi(θi | Mi).

D4: Compatibility with Frequentist Testing:

In cases where |t| is large, leading to frequentist rejection of M0, the BF should not favor M0. 

In other words, the BF should not exhibit the behavior of the Bartlett “paradox” (Bartlett, 

1957).

D5: Ability to Accumulate Evidence Favoring M0 or M1:

As the sample size grows, the evidence favoring either M0 or M1 should be able to grow at 

the same rate.

D6: High Power:

The (frequentist) probability that the BF exceeds a given threshold should be large relative to 

BFs computed using other priors.

Researchers typically propose prior distributions to get BFs that satisfy these desiderata, 

rather than to incorporate scientific prior knowledge. An additional criterion that a BF 

should satisfy, which has not been given much attention in this literature, puts the 

scientifically chosen prior inputs foremost:

D7: Correct Classification:

The rule “BF >1 (<1) suggests that the data favor M1 (M0)” should classify the data as 

having come from the correct model most often. Here, “most often” refers to the frequency 

with which the different models might reasonably occur.

A standard result in classification theory, which we call the “Classification Theorem,” 

discussed in Section 4, makes this desideratum easy to apply using simulation and/or 

analytic calculations. This theorem is currently popular in data science circles, being the 

basis for the “naïve Bayes classifier” (e.g., Kuhn and Johnson, 2013, p. 353). There is no 

right answer to the question, “how often might the different models occur?” for the current 

experiment; however, because the answer to this question affects classification rates so 

substantially, researchers should carefully consider this question when choosing a BF. We 

analyze historical data to provide partial answers.

A natural extension of desideratum D7 is the following, which we discuss briefly in Section 

7.

D8: Optimal Decisions:

Decisions “conclude M0,” “conclude M1,” and “conclude nothing” based on the BF should 

have minimum loss (or maximum benefit). For example, it may be considered worse to 

incorrectly classify as M1 when M0 is true; this desideratum can be modeled using loss 

functions.
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3. Objective and Subjective Bayes Factors

In this section, we discuss several BFs for the two-sample comparison. The BF (GBF) 

developed by Gönen et al. (2005) is the only subjective one; many other BFs are obtained as 

hierarchical extensions of it. Motivation of the current work stems partly from criticism of 

GBF by Wang and Liu (2015, hereafter WL); their main points of contention were that GBF 

is finite-sample inconsistent and may suffer from Bartlett’s “paradox” (i.e., GBF lacks 

desiderata D2 and D4). While our main goal is to promote desideratum D7 (optimal 

classification) for comparing all BFs, we wish to set the record straight on these issues raised 

by Wang and Liu. Because these papers appeared in The American Statistician, we consider 

GBF and WBF more extensively than other BFs.

3.1 GBF

The GBF prior on δ is independent of σ2 and the prior on nuisance parameters is given in 

(6):

δ |λ, σδ
2 N λ, σδ

2 (7)

where λ and σδ
2 are (subjectively) selected by the analyst. The resulting BF is (from 

Equation (2) of Gönen et al (2005), but inverted to correspond to the present paper),

GBF = Tv t |nδ
1/2λ, 1 + nδσδ

2 /Tv t | 0, 1 , (8)

where Tv(t|l,d) is the Student density with df ν, location l and dispersion d. Objective 

Bayesians often set λ = 0, since they would prefer to allow for an unbiased belief about 

whether the effect could be negative or positive, if it is not zero (an exception is Johnson, 

2013A, who provides an objectively determined BF for which λ ≠ 0). On the other hand, 

researchers very often have specific prior knowledge that λ ≠ 0, which they use in power 

analysis; data from multiple historical studies that we analyze in Section 7 support this 

assertion. Nonetheless, setting λ = 0 results in

GBF0 = 1 + t2/v
1 + t2/ v 1 + nδσδ

2

v + 1 /2
1 + nδσδ

2 −1/2 . (9)

Gönen et al. argue that λ and σδ
2 should be selected subjectively; here we elaborate. Consider 

a generic situation where the scientist involved in the current study is aware of published 

literature about effect sizes in studies related to his or her study, where it has been 

ascertained that the effects are truly non-null. In these cases, suppose there are studies with 

estimates of effect sizes between 0.1 and 0.5 with a median of 0.3. Then absent of additional 

information, a natural choice for λ would be 0.3 and a natural choice for σδ would be 0.1, 

since the range (0.1, 0.5) covers 95% of the normal distribution. However, in the words of 
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Dennis Lindley, “always leave a little room for doubt” (Jones and Johnson, 2014); such 

doubt reflects uncertainty about differences between current study and historical ones, as 

well as concerns about selection biases in the literature. How much additional “room for 

doubt” of course depends on the scientist-statistician collaboration in analyzing the data, but 

as in Gönen et al (2005), one might imagine a 10% chance of a negative effect, implying 

Φ(−0.3/σδ) = 0.1, and hence σδ = 0.234.

A main criticism of GBF by WL is that it may suffer from Bartlett’s paradox, i.e., does not 

satisfy desideratum D4, which we now counter. Suppose that a critic were to argue that we 

should not be so restrictive in our specification of possible values for δ, instead demanding 

that δ could plausibly lie in the range (−20, 20). This would correspond to the choice of σδ 
≈10, a terrible choice of prior in light of the available scientific information, since this prior 

anticipates that 92% of possible (non-null) values of |δ | that may apply to the current study 

are greater than 1.0. In addition, since this prior is anticipating large effect sizes, and since, 

in all likelihood, the data will provide evidence that the effect size is relatively small, relative 

to this prior, the model will tend to favor the null hypothesis, even for “significant” values of 

|t|. This is the Bartlett (1957) phenomenon, which occurs when using a large σδ. For 

instance, with P(Mi) ≡ 0.5 and with t = 2, σδ = 10, n1 = n2 = 10 (500), P(M1|data) = 

GBF0 /(1+ GBF0) = 0.23(0.044), giving a clear preference for the null, especially in the 

large sample case, despite the “significant” t. With t = 2.5, we get 0.43(0.13), with t = 4 we 

obtain 0.949(0.947), and finally with t = 5, we have 0.9942(0.9993). This is all reasonable: 

With an alternative prior that anticipates much larger effect sizes, it will take a larger t to 

conclude M1. As such, GBF0 does not always favor the null hypothesis as criticized by WL, 

unless t is relatively small. We view this as perfectly reasonable behavior of the GBF, an 

argument in favor of the Bartlett effect being a good effect, and an argument for carefully 

choosing one’s prior.

Now, we consider finite sample consistency, desideratum D2, discussed in, e.g., Liang et al. 

(2008). Wang and Liu (2015) note that the GBF0 is not finite sample consistent: With fixed 

sample sizes that as |t| →∞, GBF0 1 + nδσδ
2 v/2 < ∞. Does this mathematical fact have 

any practical/scientific meaning? To investigate, suppose σδ
2 = 1 (Masson, 2011; 

Wagenmakers, 2007; Kass and Raftery, 1995), P(Mi) ≡ 0.5, and ni ≡ 10. Using GBF0, P(M1| 

data) = GBF0 /(1+ GBF0) → 0.9999999 as t → ∞. If the observed t is 3, 5 or 7, the 

corresponding posterior probabilities are 0.90, 0.995, and 0.9997 respectively, so the limiting 

bound plays no important role under these circumstances, and even less of a role with larger 

sample sizes. In other words, as |t| →∞, GBF0 and finite-sample-consistent BFs all reach 

the same practical conclusion: M1 should be highly favored. It is only the extremely small 

sample size case where it matters: In the scenario above with n1 = n2 =2, the limiting value 

is 0.667. Thus, with extremely small sample sizes finite sample inconsistency may be a 

concern with GBF, but for typical studies, it has no practical importance.

3.2 WBF

Wang and Liu (2015) developed a novel BF by starting with the model that leads to GBF0, 

and then placing a Pearson Type VI prior on σδ
2, instead of a Cauchy distribution as was done 
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by other authors. Their particular selection is p σδ
2 ∝ σδ

2a 1 + nδσδ
2a a − b − 2, a > − 1, b > − 1, 

with b = (ν + 1)/2 – a – 5/2 and any a ∈ (−1, −1/2], which guarantees that WBF, given 

below, will be finite sample consistent for all positive ν. Based on empirical robustness 

arguments they select a = −0.75 in their illustrations. This specific Pearson Type VI 

distribution places much probability mass on very large σδ
2 values; see for example Figure 1 

in WL, p. 12. There is even considerable mass to the right of their truncation point, 20.

The WBF is obtained by marginalizing over σδ
2 in (9). Wang and Liu obtain

WBF = Γ v/2 Γ a + 3/2
Γ v + 1 /2 Γ a + 1 1 + t2/v v − 2a − 2 /2 . (10)

This is equivalent to computing the BF based on the prior p(δ | λ) = ∫ p(δ | λ,σδ
2)p(σδ

2)dσδ
2, 

with λ=0; WL also use the prior (6) for the nuisance parameters. WL note that, unlike GBF, 

WBF is finite sample consistent (satisfies Desideratum D2) provided a ∈ (−1, v/2 −1).

To understand the WL prior, we characterize the Pearson VI distribution as a function of a 

Beta distribution. Let q ~ Beta(a*,b*) with a* = (ν +1)/2 – a – 3/2 and b* = a+1. Then let O 
= q/(1-q). Then O ~ Betaprime(a*,b*), where Betaprime is also known as the inverted Beta 

distribution or Beta distribution of the second kind. It follows that σδ
2 ~ O/nδ . The mean of O 

and thus the mean of σδ
2 doesn’t exist unless a > 0. Thus for the WL choice of a, no prior 

moments exist. On the other hand, prior quantiles of σδ
2 are easily obtained from the 

quantiles of q. With n₁=n₂=10, the WL prior has median and 90th percentiles for σδ of 6.2 

and 158 respectively, while the prior mode is only 1.11. With n₁=n₂=50, their median σδ 
value is 6.7 and a mode of 1.24 and ninetieth percentile 169.3. While these priors might be 

relevant in some applications, they provide unrealistically large values of σδ for typical 

applications. Data analyzed below support this assertion.

WL justify large σδ by stating “a large value of σδ
2 is often chosen to minimize prior 

information” (p. 5), and further claim insensitivity of the WBF to the parameter a is a 

desirable feature. They treat a as a tuning parameter and are concerned about robustness, and 

make comparisons with the GBF0, treating σδ
2 as a tuning parameter. In addition, Wang and 

Liu remind the reader that the GBF is quite sensitive to this choice. But the GBF was not 

developed for its objective desiderata; further, as we show below, the properties of any BF 

depend strongly on the choice of prior. WL’s statement is also troubling because a large σδ
2

value in fact represents a strong prior belief that extremely large effect sizes are probable.

3.3 Other Objective BFs

We now briefly discuss several other objective BFs in chronological order.
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JBF: Jeffreys’ JBF is based on a scaled Cauchy(0, σ) prior for σδ , which results in a 

marginal distribution that is standard Cauchy for δ, namely p(δ) ∝ 1/(1 + δ2 ). This prior is 

symmetric about zero with tails that are so fat that no moments exist, and the probabilities 

that the absolute value of δ exceeds 2, 3, 5, 10 and 20 are about 0.3, 0.2, 0.12, 0.06 and 0.03 

respectively. So fairly large effect sizes are anticipated under this prior and huge effects are 

accommodated with moderate prior probability.

ZSBF: Zellner and Siow (1980) developed a BF in the linear model context based on a 

(marginal) prior for δ that reduces to a non-standard Cauchy(0,nδ
−1 n1 + n2 ). Thus with 

equal sample sizes, the ZSBF is identical to the JBF. This marginal Cauchy prior on δ is 

induced by the N(0, nδ
−1 n1 + n2 σδ

2) prior for δ | λ=0, σδ
2, in conjunction with the inverse χ1

2

distribution for σδ
2. The prior for nuisance parameters was given in (6). ZS developed the 

following approximation:

ZSBF ≅ 2.5 2
vπ 1 + t2

v

v − 1 /2
. (11)

Rouder et al. (2009) compare the JBF, SBF (discussed below) and GBF0 with σδ
2 = 1.

JZS: The JBF is not analytically tractable. However, Rouder et al. (2009) took advantage of 

the fact that placing an inverse χ2 with 1 degree of freedom hyperprior on σδ
2 results in an 

induced standard Cauchy prior on δ as discussed above. The JBF for comparing the null to 

the alternative is just the integral of 1/GBF0 in (9) against this prior, which is then inverted to 

give the JBF for comparing the alternative to the null. Rouder et al. call this the JZS Bayes 

factor to credit Jeffries, Zellner and Siow.

JZS =
∫
0

∞
(1 + nδσδ

2)−1/2 1 + t2

(1 + nδσδ
2)ν

−(ν + 1)/2
(2π)−1/2σδ

−3e
−1/(2σδ

2)
dσδ

2

(1 + t2/ν)−(ν + 1)/2 (12)

The one-dimensional integral is easy to approximate numerically; Rouder et al. have a web-

based program that gives the JZS and the GBF0 with σδ
2 = 1. See Held and Ott (2016) for 

asymptotic approximations to these and other BFs.

SBF: The Schwarz (1978) criterion is based on the Bayesian Information Criterion (BIC) 

and has been discussed by many, including Kass and Raftery (1995), Berger and Pericchi 

(2001) and Rouder et al. (2011). The BIC is just minus twice the log of the maximized 

likelihood under a particular model plus a penalty that is the number of parameters in the 

model times the log of the total sample size, v + 2. Then
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SBF = (ν + 2)−1/2exp (BIC0 − BIC1)/2 = (ν + 2)−1/2 1 + t2/ν (ν + 2)/2 . (13)

IPBF: Berger and Pericchi (1996) develop intrinsic Bayes factors, which involve the use of 

the data for construction of the “prior.” The goal is to obtain a BF that is free of subjective 

input, free of arbitrary choices of proper priors, is “fully automatic” and which “seems to 

correspond to very reasonable actual Bayes factors.” They term their prior a “reference 

prior.” A motivation is that many users of statistical methods may not be capable of 

developing informative priors, and thus would benefit from a “fully automatic” approach. 

An approximation of the intrinsic Bayes factor is given in Rivera (2011).

Rivera (2011) studies finite sample consistency of various objective Bayes factors for 

Student’s t test including JBF, ZSBF and IPBF mentioned above, and argues that desiderata 

D2 (finite sample consistency) and D3 (robustness) are two important properties shared by 

those BFs.

Johnson and Rossell: Johnson and Rossell (2010) also argued against traditional 

objective BFs involving local priors having mode at 0 under the alternative. Instead, they 

propose using symmetric non-local priors, which require low probability mass near the null. 

They argue that with local alternative priors, “it is often impossible for such tests to provide 

strong evidence in favor of a true null hypothesis, even when moderately large sample sizes 

have been obtained” (p. 143). They propose two classes of non-local priors and study their 

properties. Software to evaluate their BF for regression models is freely available in the 

“mombf” package of R; use of a dummy variable gives the two-sample test, and we evaluate 

this BF (called RJBF), along with others below, by assuming a moment normal prior with 

prior modes of effect size at ±0.2.

All of the BFs we have discussed so far, except for GBF, have a prior distribution for δ 
necessarily having median at 0 under the alternative model. This choice is questionable from 

the subjective viewpoint, because in many cases researchers have theory and prior studies to 

suggest that, if there is an effect, it is more likely to be on one direction than another; this 

information is typically used in power analysis. The following BF (Johnson) also supposes λ 
> 0, except the BF is objective, not requiring elicitation of prior distributions.

Johnson: Johnson (2013A, 2013B) proposes a BF based on a uniformly most powerful 

Bayesian test (UMPBT) Bayes factor that maximizes the probability of exceeding a given 

evidence threshold for all possible alternative prior distributions. This prior is objective, and 

the resulting analysis has a close correspondence with frequentist fixed-α test procedures. 

Interestingly, the UMPBT results in a BF based on testing a fixed alternative that is O(n−1/2) 

from the point null, an alternative prior that is closely related to one suggested by Gönen et 

al (2005) on subjective grounds. While the method allows for Bayesian interpretation of 

classical testing, Johnson notes that it does not satisfy desiderata D5 noted above because it 

cannot increasingly accumulate evidence in favor of M0 as the sample size grows. This is a 
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property shared by a version of GBF studied below as well. Hence, there remains the need 

for additional comparative criteria.

Next, we compare different BFs based on a single objective criterion, desideratum D7.

4. The Classification Theorem and Its Applications

Let p1 = P(M1) and p0 = P(M0), the prior probabilities that models M1 and M0 are the true 

ones. A natural (and optimal, as we will see) approach to deciding between these two 

models is to calculate their posterior probabilities. Bayes factors have an intimate connection 

with these posterior probabilities:

P(M0|data) =
p0P(data |M0

p0P(data |M0 + p1P(data |M1
= 1

1 + (p1/ p0)BF .

Thus, model M0 (M1) has the highest posterior probability if BF < p0/p1 (BF > p0/p1). WL 

suggest that BF > 1 favors model M1; implicitly this assumes p0 = p1 = 0.5, a common 

default.

Use of the posterior probability (or BF, as shown immediately above) to classify the model 

as M0 or M1 is justified by a standard result in classification theory that is used to assign 

observed data as having come from one of several possible populations (models). The result 

appears in many sources; the following theorem uses notation from Johnson and Wichern 

(2007, p. 582–584).

The Classification Theorem:

Suppose a continuous random vector X is distributed as X ∼ M0 with probability (wp) p0 

and X ∼ M1 with probability (wp) p1 = 1 – p0. Consider the decision rule, “classify the 

model as M1 (M0) if P(M1| X=x) > 0.5 (<0.5).” Then this decision minimizes the total 

probability of misclassification, TPM = p0P(Classify as M1 | M0) + p1P(Classify as M0 | 

M1).

Corollary:

If P(M0) = P(M1) = 0.5, then the rule “classify the model as M1 (M0) if BF > 1 (<1)” 

minimizes the TPM.

An immediate application of the corollary is a method for objective comparison of BFs 

based on calculation of their TPMs in a stream of hypothetical studies. This type of analysis 

is suggested by Berger and Sellke (1987), who, in a stream of hypothetical studies where the 

frequentist p-value is 0.05 (their Example 1), show that in approximately 30% of such 

studies, the true model is actually M0. Using a similar construction, one can evaluate the 

“best” BF objectively by calculating (either analytically or via simulation) the true TPM for 

various BFs in a stream of hypothetical studies, assuming particular priors; see Section 4. 

The Classification Theorem and its Corollary imply that, if the distributions used to produce 
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the parameters in this stream correspond to the priors used to calculate a particular BF, then 

that BF will have minimum TPM.

We note that in most cases we do not precisely believe the null model M0 is even plausible, 

let alone having 50% probability, because true effect sizes are rarely 0 to the infinite 

decimal. Rather, we view the rule “classify as M0” as instead a classification to the 

“perinull” case, a term coined by John Tukey (see Benjamini and Braun, 2002), where the 

true effect is very near zero. The model M0 is a good approximation to the perinull case, as 

proven by Berger and Delampady (1987).

We note further that the TPM method of comparing BFs, especially as implemented via 

simulation, clarifies the researcher’s implicit assumption that half of the possible models 

relevant to the current experiment will come from the (peri) null case, and half from the 

alternative. While BFs have been touted as a way to avoid making such (0.5,0.5) prior 

specifications, this assumption is in fact necessary for optimal TPM since the BF >1 (<1) 

rule requires p0 = p1. A benefit of considering simulation-based TPM, is that it allows 

researchers to easily visualize the collection of possible models that they are assuming when 

they use a particular BF. In the simulation, the researcher generates thousands of models, 

half of which will be null, and the other half which use parameters sampled from the 

researcher’s assumed alternative model. If, after viewing these simulated models, the 

researcher feels that either the 50% null, 50% alternative assumption or the collection of 

possible models assumed under the alternative is not at all relevant to the current 

experimental setting, then he or she should assume a different prior for δ, different p0 and 

p1, or perhaps not use BFs at all. But, it is worth noting that if a BF is a simple function of 

the t-statistic, the TPM may be calculated analytically (see the Appendix).

5. Objective Comparison Based on The Classification Theorem

The Classification Theorem shows that, when the prior is “correct,” the resulting BF has 

minimum TPM. This suggests a fair and objective comparison of BFs based on different 

assumed priors. TPM can often be computed analytically, but simulation may be preferred 

for scientific understanding, as mentioned above.

Simulation Study to Compare Two-Sample Comparisons BFs Objectively:

Step 1: Randomly generate a σδ
2 from an assumed prior distribution or assign σδ

2 a pre-

specified positive constant value.

Step 2: Randomly generate a δ from N(λ,σδ
2) conditional on the σδ

2 from Step 1 or set 

δ =0, each with 50% chance. The parameter λ is fixed according to the method 

chosen.

Step 3: Randomly generate the t-statistic as a function of δ : T Z

(U /ν)1/2 +
nδ
1/2δ

(U /ν)1/2 , 

where Z ∼ N(0,1) is independent of U ∼ χν
2. (All BFs we consider here are functions 

of the t-statistic.)
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Step 4: Calculate BFs using the simulated t value from Step 3.

Step 5: A misclassification error occurs if BF>1 and δ =0 or BF<1 and δ is from N(λ,

σδ
2).

Step 6: Repeat Steps 1–5 NSIM times to estimate the TPM.

Figure 1 shows TPM rates (estimated using NSIM=1,000,000) associated with the GBF0, 

WBF, JZS, RJBF, as well as the frequentist t-test usingα = 0.05 and 0.001, as a function of 

nδ , assuming n1 = n2, under the three different prior settings for σδ
2: (a) σδ

2 = 1/9, (b) σδ
2 ∼ 

Inv-χ1
2, and (c) σδ

2 ∼ Pearson-VI (−0.75), and λ =0. As per the Classification Theorem, when 

δ is generated from an assumed prior distribution, the BF corresponding to that prior always 

has the minimum TPM, and is objectively the “best” BF.

One of the BFs considered in Gönen et al. (2005) used the prior δ N(2.80nδ
−1/2, 2.19nδ

−1/2), 

which was not meant to be a “default” or “objective” prior, but simply one that is consistent 

with subjective prior information that is commonly used in power analysis: Researchers 

often choose a large sample size to accommodate a priori information that the effect size is 

small. Gönen et al. (2005) note that this prior makes predictions that are reasonably 

consistent with published oncology studies. Our purpose here is not to recommend this prior 

for general use, but rather to highlight the fact that researchers do have prior information that 

can be used to construct their prior distribution; data shown in the next section support this 

assertion.

We estimated TPM for the various methods when δ N(2.80nδ
−1/2, 2.19nδ

−1/2); Figure 2 

summarizes the results. GBF considerably out-performs the others in this case. Thus 

subjective information matters.

6. Real Data Effect Sizes and Implications for Practice

What kinds of priors for effect sizes are reasonable in practice? We first briefly discuss a 

particular case study involving prior elicitation for effect sizes, and the subsequent use of 

BFs to compare relative evidence in the data for no effect versus any effect. Then we analyze 

two recently published meta-analytic data sets on effect sizes to suggest priors.

6.1 Effect sizes in PSI testing

A study was performed to ascertain whether a particular type of psychic phenomenon (PSI) 

exists or not based on the frequentist analysis of nine experiments (Bem, 2011). 

Wagenmakers et al. (2011) argued that the analysis should have been done using BFs based 

on Cauchy priors for effect sizes, and consequently JBFs instead of p-values, which resulted 

in an analysis that contradicted Bem’s analysis.

In their rejoinder, Bem et al. (2011) analyzed the data using GBF0s. They then pointed out 

that estimated effect sizes in psi studies typically range from 0.2 to 0.3, and they referred to 

a previous meta-analysis of 56 psi experiments with estimated median effect size across 

studies of 0.18 (Utts et al., 2010), and a meta-analysis of 38 studies, with an average 
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estimated effect size of 0.28 (Mossbridge, Tressoldi, and Utts, 2011). Based on this 

information, they asserted that “no reasonable observer would ever expect effect sizes in 

laboratory psi experiments to be greater than 0.8.”

If a standard Cauchy distribution is used as a prior on the effect size, the prior probability 

that it will equal or exceed 0.8 is 0.57! It even places a probability of .06 on effect sizes 

exceeding 10. If effect sizes were really that large, there would be no debate about the reality 

of PSI. Thus we would consider this to be a wildly unrealistic prior for the particular PSI 

problem under study.

6.2 Effect sizes in Psychology studies: Wetzels at al. (2011)

We consider two more recent meta-analytic studies in psychology that further support the 

notion that researchers have prior knowledge of effect sizes. The data show that they tend to 

design studies with larger sample sizes when the effect size is expected to be smaller, and 

that the actual effect sizes are similar to their expectations. These facts support the use of 

specific, rather than generic priors.

Wetzels et al. (2011) report results on 855 t tests from publications in psychology journals. 

Of the 855 t tests, 166 were for two-sample comparisons discussed in this paper, and the 

remaining 689 involved paired comparison and one-sample tests. Figure 3 plots the pairs 

(nδ
−1/2, |δ |) (absolute values are used because it is not clear from Wetzels et al. whether the 

negative test statistics were in the anticipated directions) for the 166 two-sample 

comparisons along with least squares and LOESS fits. The empirical data give a least 

squares fit 0.20 + 2.75 nδ
−1/2, comfortably agreeing with the Gönen et al. mild suggestion of 

0.00 + 2.80 nδ
−1/2 for a prior mean function. (Use of raw rather than absolute effect sizes 

gives 0.23 + 2.25 nδ
−1/2, also in reasonable agreement.) Similar results were obtained for the 

one-sample and paired-sample effect sizes reported in Wetzels et al., further supporting the 

claim that researchers use prior information about effect sizes when choosing sample sizes.

6.3 Effect sizes in replicated studies: The Open Science Collaboration

The Open Science Collaboration (2015, hereafter OSC), completely replicated actual studies 

published in psychology journals, obtaining fresh effect size estimates. There are few two-

sample comparisons in the OSC study – most of the effect sizes are based on chi-square 

tests, F tests, paired comparisons, etc. As such, all reported effect sizes were converted to a 

correlation (−1 to 1) scale. Figure 4 shows similar information as Figure 3, except with all 

effect sizes in the absolute correlation metric, and with the horizontal axis n−1/2 using the 

sample size reported by OSC.

A more sophisticated analysis could be performed, say fitting a mixture model with 

unknown prior on zero effect as well as scale, location, and regression parameters. Indeed, 

OSC reports “Ninety-seven percent of original studies had significant results (p < .05). 

Thirty-six percent of replications had significant results.” Hence it appears that a mixture 

model where many of the effects are truly null would fit nicely. However, due to differing 

types of tests, the data are too limited to tease out these effects. And in any event, our goal 
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here is simply to show that true effect size is indeed associated with sample size chosen by 

the researcher, indicating that researchers can and do use prior information in the study 

design. Such prior information can, and, we argue, should be used in prior distributions.

7. Concluding Remarks

The main conclusion of our study is that regardless of whether objective or subjective, a 

desired property of a Bayes factor is that it should classify the data as coming from the 

correct model most often. A corollary is that one needs to carefully specify prior models 

based on realistic scientific information. We have argued for specific priors for BFs, rather 

than generic ones, and we have also argued that empirical data suggests that researchers do 

indeed have prior information (used in the design of the study), about effect sizes.

Some claim that objective priors are better than the subjective ones for teaching; for one 

reason, because students do not have to think about prior assessment. This claim is 

debatable. The recent ASA stance on p-values makes it clear that more thinking, not less, is 

needed when teaching hypothesis testing. Ben-Zvi and Makar (2016, p. 7) concur, reporting 

that members of the study group on teaching and learning statistics at the Twelfth 

International Congress on Mathematics Education in Seoul “all shared a common desire to 

improve statistics education … by focusing … on students’ … conceptual understanding 

rather than rote learning…”

Also, from a subjective standpoint, there is no “paradoxical” behavior of BFs: If the prior is 

“correct,” then the resulting BF provides the right results. In addition, supposed “paradoxes” 

are wonderful devices to catch students’ attention and to help them learn complex material: 

Kleiner and Movshovitz-Hadar (1994, p. 963) write, “Paradoxes … serve a useful role in the 

classroom ... [they are] useful pedagogical devices (provided, of course, that they are dealt 

with).” Good teaching involves explaining how and why such “paradoxes” occur.

We have also argued that the Classification Theorem provides a useful and natural objective 

criterion to compare BFs, to understand differences between them, and even to decide 

whether BFs should be used at all. This theorem is a special case of more general Bayesian 

decision theory, and leads naturally to the more general comparison of BFs based on 

expected losses of decisions, such as decision A: conclude M0, decision B: conclude M1, or 

decision C: make no decision (reserve judgment). Such an approach allows researchers to 

differentially weight ‘Type I’ and ‘Type II’ errors if desired; examples of loss functions are 

given in Shaffer (1999). Published BF thresholds for claiming M0, M1, or nothing at all, also 

follow from appropriate loss functions. Indeed, many of the desiderata of BFs listed above 

actually correspond to losses (or benefits) perceived. Thus, rather than force prior 

distributions to make BFs achieve these desiderata, it makes more sense (to us) to first 

specify priors scientifically, then to specify appropriate loss functions, and then to apply 

decision theory, choosing the action with minimum expected loss. And, of course, to “lay all 

the cards on the table,” showing chosen priors and loss functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Analytical Calculation of TPMs of GBF0 and WBF

Simple algebra shows, when GBF0=1 and WBF=1,

tGBF0 = 1
2 =

v 1 + nδσδ
2 1/ v + 1 − v

1 − 1 + nδσδ
2 −v/ v + 1

and

tWBF = 1
2 = v Γ v + 1 /2 Γ a + 1

Γ v/2 Γ a + 3/2

2
v − 2a − 2 − v .

If M0 is true, t2 follows an F-distribution with degrees of freedom (1, v) (the pdf is denoted 

as f1, v). Otherwise, t2 follows a non-central F-distribution with degrees of freedom (1, v) 

and noncentral parameter λ =nδδ 2 (the pdf is denoted as f1, v, λ).Then TPMs for GBF0 and 

WBF given δ 2 and σδ
2 are expressed as

TPMGBF0
|δ2, σδ

2 = 0.5∫
tGBF0 = 1
2

∞ f 1, vdt2 + 0.5∫ 0

tGBF0 = 1
2

f 1, v, λdt2

and

TPMWBF|δ2, σδ
2 = 0.5∫

tWBF = 1
2

∞ f 1, vdt2 + 0.5∫ 0
tWBF = 1
2

f 1, v, λdt2

respectively. Then, by numerically integrating out δ 2 and σδ
2 using their “true” prior 

distributions, we calculate marginal TPMs of GBF0 and WBF. Table A.1 below summarizes 

these calculations under different prior settings of σδ
2 as used for creating Figure 1.

Table A.1:

Analytical estimates of total misclassification rates of GBF0 and WBF

nδ

GBF0 WBF

1/9 Inv-Chisq(1) Pearson-VI(−0.75) 1/9 Inv-Chisq(1) Pearson-VI(−0.75)

10 0.411 0.227 0.157 0.455 0.205 0.082

100 0.232 0.101 0.066 0.288 0.088 0.029
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nδ

GBF0 WBF

1/9 Inv-Chisq(1) Pearson-VI(−0.75) 1/9 Inv-Chisq(1) Pearson-VI(−0.75)

1000 0.096 0.036 0.021 0.117 0.032 0.010

It is seen that the results in Table A.1 match the simulated TPMs shown in Figure 1 well.
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Figure 1. 
Total probability of misclassification as function of nδ (rows 10, 100, 1,000, 10,000) under 

the three different prior settings for σδ
2 (columns σδ

2 = 1/9, σδ
2 ∼ Inv-χ1

2, σδ
2 ∼ Pearson-VI 

(−0.75)). The points indicating minimum TPM are highlighted in black, all others are grey. 

The BF that uses the prior corresponding to the true model has minimum TPM. The ordinary 

t test using α = (0.001, 0.05) is shown as (T001, T05).
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Figure 2. 
Total probability of misclassification as function of nδ . GBF is calculated using λ = 2.80 

nδ
−1/2 and σδ = 2.19 nδ

−1/2, these settings also define the model-generating process. WBF is 

calculated using a = −0.75. The ordinary t test using α = (0.001, 0.05) is shown as (T001, 

T05).
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Figure 3. 

Plot of (nδ
−1/2,|δ |) for 166 two-sample comparisons reported in the psychology literature. The 

solid line is the least squares fit 0.20 + 2.75 nδ
−1/2; the dotted line is a LOESS fit using a 

Gaussian kernel.
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Figure 4. 

Plot of (nδ
−1/2, |ρ|) for OSC’s 97 replicated effect sizes of studies performed in the 

psychology literature. The solid line is the least squares fit, while the dotted line is a LOESS 

fit using a Gaussian kernel.
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