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Abstract

Glaucoma is a prevalent optic neuropathy characterized by the progressive dysfunction and loss of 

retinal ganglion cells (RGCs) and their optic nerve axons leading to irreversible visual field loss. 

Multiple risk factors for the disease have been identified, but elevated intraocular pressure (IOP) 

remains the primary risk factor amenable to treatment. Reducing IOP however does not always 

prevent glaucomatous neurodegeneration, and many patients progress with the disease despite 

having IOP in the normal range. There is increasing evidence that nitric oxide (NO) is a direct 

regulator of IOP and that dysfunction of the NO- Guanylate Cyclase (GC) pathway is associated 

with glaucoma incidence. NO has shown promise as a novel therapeutic with targeted effects that: 

1) lower IOP; 2) increase ocular blood flow; and 3) confer neuroprotection. The various effects of 

NO in the eye appear to be mediated through the activation of the GC- guanosine 3:5′-cyclic 

monophosphate (cGMP) pathway and its effect on downstream targets, such as protein kinases and 

Ca2+ channels. Although NO-donor compounds are promising as therapeutics for IOP regulation, 

they may not be ideal to harness the neuroprotective potential of NO signaling. Here we review 

evidence that supports direct targeting of GC as a novel pleiotrophic treatment for the disease, 

without the need for direct NO application. The identification and targeting of other factors that 

contribute to glaucoma would be beneficial to patients, particularly those that do not respond well 

to IOP-dependent interventions.

1. Introduction

Glaucoma is a neurodegenerative disease characterized by progressive degeneration of 

retinal ganglion cells (RGCs) and subsequent irreversible loss of vision. Over 60.5 million 

people worldwide are affected by primary open angle glaucoma (POAG) – a figure projected 

to increase to 79 million in 2020 and 111.8 million by 2040 1, 2. Glaucoma is often 

associated with elevated intraocular pressure (IOP), termed ocular hypertension. However, at 

least a third of patients with glaucomatous vision loss have normotensive IOP (normotensive 

glaucoma; NTG) 3–6 and disease incidence increases with age, regardless of IOP. This 

suggests that ocular hypertension is only one mechanism for glaucoma etiology and 

progression 7. Despite these indications, ocular hypertension remains the only target of 

current glaucoma therapeutics. Current strategies to lower IOP include topical application of 
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eye drops and surgical intervention. Unfortunately, successful reduction of IOP via these 

therapies only serves to slow progression of the disease.8 Thus, the identification of novel 

therapeutics that target other disease mechanisms is important for the evolution of glaucoma 

treatment.

Nitric oxide (NO) is an endogenous signaling molecule that is emerging as a novel target for 

therapeutic lowering of IOP 8. NO is produced endogenously in various ocular tissues in 

both the anterior and posterior segments of the eye and is a potent activator of soluble 

guanylate cyclase (termed GC, formerly known as sGC). Recent evidence implicates the 

NO-GC-cyclic guanosine monophosphate (cGMP) pathway in both IOP regulation (see 

section 6.1) and retinal pathophysiology of glaucoma (see section 6). In this review, we will 

discuss the evidence that the NO-GC-cGMP pathway may contribute to glaucoma 

pathophysiology as well as its potential as a novel multi-target approach for glaucoma 

therapeutics.

2. Pathophysiology of Glaucoma

Glaucoma is a group of optic neuropathies defined by progressive degeneration of RGCs and 

their axons in the optic nerve, which leads to irreversible loss of vision 3, 8, 9. RGC 

degeneration is often significantly advanced before changes in visual acuity and evidence of 

optic nerve cupping are detected in the clinic 10–12. Although the pathogenesis of glaucoma 

is not well understood, progression correlates with IOP, regardless of whether IOP is 

normotensive or hypertensive 13. Several clinical trials indicate that IOP-lowering drugs are 

effective in delaying progression of the disease. In particular, the Early Manifest Glaucoma 

Trial (EMGT) indicates that the risk of progression decreases by approximately 10% with 

each 1 mmHg IOP reduction from baseline 4. Similarly, the Ocular Hypertension Treatment 

study indicates that a 20% reduction in IOP is effective in delaying or preventing the onset 

of POAG in patients with ocular hypertension 14. Thus, lowering IOP remains the primary 

course of treatment for glaucoma patients as well as for those with ocular hypertension 

deemed at-risk for glaucoma.

Our current understanding of the relationship between IOP and RGC degeneration indicates 

that IOP elevation leads to a corresponding increase in pressure exerted posteriorly at the 

optic nerve head, where the optic nerve exits the globe of the eye 15, 16. The lamina cribrosa, 

a band of extracellular matrix in the optic nerve head, marks the beginning of the optic nerve 

and is prone to compression, deformation, and remodeling induced by mechanical strain 

related to IOP. This compressive deformation is transferred to RGC axons, which pass 

through perforations in the lamina cribrosa as they exit the globe. Studies in animal models 

of glaucoma indicate that ocular hypertension results in the disruption of both anterograde 

and retrograde transport in RGC axons, particularly near the optic nerve head 17. These 

studies are corroborated by structural changes in RGC axons of the optic nerve head from 

human donors with glaucoma 10. Interestingly, studies in animal models indicate that deficits 

in axon transport occur early in glaucoma progression, prior to structural degeneration of 

RGC axons and soma 3, 18. These studies suggest that the interval between changes in axon 

transport and structural degeneration of RGCs may constitute a window for therapeutic 

intervention. While glaucoma is typically diagnosed in patients already exhibiting 40–50% 
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visual field loss 19, 20, the cellular process of degeneration is occurring at various rates 

throughout the RGC population. If targetable, this therapeutic window provides the 

opportunity to interrupt degeneration in RGCs within glaucomatous retina that have not yet 

progressed to structural degeneration. Thus, there is the possibility of preserving RGCs and 

preventing further vision loss, independent of or in addition to IOP management.

3. Why the need for new medications?

IOP is established by the balance of AqH production and elimination from the anterior 

chamber. Two independent pathways regulate AqH dynamics: the conventional pathway and 

the unconventional pathway. In humans, the majority of AqH drainage occurs via the 

trabecular meshwork (TM) and Schlemm’s canal (SC), which constitute the conventional 

pathway 21 (Figure 1). However, it has been estimated that around 3–82% of AqH drainage 

can also occur via the uveoscleral tract of the unconventional pathway across different 

species 22–27. The first course of treatment to lower IOP is usually through topical 

application of drugs that modulate AqH dynamics by: 1) reducing AqH production 2) 

increasing uveoscleral outflow or 3) increasing flow through the conventional pathway via 

contraction of the ciliary muscle (CM) 8. Issues with patient compliance and side effects can 

reduce efficacy of topical drugs. Accordingly, sustained delivery platforms, such as the 

bimatoprost intracemeral slow-release implant, are already in phase III clinical trials 28. 

Alternative strategies for IOP management are currently surgical, i.e. laser trabeculoplasty or 

incisional glaucoma surgery 29.

As indicated by the wide variety of pharmaceuticals for IOP management (Table 1), each 

case of glaucoma is unique and requires a unique treatment regimen to effectively lower IOP. 

This often results in patients utilizing several medications at once and/or combining 

medications with surgical intervention. Over the long-term, the likelihood of preserving 

functional vision diminishes and the risk of significant blindness is considerably high. This 

is likely attributable to both poor patient compliance and the unilateral targeting of only one 

facet of the disease.

The identification and targeting of other factors that contribute to glaucoma would be 

beneficial to patients, particularly those that do not respond well to IOP-dependent 

interventions. Neuroprotection for glaucoma could be an effective strategy, but studies aimed 

at protecting RGCs have thus far failed to demonstrate efficacy in clinical trials 30. However, 

recent evidence supports the notion that targeting both neurobiological and IOP regulatory 

aspects of the disease may be more effective as a treatment strategy. For example, in a study 

comparing two adrenergic blockers timolol (beta-adrenergic) and brimonidine (alpha-

adrenergic), brimonidine was more effective than timolol in stabilizing visual fields 31. Both 

timolol and brimonidine reduce IOP by decreasing AqH production at the level of the non-

pigmented ciliary epithelium 9, 32 and display similar IOP-lowering efficacy 31. However, 

brimonidine also has neuroprotective qualities, as demonstrated by its use in Alzheimer’s 

disease and other cognitive impairments 33, 34. Thus, the identification of other pathways 

that could potentially target both IOP and neurodegeneration is intriguing and potentially 

beneficial.
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NO is emerging as a potential therapeutic target that could impact both IOP regulation and 

RGC neurodegeneration. Here, we will summarize the potential implications of NO 

signaling for glaucoma pathophysiology and advocate the NO-GC-cGMP pathway as a 

putative candidate for a new class of multi-target therapeutics.

4. NO-GC Pathway

NO is a ubiquitous and endogenous signaling molecule. Since its discovery as an 

endothelium-derived relaxing factor (EDRF) in 1987 35, NO has been implicated in a myriad 

of physiological processes, including smooth muscle relaxation and vasodilation 35, 36, blood 

pressure regulation, antimicrobial defense and vascular homeostasis 37, 38. Nitric oxide 

synthase (NOS) is the enzyme that produces endogenous NO from l-arginine in a two-step 

oxidation process that also yields l-citrulline 39–41. Molecular oxygen and reduced 

nicotinamide-adenine-dinucleotide phosphate (NADPH) are co-substrates (reviewed in 42).

There are three isoforms in mammals: neuronal NOS1 (nNOS), endothelial NOS3 (eNOS) 

and inducible NOS2 (iNOS) 43, 44. Under normal physiological conditions, NO is produced 

by the two constitutive, Ca2+/calmodulin-regulated isoforms of the enzyme (nNOS and 

eNOS), which generate relatively small amounts of NO (picomolar to nanomolar range) in 

response to a variety of stimuli, including elevated calcium and shear stress 45. In 

pathological conditions (e.g. infection, inflammation or ischemia), there is induction of the 

third transcriptionally-regulated isoform of NOS (iNOS), which produces higher 

concentrations NO (micro to millimolar levels) over longer time periods 46. The differential 

isoforms of NOS, paired with its widespread distribution in most tissues, allows for an array 

of diverse biological functions of NO.

The classic NO pathway starts with the binding of a ligand, i.e. a hormone or first 

messenger, to its receptor that then induces production of NO by NOS. NO is a lipophilic 

molecule capable of traversing the phospholipid membranes of cells, where it has numerous 

targets, reacting typically via thiol groups or transition metal centers 47–50. A major target of 

NO is the enzyme soluble guanylate cyclase (GC-1 and GC-2, formerly known as sGCα1β1 

and sGCα2β1 respectively), the only known receptor of NO 51–53. The GC enzyme is a 

heme-containing heterodimeric protein, consisting of one α and one β subunit (Figure 2) 52. 

The GC-α1 and GC- β1 subunits that make up the GC-1 isoform are expressed in most cell 

types and tissues; however, two other subunits of GC, α2 and β2, have also been identified 
54. Although GC-1 is the most abundantly expressed form, other mixed heterodimer 

combinations of the protein have been identified, such as GC-2 (formerly sGCα2β1), which 

is expressed in the brain, placenta, spleen, and uterus 54, 55. This review will focus on GC-1, 

which converts guanosine triphosphate into the secondary messenger cGMP (Figure 2) 
56–58. Upon NO binding, the activity of GC-1 increases more than 200-fold 59, 60 producing 

high concentrations of cGMP that then modulate functions of numerous downstream 

enzymes, such as cyclic nucleotide phosphodiesterases (PDEs), cGMP-dependent protein 

kinases and cGMP-gated ion channels 61, 62 (reviewed in 63; Figure 2). Downstream 

signaling cascades produce different biological effects depending on the location of NO 

release and the site of cGMP production.
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4.1. NO-GC-1 Pathway in the Eye

GC-1, the downstream target of NO, is expressed widely in the retina of multiple species, 

including human 64, 65, rabbit 66, rat 67, turtle 68, and mouse 64, 69. GC-1 expression is 

evident in RGCs, photoreceptor cells and cells in the vascular smooth muscle layer of retinal 

arterioles 64, 69 (Table 2). In vitro studies also indicate GC-1 expression in human TM cells, 

and both human and mouse ciliary muscle (CM) 7064. Tissues in both the anterior and 

posterior segments of the eye express the three isoforms of NOS (Table 2). We will review 

the functional implications of these expression patterns for each isoform.

4.1.a. eNOS—The role of eNOS in the cardiovascular system includes regulating 

vascular tone by inhibiting smooth muscle contraction. In the eye, eNOS is constitutively 

expressed in sites that are important in the regulation of AqH outflow in the eye, including 

the endothelium of ciliary and retinal vessels 71, 72, and the ciliary muscle of the uveoscleral 

pathway 71, 73–75. In the conventional outflow pathway, the trabecular meshwork (TM) was 

also thought to endogenously produce NO through the activity of eNOS. However, recent 

data suggests that, in murine eyes, eNOS expression is predominantly found in cells of the 

SC 76–78. It therefore comes as no surprise that eNOS is an important regulator of IOP 

through physiological regulation of outflow facility 78. Elevated eNOS expression in eNOS-

GFPtg mice leads to reduced IOP and increased outflow facility 78 and conventional AqH 

outflow is impaired and IOP is increased in eNOS knockout mice 79. Furthermore, eNOS 

gene polymorphisms are associated with increased risk of developing POAG, including both 

ocular hypertensive and NTG forms of the disease 80–83.

eNOS also has a central role in ocular blood flow.: NO produced in the endothelium acts as 

an important physiological mediator to exert vascular smooth muscle relaxation in the eye, 

as seen in other organs and tissues of mammals. Studies investigating the involvement of 

endogenous NO on the ocular circulation of healthy subjects show strong evidence for the 

involvement of endogenous NO derived from either endothelial cells or perivascular 

nitrergic neurons in the control of vascular smooth muscle tone under resting and stimulated 

conditions (reviewed extensively in 84).

4.1.b. nNOS—nNOS is constitutively expressed in both the anterior and posterior 

chambers of the eye. Anteriorly, nNOS is expressed in the ciliary non-pigmented epithelium 

and is a key factor in controlling ocular blood flow 74, 85. Posteriorly, nNOS is expressed 

across species in pigment epithelium, optic nerve head and in the neural retina by amacrine 

cells, rod and cone photoreceptors and RGCs 66, 69, 72, 73, 86–94. It has been suggested that 

NO production by nNOS may serve as a molecular messenger between cells in the inner 

layers of the retina (e.g. amacrine cells), astrocytes and cells in the RGC layer 95.

4.1.c. iNOS—iNOS is not constitutively expressed in the eye under physiological 

conditions. However, upregulation of iNOS expression has been detected in human eyes in 

macrophages of the stroma and astrocytes 74, 96 and in chicken retinal pigment epithelium 

(RPE) 94. iNOS activity was discovered in patients with POAG and visual field loss 75. Ex 
vivo analysis of human donor eyes revealed that iNOS expression in the TM is induced by 

increasing perfusion pressure in the anterior chamber 97. This increase in iNOS expression is 
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accompanied by NO production, suggesting a functional role for iNOS in mediating 

pressure-induced NO release 97. Similarly, in vitro studies of ocular tissues and cells indicate 

that iNOS can also be induced by inflammatory and hypoxic stressors, like those associated 

with glaucoma 8973.

5. NO-GC-1 Pathway and Implications for Glaucoma

Direct in vivo measurement of NO in the eye is not yet feasible. However, measurement of 

nitrate and nitrite levels are routinely used as markers for the activity of NOS and the 

production of NO radicals 98. Several studies in human glaucoma patients suggest that 

various components of the NO-GC-1-cGMP pathway and its associated outcomes are linked 

to disease progression. Glaucoma patients exhibit decreased NO metabolite (nitrate/nitrite) 

and cGMP levels in AqH and plasma compared to patients without glaucoma 99, 100. This is 

accompanied by corresponding increases in the AqH level of l-Arginine, the amino acid 

precursor of NO 101, and serum levels of l-arginine analogs, which are endogenous 

inhibitors of NOS or l-arginine uptake 102. In eyes harvested posthumously from POAG 

patients, NADPH-diaphorase (NADPH-d) reactivity, a marker for NO production, is 

decreased in TM, SC and anterior longitudinal CM fibers 85.

NO production by cells of the SC may have a homeostatic function during IOP elevation, i.e. 

when the SC narrows and shear stress increases. Cells respond to increased IOP through 

increases in NO, which increases the permeability of the SC inner wall and decreases 

contractility of the juxtacanalicular TM in order to normalize IOP levels 77. SC cells isolated 

from glaucomatous eyes are unresponsive to shear stress 77. This suggests that the 

homeostatic feedback loop controlling NO synthesis is impaired in glaucoma and may 

contribute to elevations in IOP.

Finally, NOS inhibition impairs blood flow in the optic nerve head of POAG patients to a 

greater extent than in healthy controls 103. Taken together, these studies suggest an important 

role for the NO-GC-1 pathway and its downstream effector, cGMP, in glaucoma 

pathophysiology 64.

5.1. NO-GC-1-cGMP Pathway as an Etiological Factor in Glaucoma

In recent years, GWAS have identified several genetic loci linked to POAG (reviewed 

recently in 104). Amongst the genes identified, three are associated with the NO-GC-1-

cGMP signaling pathway.

5.1.a. Caveolin 1 and 2 (CAV1/CAV2)—Variants in genes encoding CAV1 and CAV2 

are associated with ocular hypertension 104–110. Caveolins are involved in controlling the 

production of NO by NOS enzymes 111.

5.1.b. NOS3/eNOS—More directly, eNOS gene variants associated with ocular 

hypertension in females are thought to induce differential expression or modulation of eNOS 

that effects NO expression in the eye 82. The promoter-region polymorphism T-786C of 

eNOS may lower local NO concentrations by reducing promoter activity to influence gene 

transcription 112. This functional polymorphism is associated with POAG and links age and 
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gender with risk of POAG development 113. Similarly, variants in the promoter region of 

eNOS were identified in 20% of familial POAG patients 114 and a recent study identified the 

eNOS variant rs2070744 as a significant genetic risk factor for developing disc hemorrhage 

in NTG patients 83. In the NTG population, additional studies suggest that NO dysregulation 

may impact blood supply to the optic nerve as well as aqueous humor outflow 100. This is 

supported by the presence of altered vasodilatory responses in forearm microcirculation of 

NTG patients 80, and well-documented vascular abnormalities in POAG patients generally 

(reviewed in 115).

5.1.c. GC-1—A gene candidate association study in the GLAUGEN cohort identified a 

variant (rs11722059) in GUCY1A3/GUCY1B3, which encodes the α1/β1 subunits of the 

GC-1 enzyme, in POAG individuals that develop early paracentral visual field loss 10864. 

Interestingly, loss of early paracentral visual field loss is predominant in a subsection of 

POAG patients associated with vascular dysregulation 116. This link between GC-1 and 

POAG etiology is further confirmed in animal studies, where mice lacking the α1-subunit of 

GC-1 develop optic neuropathy associated with moderate ocular hypertension 64. This optic 

neuropathy is accompanied by both retinal and systemic vascular dysfunction 117, 118 and 

decreased AqH outflow resistance 64.

Together, these studies suggest that genetic mutations leading to impaired NO-GC-1-cGMP 

signaling are risk factors for glaucoma and reinforce the connection between NO signaling 

and glaucoma pathogenesis. Furthermore, these studies suggest that the NO-GC-1-cGMP 

pathway, specifically NO metabolites and cGMP, could be potential biomarkers of glaucoma 

pathophysiology 64, 98,_99 where early detection could expand the therapeutic window and 

improve patient outcomes.

6. NO-GC-1-cGMP Pathway and Disease Mechanisms

6.1. IOP regulation

There is increasing evidence that NO is a direct regulator of IOP and that dysfunction of the 

NO-GC-1 pathway is associated with glaucoma. In healthy human eyes, tissues capable of 

producing NO include: the ciliary body, the TM, and the SC 119. In many cases, the effect of 

NO on IOP is linked to the action of its downstream messenger cGMP, particularly in the 

conventional outflow pathway (see Figure 1). Stimulation of the NO-GC-1-cGMP pathway 

via administration of NO donor compounds lowers IOP through relaxation of the TM, 

alteration of TM volume, and an increase in the permeability of cells in the SC 76, 120–127. In 

addition, increased iNOS is observed following increased perfusion pressure in the anterior 

segments of human donor eyes 128. In rabbits, a NO donor and a cGMP analogue both 

decrease IOP 129 and increase outflow facility 130. In mice, eNOS overexpression lowers 

IOP by increasing pressure-dependent drainage 78. This concurs with previous work 

suggesting that the ability of NO to lower IOP is mediated by a decrease in the AqH 

resistance rather than changing the rate of AqH secretion 74. Interestingly, eNOS expression 

and NO levels are both decreased in the CM, TM, and SC of POAG patients 85, 99, 100.

Intravitreal or intracameral injection of 8-Br-cGMP, a cGMP analog, increased AqH outflow 

facility in a dose-dependent manner 131. 8-Br-cGMP is cell-permeable, activates cGMP-
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dependent kinases, and is more resistant to hydrolysis by phosphodiesterases than native 

cGMP 132. At lower doses (10–30 μg), intravitreal 8-Br-cGMP decreases AqH flow, but does 

not affect outflow facility 131. In contrast, higher doses of 8-Br-cGMP (100–300 μg), 

increases outflow facility 131. These results suggest that cGMP may be an important factor 

in the regulation of IOP by facilitating AqH outflow via the TM and decreasing AqH 

production by the ciliary epithelium. One potential mechanism that mediates the suppressive 

effect of NO on AqH production involves inhibition of the Na,K-ATPase pump. In the eye, 

the Na,K-ATPase is the primary active transporter involved in the establishment of ion 

gradients that drive AqH formation 133. Inhibition of this pump by ouabain decreases AqH 

secretion by ~62% 134. Studies indicate that NO donors, such as sodium nitroprusside 

(SNP), and 8-Br-cGMP reduce AqH secretion and therefore, reduce IOP in bovine and 

porcine eyes through cGMP- and PKG-dependent inhibition of Na,K-ATPase 135–138.

Relaxation of TM and relaxation of blood vessels occur via similar mechanisms that involve 

the NO-cGMP pathway 139. The cells of SC share properties with endothelial cells that line 

blood vessels, which may explain the mechanism of action for NO in IOP regulation. 

Exploration of the NO-dependent increase in outflow facility in porcine eyes demonstrated 

that this TM relaxation is GC-1 dependent and prevented by GC inhibitors, such as 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1–1 (ODQ) 70. Additional studies link the NO-GC-1-

cGMP pathway directly to AqH outflow capacity. Inhibition of NOS signaling in perfused 

donor human eyes with LNG-Nitroarginine methyl ester (L-NAME), a non-isoform specific 

NOS-inhibitor, decreases the rate of AqH outflow 140. Conversely, a NO-donor compound 

increases AqH outflow rate 140; the AqH outflow rate was directly proportional to increases 

in cGMP levels in perfused fluid, confirming a role for the NO-GC-1-cGMP pathway in 

regulation of AqH outflow in humans 140. These findings were corroborated in animal 

models, where inhaled NO gas lowered IOP in both mice and sheep in a GC-1-dependent 

manner: in mice, lowering of IOP was attributed to increase in conventional aqueous outflow 

facility 141, and a small molecule GC-1 stimulator increased cGMP levels and increased 

AqH outflow in mouse eyes 142. A long-term study on the effect on dietary nitrates on 

incidence of glaucoma was recently concluded, with the results strongly supporting a role 

for NO supplementation in the prevention of elevated IOP and thus POAG 143. A greater 

intake of dietary nitrate was associated with a 20–30% lower risk of POAG; a particularly 

strong association was seen (40–50%) for those cases of glaucoma with early paracentral 

vision loss and vascular dysfunction 143. This study further supports a role for impaired NO 

signaling in the development of glaucoma.

Although these studies strongly implicate the NO-GC-1-cGMP pathway as a regulator of 

IOP, the mechanism of action for downstream effectors is still poorly understood. However, 

cGMP-dependent changes in outflow are likely related to contraction and relaxation of the 

TM. In ex vivo preparations of TM and CM slices that were pre-contracted with carbachol, 

application of the NOS inhibitor L-nitroarginine led to an increased contraction of both TM 

and CM. In contrast, application of 8-Br-cGMP to pre-contracted CM and TM strips resulted 

in relaxation 144. One possible mechanism for cGMP-mediated contraction is activation of 

protein kinase G (PKG) 70, 73, 125, 130. Activated PKG can phosphorylate numerous targets 

with multiple downstream effects that relate to contractility, including ion channels and gap 

junctions 46, 71, 125, 145.
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Contractile responses are linked to changes in membrane potential and ultimately, the 

activity of ion channels. For example, direct application of 8-Br-cGMP has a relaxing effect 

on bovine TM cells 146 and in CM 144 via activation of BKCa channels. The relaxation 

effect observed is much more pronounced in TM than in CM 144. Activation of BKCa 

channels leads to K+ efflux and cell hyperpolarization. This reduces cytosolic Ca2+ through 

the inhibition of voltage-operated (L-type) Ca2+ channels 147. Similarly, Ca2+ channel 

blockers, such as topical verapamil, diltiazem, nifedipine, or flunarizine lower IOP in animal 

models and humans (reviewed in 148). cGMP-dependent changes in Ca2+ dynamics may also 

involve increased uptake of calcium into the sarcoplasmic reticulum 149.

While the mechanism(s) underlying Ca2+-dependent changes in TM relaxation are not well 

understood, evidence indicates a role for gap junctions 150. One way in which gap junctions 

are modulated is through rho kinase inhibition. cGMP activates PK-G, which in turn 

phosphorylates Rho A, leading to its inhibition and subsequent inhibition of Rho Kinase 151. 

Rho kinase inhibitors, such as netarsudil 152, activate myosin light chain phosphatase 

(Figure 3; reviewed in 153). Subsequent dephosphorylation of the regulatory light chain of 

myosin prevents actin–myosin interaction, promoting cell relaxation 154–156. This could lead 

to a widening of the intercellular spaces in the juxtacanalicular TM and SC, thus facilitate 

conventional AqH outflow to lower IOP 46, 71, 157, 158 (Figure 1).

It is clear that endogenous NO production and subsequent activation of the GC-1-cGMP 

pathway influence the cellular contractile mechanisms that mediate both AqH outflow and 

IOP. However, it is not only the TM that is important, the CM also plays a role in IOP 

regulation. Contraction of the CM causes relaxation of the TM, which increases 

intratrabecular spaces and increases outflow facility. The relaxation of the CM could 

possibly decrease conventional outflow. Thus, a functional antagonism between contractility 

of TM and CM exists and it is the balance between these modalities that may determine total 

AqH outflow through the conventional route (reviewed in 159). Accordingly, 

pharmacological agents that preferentially relax the TM rather than the CM may have a 

beneficial impact on IOP.

6.2. Ocular blood flow

Vascular endothelial dysfunction and impaired blood flow have been associated with POAG, 

both in ocular hypertensive and normotensive subsets 80, 160–162. The topic of vascular 

dysfunction and POAG has been recently reviewed (for further details see 115). Briefly, the 

endothelial monolayer lies between the lumen of blood vessels and underlying smooth 

muscle tissue and is responsible for modulation of vascular tone, thrombus formation, cell 

adhesion, and sequestration of inflammatory mediators 115. Impaired endothelial signaling in 

POAG is observed in tissues relevant for both outflow resistance and RGC support, 

including: 1) endothelial layers in the inner wall of SC, the ciliary body and the posterior 

longitudinal muscle (outflow resistance) and 2) vascular endothelial cells that underlie the 

luminal smooth muscle vessels that supply RGCs 115.

Several studies support vascular dysfunction as a key player in development of glaucoma. 

Acetylcholine-induced vasodilation, assessed non-invasively in forearm blood vessels, was 

impaired in NTG patients 80. Several groups have studied flow-mediated vasodilation in 
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brachial arteries of both NTG and POAG patients with elevated IOP, and reported that these 

patient have abnormal responses compared with controls 160, 163, 164.

Although these studies could explain why glaucoma develops across a range of IOP levels, 

they do not elucidate the molecular mechanisms underlying vascular dysfunction in 

glaucoma. However, there is compelling evidence to suggest a role for NO-cGMP signaling 

in vascular dysfunction associated with glaucoma (see also section 5.1). Both vasoactive and 

vasoconstrictive factors, NO and endothelin-1 respectively, are produced by the vascular 

endothelium, and play a major role in the control of ocular blood flow 165–168. In the retina 

and optic nerve head, endogenous NO helps to maintain basal blood flow 84, 169–171. Blood 

flow through the optic nerve head is autoregulated. This means that local tissue blood flow 

(perfusion pressure) is kept constant despite physiological or metabolic changes. It is known 

that NO is involved in autoregulation at the optic nerve head under glaucoma-related 

conditions, i.e. ocular hypertension 172, 173. Abnormalities in vascular autoregulation are 

implicated in glaucomatous optic neuropathy 174, 175, especially in patients with normal 

tension glaucoma (NTG)176. Several groups have investigated the role of NO in ocular blood 

flow autoregulation. These studies indicate that NO alters retinal, optic nerve head and 

choroidal autoregulation of blood flow in rabbits and pigs when IOP is elevated 172, 177. 

Similarly, NO-donor molecules injected intravitreally enhance tissue oxygenation of the 

optic nerve head in preclinical animal models 178. These data suggest that NO contributes to 

blood flow autoregulation in the retina and optic nerve.

Like IOP regulation, blood flow autoregulation is likely mediated by NO and downstream 

effectors such as cGMP. NO altered choroidal, retinal, and ONH autoregulation during 

experimental IOP elevations in rabbits and piglets 172, 177. Sildenafil, a phosphodiesterase 5 

(PDE5) inhibitor, elevates cGMP levels and increases choroidal blood flow (reviewed in 179) 

and optic neuropathy in GC-1−/− mice also presents with vascular dysfunction 64. 

Impairment of the NO-GC-1-cGMP pathway may also impact ocular blood flow and 

autoregulation indirectly via changes in mean arterial pressure induced by systemic vascular 

dysfunction.

Blood flow autoregulation in the eye remains a complex phenomenon and the mechanism by 

which the NO-GC-1-cGMP pathway modulates retinal vascular autoregulation remains to be 

elucidated. A plausible mechanism may involve the downstream action of cGMP on calcium 

flux in cells: elevated cGMP leads to calcium efflux from smooth muscle cells, and therefore 

relaxation of the cell 180. In arterioles (such as those in retinal vessels), this can lead to 

increased ocular blood flow. Although cGMP effects on calcium flux in cells have beneficial 

effects on ocular blood flow, a recent retrospective study suggests that use of calcium 

channel blockers confer a 30% increased risk of POAG progression. Previous studies have 

reported conflicting data. One study indicates that calcium channel blockers have no effect 

on the clinical course of glaucoma 181, while another indicates that calcium channel blockers 

may impede glaucoma progression 182. Additionally, animal studies indicate that calcium 

channel inhibitors prevent ischemia-induced RGC degeneration by restoring impaired blood 

flow and directly inhibiting apoptosis pathways 183, 184.
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Although there is no direct evidence that improved blood flow via modulation of NO-cGMP 

signaling leads to preservation of visual field, the studies aforementioned do highlight 

vascular dysfunction as a likely contributor in disease pathogenesis for both ocular 

hypertensive and NTG POAG patients. While it is clear that modulation NO-cGMP pathway 

can improve ocular blood flow, additional studies are required to evaluate any potential 

efficacy for this strategy in the treatment of glaucoma.

6.3. Neuroprotection

NO signaling is associated with both neuroprotective and neurotoxic outcomes depending on 

its concentration and the cell types involved. Elevated NO concentrations can lead to 

oxidative reduction reactions and the production of reactive nitrogen species (RNS) 185–188. 

RNS, such as peroxynitrite, are implicated in the pathogenesis of many neurodegenerative 

disorders, such as Alzheimer’s Disease 189. Likewise, some studies indicate that NO may 

also have neurotoxic effects in retina. In an in vitro study, a NOS inhibitor significantly 

protected RGCs from anoxia-induced death 190. In rat models of glaucoma, increased 

expression of NOS1 in retina was associated with RGC degeneration and inhibition of iNOS 

prevented RGC degeneration 191192, 193. Finally, the δ-opiod receptor agonist (SNC-121) 

protects RGCs in a rat model of glaucoma via the suppression of iNOS activity 194.

Conversely, NO can also act in a neuroprotective manner 195–199. Activation of the NO-

GC-1-cGMP pathway inhibits apoptotic cell death in a variety of primary neuronal cultures 

and neural-derived cell lines 200–202. In traumatic brain injury, NO presence is associated 

with both detrimental secondary damage and neurological recovery 203. The temporal 

importance of NO in neurological recovery was investigated using iNOS knockout mice. In 

these studies, oxidative stress markers were more pronounced in iNOS knockout mice than 

in wild type mice, suggesting a role for NO as an endogenous antioxidant and thus, 

neuroprotective agent 203. In animal models of RGC degeneration, the neuroprotective effect 

of a novel NO-releasing beta-blocker (nipradilol) on RGC death is attributable to the 

released NO 204–208. This neuroprotective effect is NO-dependent. Furthermore, nipradilol 

promotes regeneration of RGC axon in optic nerve, likely through S-nitrosylation of PTEN 

and subsequent activation of the mTOR/Akt pathway 209. Further studies are needed to 

elucidate the neuroprotective capabilities of NO, in particular any involvement of cGMP, in 

the context of glaucoma.

The neuroprotective properties of NO in cell cultures appear to be mediated, at least in part, 

by the activation of the GC-cGMP pathway and its effect on downstream targets, such as 

protein kinases and Ca2+ channels 210, 211212. As discussed in Section 6.2, cGMP may have 

an indirect neuroprotective effect via activation of BKCa channels and inhibition of L-type 

Ca2+ channels 183, 184. In cerebellum, NO acts via the GC-1 pathway to prevent apoptosis 

through activation of protein kinase-G and Akt 213. In Schwann cells, reduced expression of 

GC-1 leads to apoptosis of co-cultured neurons and glial cells 212. Furthermore, in primary 

neuron cultures, direct application of NO or nitrite prevents endoplasmic reticulum-induced 

apoptosis in a GC-1-cGMP-dependent manner 214. Although excess NO can be neurotoxic, 

the in vitro and in vivo evidenced outlined here supports a neuroprotective role for the NO-

CG-1-cGMP pathway that should be further examined in glaucoma models.
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7. The NO-GC-1-cGMP Pathway as a Target for Glaucoma Therapeutics

Given its established role in IOP regulation and ocular blood flow and its potential ability to 

serve as a neuroprotectant, NO signaling is a prime candidate for the development of novel 

multi-target therapeutics for glaucoma.

7.1. NO-Donor Compounds

For more than a century, NO-donating compounds, e.g. nitrovasodilators, have been used to 

successfully treat cardiovascular disease. Previous studies indicate that NO-donation via 

intravenous or oral administration of nitroglycerin or isosorbide dinitrate effectively lower 

IOP in both POAG patients and control subjects 215. In animal studies, topical application of 

these same vasodilators also effectively lowers IOP 121, 122, 127, 216. Accordingly, novel 

topical NO-releasing compounds for IOP management have recently been developed. For 

example, latanoprostene bunod (LBN) is a NO-donating prostaglandin F2α analog that is 

rapidly metabolized in situ (Table 1). Nipradilol is a beta-blocker ligated with a NO-

donating moiety. Like their current counterparts, both LBN and nipradilol are effective at 

lowering IOP 124, 155, 217. LBN is effective at lowering IOP in several animal models of 

glaucoma, where its parent compound latanoprost had minimal efficacy 158. In Phase 2 and 3 

clinical trials, LBN increased latanoprost IOP-lowering capacity by more than 1 mmHg, 

making it more effective than the preferred drug on the market for the treatment of POAG 
218–222. Nipradilol reduces IOP to a similar extent as timolol 223. A recent review of non-

clinical studies with LBN highlights that LBN has a dual action, enhancing AqH outflow via 

both the uveoscleral pathway (due to action of latanoprost) and the TM/SC of the 

conventional pathway (due to the effect of the NO moiety)224.

Studies in animal models indicate that nipradilol also has neuroprotective qualities 204–206 

(see section 6.3). There are conflicting data regarding translation of these neuroprotective 

qualities to humans; in comparative studies between nipradilol and timolol, no additional 

beneficial effects were observed in visual field performance of those taking nipradilol vs. 

timolol 225226, 227. However, one study has shown that in addition to lowering IOP, 

nipradilol increases ocular blood flow in both control and NTG eyes 227, which suggests that 

nipradilol may have an advantage in prevention against glaucomatous damage by increasing 

ocular blood flow to the optic nerve head, over similar topical therapies. Further research is 

required to determine its neuroprotective efficacy and the mechanisms involved. There are 

several additional NO-donor compounds that exhibit pre-clinical efficacy for IOP reduction 

in animal models, including the prostaglandin analogue NCX 470 and two novel carbonic 

anhydrase inhibitors: NO-dorzolamide and NO-brinzolamide 228, 229230. Together, these 

studies indicate that NO-donor compounds are viable and potentially potent therapeutic 

agents for IOP lowering in glaucoma patients as well as those with ocular hypertension.

7.2. Alternative NO-GC-1-cGMP Targeting

Although NO-donor compounds are promising as therapeutics for IOP regulation, they may 

not be ideal neuroprotective agents. As described in this review, the neuroprotective 

activities of NO can be linked specifically to its activation of GC and subsequent modulation 

of cGMP. While NO-donation can facilitate activation of GC-1, it also has the potential to 
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induce the production of RNS and promote oxidative stress outcomes. An alternative method 

of harnessing the neuroprotective properties of NO-GC-1-cGMP, while avoiding the possible 

GC-independent neurotoxic effects of NO, is the direct targeting of GC or cGMP. As 

discussed above, NO modulation of both IOP and ocular blood flow is linked to activation of 

GC-1 and subsequent induction of cGMP-mediated pathways. Targeting GC-1 or cGMP 

would not only promote the activation of neuroprotection pathways associated with NO, but 

would likely maintain equivalent IOP lowering efficacy. There are several opportunities for 

therapeutic activation of either GC-1 or cGMP, including pharmacological activation of 

GC-1 and inhibition of cGMP degradation. Recent evidence, described below, supports the 

neuroprotective benefit of these strategies in the CNS.

7.2.a PDE Inhibitors—cGMP is degraded by PDEs (Figure 2). PDE inhibitors prevent 

the breakdown of cGMP, thereby increasing cGMP bioavailability and prolonging cGMP-

mediated activation of downstream pathways (Figure 2). In a rat model of hypoxic ischemia, 

elevation of cGMP levels by sildenafil, a PDE5 inhibitor, reduces apoptosis, astrocytosis, 

and microgliosis in the brain 231. Similarly, tadalafil, another CNS penetrant PDE5 inhibitor, 

is neuroprotective both in spinal cord injury 232 and in ischemia/reperfusion injury 233. In 

the eye, PDE6 inhibition prevents hypoxia-induced cell death throughout the whole retina in 

porcine retinal explants via a cGMP-dependent mechanism 234.

As highlighted in this review, cGMP is involved in AqH dynamics and thus, PDE5 inhibitors 

have the potential to affect IOP 131, 235. However, findings from several clinical studies 

indicate that the use of PDE5 inhibitors do not alter IOP. In a Phase I clinical trial, a single 

dose of PDE5 inhibitor sildenafil does not alter IOP in healthy volunteers either 1 hour or 48 

hours post-administration 236. A second study with a larger sample size yielded the same 

results 237. A similar study also determined that a single dose of sildenafil does not alter IOP 

either 1 hour or 5 hours post-administration in glaucoma patients 238. Although these studies 

suggest that PDE5 inhibition does not impact IOP, the findings pertain to only a single 

administration. To date, there is only one study that examined the long-term effects of 

sildenafil treatment on IOP. In this study, a small cohort of patients with erectile dysfunction 

(n=10) received 50mg of sildenafil citrate one or more times a week for a minimum of 3 

months and displayed no change in IOP 239. Together, these studies suggest that PDE5 

inhibitors likely do not impact IOP. However, a study of long-term use in both healthy 

volunteers and glaucoma patients would be beneficial..

Although PDE5 inhibitors appear to not influence IOP, visual disturbances have been 

reported 240, 241. The most common visual disturbances are increased blue tinge in the visual 

image and an increased sensitivity to light 242–244. The rate of occurrence for these 

symptoms is low; in 3–11% of men taking sildenafil 25–100 mg 241, 0.3–2% of vardenafil 
245, 246, and 0.1% of tadalafil users 247. The symptoms tend to be mild, transient, dose-

dependent, and completely reversible. These symptoms likely arise from off-target inhibition 

of PDE6 in the retina. PDE6 expression in retina is restricted to rod and cone outer 

segments, where it contributes to phototransduction 248. PDE5 inhibitors currently 

prescribed having varying selectivity for PDE5 over PDE6: 10-fold for sildenafil 249, 15-fold 

for vardenafil 250, and 700-fold for tadalafil 251. While these visual disturbances are 
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manageable for intermittent use, they may have greater implications for the use of PDE5 

inhibitors in a chronic treatment paradigm, as would be necessary for treatment of glaucoma.

In addition to visual disturbances, a few more serious ocular events have also been noted in 

male patients prescribed PDE5 inhibitors, including: non-arteritic anterior ischemic optic 

neuropathy (NAAION) with attendant vision loss, cilio-retinal artery occlusion, central 

retinal vein occlusion (CRVO), and pupil sparing third nerve palsy (reviewed in 252). 

However, a direct cause and effect relationship between these conditions and the use of 

PDE5 inhibitors has not been established and the rate of incidence does not appear higher 

than that in male populations generally.252

7.2.b. GC Stimulators—Given the potential off-target effects associated with PDE5 

inhibition (e.g. PDE6 inhibition in photoreceptors), direct targeting of cGMP production by 

GC has emerged as a novel therapeutic strategy to lower IOP, and potentially provide 

neuroprotection in glaucoma 142. GC stimulators, small molecule drugs that synergistically 

increase GC enzyme activity with NO, are already clinically available or are in clinical trials 

for a variety of diseases. Riociguat is approved for treatment of pulmonary arterial 

hypertension and chronic thromboembolic pulmonary hypertension 253, 254.

Stimulation of GC may have therapeutic benefits outside the cardiovascular system, and 

particularly in the eye. For example, GC-1 stimulation by IWP-953 increased AqH outflow 

in enucleated mouse eyes, highlighting the therapeutic potential for GC stimulators as novel 

ocular hypotensive drugs 142. Safety, tolerability, and efficacy of the GC activator, MGV354, 

has shown promising IOP-lowering effects in pigmented rabbits and in a cynomolgus 

monkey model of glaucoma 255. A single topical ocular dose caused a significant dose-

dependent IOP reduction of 20% to 40% (versus vehicle), lasting up to 6 hours in pigmented 

rabbits. The MGV354-induced IOP lowering was sustained for up to 7 days following once-

daily dosing in a monkey model of glaucoma and was greater in magnitude compared to 

travoprost-induced IOP reduction 255. It is not yet clear whether this approach also provides 

neuroprotection to RGCs beyond that afforded by IOP reduction. Together, these data 

indicate that pharmacological targeting of GC and cGMP may be a fruitful and beneficial 

alternative to NO-releasing compounds for glaucoma therapy. However, further studies to 

evaluate this compound in vivo are necessary.

8. Conclusions

Glaucoma incidence is on the rise, with many more cases expected to surface in the few 

decades. Despite effective treatments to lower IOP, glaucoma is still a major cause of 

blindness worldwide. Advances in treatment are impeded by the complex etiology of the 

disease and lack of understanding of IOP-independent facets of the disease, i.e. 

neurodegenerative mechanisms. Ideally, novel glaucoma therapeutics would target both IOP-

dependent and -independent mechanisms of the disease.

Recent evidence, reviewed here, indicates that impairment in the NO-GC-cGMP pathway is 

implicated in glaucoma onset and progression. Involvement of the NO-GC-cGMP pathway 

with both IOP regulation and ocular blood flow and its potential to elicit neuroprotective 
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responses in neural retina make this pathway a strong candidate for therapeutic targeting of 

multiple pathogenic mechanisms in glaucoma.

The potential of the NO-GC-cGMP pathway to prevent and/or treat glaucoma underlies the 

development of NO-donor compounds as IOP lowering therapeutics. There are many 

benefits of targeting the NO-GC-cGMP pathway when developing novel therapeutics for 

glaucoma. NO increases AqH humor outflow through the conventional pathway, which aids 

in IOP reduction, whilst also increasing retinal perfusion and having putative 

neuroprotective effects (Figure 4). The potential benefit in NO-releasing treatments is 

however offset by the delicate balance necessary to promote beneficial outcomes and avoid 

negative consequences due, for example, to induction of RNS, and other oxidative stress 

leading to nitrate tolerance which can ultimately promote insensitivity to long-term NO 

exposure and inhibition on GC 256. This risk is not alleviated by available NO donor 

compounds, which activate GC to produce cGMP.

Here, we advocate for the development and further study of compounds that activate the 

NO-GC-cGMP pathway by targeting GC and cGMP directly. IOP and blood flow regulation 

by NO is attributable to GC-mediated elevation of cGMP. Likewise, neuroprotective 

outcomes associated with NO, i.e. anti-apoptotic signaling, are also dependent on GC 

activation and cGMP modulation. Thus, direct targeting of GC activity or cGMP levels has 

the potential to promote IOP reduction, increase ocular blood flow and activate 

neuroprotective mechanisms without the generation of RNS and nitrate (and NO) tolerance. 

While a few studies suggest that compounds targeting GC activation and cGMP levels are 

acceptable alternatives to NO-releasing compounds for the treatment of glaucoma, 

additional research is needed to systematically evaluate the therapeutic efficacy of this 

approach.
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Fig. 1. 
Flow of aqueous humor (AqH) in the eye. AqH is produced at the ciliary body and flows 

(green arrows) through one of two independent pathways that regulate AqH dynamics: the 

conventional pathway through the trabecular meshwork (TM) and Schlemm's canal (purple 

arrow) and the non-conventional pathway via the uveoscleral tract (orange arrow). 

Intraocular pressure (IOP) in the eye is established by the balance of (AqH) production and 

elimination in the anterior chamber.
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Fig. 2. The NO-GC-1-cGMP pathway.
NO is produced from L-arginine by nitric oxide synthase (NOS) of which there are three 

isoforms: neuronal NOS1 (nNOS), endothelial NOS3 (eNOS) and inducible NOS2 (iNOS). 

NO targets guanylate cyclase-1 (GC-1), a heterodimeric protein capable of converting GMP 

to cGMP. cGMP produced by GC-1 can target cGMP-gated ion channels, and activate 

downstream kinase signaling cascades. Phosphodiesterase enzymes (PDE) bind to cGMP 

and catalyse its breakdown into GMP – PDEs act as important regulators of signal 

transduction mediated by cGMP. cGMP bioavailability in the cell can be modulated in two 

ways: 1) through the use of GC-1 stimulators and activators, which increase production of 

cGMP, or, 2) through the use of PDE inhibitors which prevent the breakdown of cGMP in 

the cell.
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Fig. 3. cGMP-mediated modulation of IOP through increase in AqH outflow.
NO triggers production of cGMP by GC-1. cGMP activates protein kinase G (PKG). 

Activated PKG can phosphorylate numerous targets with multiple downstream effects, 

including inhibition of Rho A, thus preventing inhibition of myosin phosphatase by Rho 

Kinase. In addition to inhibition of Rho A, activated PKG can directly activate myosin light 

chain phosphatase (MLCP). Subsequent dephosphorylation of the regulatory light chain of 

myosin by MLCP prevents actin–myosin interaction, promoting cell relaxation. This in turn 

leads to a widening of the intercellular spaces in the juxtacanalicular TM and Schlemm's 

canal, thus facilitating conventional AqH outflow and relieving IOP.
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Fig. 4. –. GC-1-directed therapy for glaucoma is pleiotrophic in its action.
Increased levels of cGMP have been shown to have pleiotrophic targets that are beneficial in 

the treatment of glaucoma, including: relaxation of the TM to increase outflow facility 

which leads to decreases in IOP; increasing blood flow to the retina, choroid and optic nerve 

head; prevention of degeneration of retinal ganglion cells through mechanisms that may 

involve downstream kinase pathways. cGMP levels in the eye can be increased in two ways: 

1) through the use of GC-1 stimulators and activators, which aim to increase production of 

cGMP; or 2) through the use of PDE inhibitors which prevent the breakdown of cGMP in 

the cell to increase bioavailability.
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Table 1.

Current IOP-lowering medications for the treatment of Glaucoma.

Type of Medication Examples Mechanism of Action Adverse Effects

Prostaglandin analogues (PGAs) Latanoprost
Travoprost
Tafluprost
Bimatoprost
Timolol

Enhanced outflow of AqH through the 
uveoscleral pathway

Conjunctival hyperemia, 
lengthening and darkening of 
eyelashes, uveitis, macular edema, 
periocular hyperpigmentation, 
increased iris pigmentation

β-Adrenergic blockers Levobunolol
Carteolol
Betaxolol
Brimonidine

Reduction of AqH production Ocular irritation, dry eyes, 
bronchoconstriction, bradycardia

α-Adrenergic agonists Apraclonidine
Dorzolamide

Decreased AqH production, Enhanced 
uveoscleral outflow of AqH

Allergic conjunctivitis, dry eyes, 
contact dermatitis, CNS effects, 
renal failure

Carbonic anhydrase inhibitors Brinzolamide
Acetazolamide (oral)
Pilcocaprine

Decreased AqH production Ocular irritation, dry eyes, metallic 
taste, nausea, renal stones

Cholinergic agonists Increased outflow of AqH through 
conventional pathway

Itching/burning/stinging of the eye, 
poor vision in dim light, temporary 
vision loss, headache, brow ache

Rho Kinase Inhibitors
Modified PGAs

Netarsudil
Latanoprost bunod (LBN)

Increased outflow of AqH through 
conventional pathway Dual mechanism: 
increased AqH outflow through 
conventional pathway (via latanoprost 
acid), and increased outflow of AqH 
through conventional pathway via nitric 
oxide release

Conjunctival hyperemia, corneal 
verticullata
Conjunctival hyperemia, punctata 
keratitis, eye pain, vision loss
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Table 2.

Ocular localization of nitric oxide synthase (NOS) and soluble guanylate cyclase (GC-1).

Gene/isoform Species Site of expression (cell or tissue) Reference

NOS1 (nNOS) Human Ciliary non-pigmented epithelium [51]

Human ONH astrocytes, lamina cribrose [44]

Monkey Amacrine cells, rod and cone photoreceptors, RGC [56]

Canine RGC [57]

Rabbit Amacrine cells, rod and cone photoreceptors, RGC [56]

Rat Ciliary process epithelium, INL, IPL, RGC layer, photoreceptors [52,63]

Murine Retinal amacrine cells [58]

Murine Retinal amacrine cells, RGC layer somata; IPL puncta [59]

Murine Müller cells [60]

Guinea pig RGC layer, INL, IPL [61]

Chicken RGC layer, INP, IPL [62]

NOS2 (iNOS) Human Macrophages in stroma and ciliary processes [46]

Human Astrocytes [64]

Chicken RPE [62]

NOS3
(eNOS)

Human Longitudinal CM fibers, TM, SC [46]

Human Retinal vasculature [44]

Human TM [47]

GC-1 Human RGC, IPL, ONL [66]

Human TM cells [67]

Rabbit Amacrine cells, bipolar cells, cone photoreceptors, RGC [56]

Murine Somata in the INL, ONL, IPL, and OPL [59]

Murine RGC, IPL, ONL [66]

Turtle Amacrine cells, bipolar cells, RGC layer, IPL [69]

ONH, optic nerve head; RGC, retinal ganglion cell; IPL, inner plexiform layer; CM, ciliary muscle; TM, trabecular meshwork; SC, Schlemm’s 
canal; ONL, outer nuclear layer; INL, inner nuclear layer; OPL, outer plexiform layer.
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