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Abstract

Mendelian randomization (MR) is defined as the utilization of genetic variants as instrumental 

variables to assess the causal relationship between an exposure and an outcome (Davey Smith & 

Ebrahim, 2003). By leveraging genetic polymorphisms as proxy for an exposure, the causal effect 

of an exposure on an outcome can be assessed while addressing susceptibility to biases prone to 

conventional observational studies, including confounding and reverse causation, where the 

outcome causes the exposure (Davey Smith & Ebrahim, 2007). Analogous to a randomized 

controlled trial where patients are randomly assigned to subgroups based on different treatments, 

in an MR analysis, the random allocation of alleles during meiosis from parent to offspring assigns 

individuals to different subgroups based on genetic variants (Davey Smith & Ebrahim, 2007). 

Recent methods use summary statistics from genome-wide association studies to perform MR, 

bypassing the need for individual-level data (Burgess et al., 2015). Here, we provide a 

straightforward protocol for using summary-level data to perform MR and provide guidance for 

utilizing available software.
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INTRODUCTION

The aim of many, if not all, observational studies is to associate an exposure and a disease or 

phenotype to eventually collect evidence to discern a causal relationship. However, 

observational associations are influenced by biases such as measured and unmeasured 

confounding, which can occur when an outside variable is associated with the exposure and 

the disease, and reverse causality and therefore can lack ability to establish a directional 

effect(Greenland, Robins, & Pearl, 1999). The principle underlying Mendelian 

randomization (MR) methodology is that such biases can be circumvented by leveraging 

genetic variants associated with an exposure as an “instrumental variable” (IV) to estimate 

the effect of genetic variation within an exposure on an outcome(Davey Smith & Ebrahim, 

2007). An IV is defined as an external variable G that is associated with the exposureXand 

independent of outcome Yas well as any factors associated with outcome Y, other than via 

Corresponding Author: Chirag J. Patel, Tel: (617) 432 1195, Fax: (617) 432-0693, Chirag_Patel@hms.harvard.edu. 

HHS Public Access
Author manuscript
Curr Protoc Hum Genet. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Curr Protoc Hum Genet. 2019 April ; 101(1): e82. doi:10.1002/cphg.82.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



X(Greenland, 2018). Genetic variants can be utilized as “IVs”, thereby serving the role of 

randomizing “exposure”.

To utilize a genetic variant as an IV, three assumptions must be satisfied(Davey Smith & 

Hemani, 2014) (see Figure 1): (i) the genetic variant must be associated with the exposure, 

(ii) the genetic variant must be independent of any confounder of the exposure-outcome, and 

(iii) the genetic variant must be independent of the outcome, except via a possible 

association with the exposure.

In the simplest MR technique (for one genetic variant), the presence of an association 

between a genetic variant and an exposure and the genetic variant and an outcome may 

imply causal effect of the exposure on the outcome(D. A. Lawlor, Harbord, Sterne, Timpson, 

& Davey Smith, 2008). MR can be performed with individual-level participant data, 

obtained from the genetic data for each participant, or with summary-level data, which 

usually contains per-allele regression coefficients and standard errors analyzed over all 

individuals within a study(Haycock et al., 2016; D. A. Lawlor, 2016). In summary data MR, 

summary-level data can either be obtained from publicly available summary level data or by 

consortia of genome-wide association studies (GWAS), or can be calculated from individual-

level participant information(Burgess et al., 2015).

MR can be performed in a “one-sample” or a “two-sample” setting. One-sample MR is 

performed when the data on the exposure and the outcome are derived from a single 

dataset(Burgess, Davies, & Thompson, 2016). Two-sample MR is performed when the data 

on the exposure and the outcome are derived from two non-overlapping and independent 

datasets, allowing one dataset to be used for performing the summary-level instrument-

exposure analysis and the other dataset for performing the instrument-outcome association 

analysis(Burgess et al., 2016; Hartwig, Davies, Hemani, & Davey Smith, 2016).

Here, we present a protocol to perform MR using summary-level data, which can be 

performed in the one-sample or two-sample setting, and we provide an RStudio markdown 

file to demonstrate how to use the TwoSampleMR package in R. The code and 

implementation of MR in the protocols below are inspired by and utilize resources provided 

by the MRC Integrative Epidemiology Unit and the MR-Base Collaboration(Hemani, 

Haycock, Zheng, Gaunt, & Elsworth, n.d.; Hemani et al., 2018).

BASIC PROTOCOL 1: Performing a Mendelian randomization analysis in R using 
summarized genetic data

In this protocol, we show how to perform MR using summary statistics using different 

methods of analysis. In the simplest method, the causal effect of the exposure on the 

outcome can be calculated by a “2-stage least-squares” (2SLS) regression, where the 

exposure is regressed on the genetic instrument, and the outcome is regressed over the 

exposure values (where linear or logistic regression is used for continuous or binary outcome 

variables, respectively)(Haycock et al., 2016).

In the inverse variance weighted (IVW) method, the causal effect of the exposure on the 

outcome for a single genetic variant can be estimated as a ratio of the association estimate 

Rasooly and Patel Page 2

Curr Protoc Hum Genet. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the outcome and the exposure (Bowden, Davey Smith, Haycock, & Burgess, 2016; 

Burgess & Thompson, 2017). For multiple independent genetic variants, the ratio estimates 

from each genetic variant can be meta-analyzed to form the overall causal estimate 

(Bowden, Davey Smith, et al., 2016; Burgess & Thompson, 2017).

MR-Egger can be used when the IV assumptions do not hold or weakly hold, and entails a 

modification to the IVW estimate calculation where the intercept term is calculated as part 

of the MR-Egger estimate, instead of setting the intercept term of the regression to zero 

(Bowden, Davey Smith, & Burgess, 2015). In MR-Egger, the intercept serves as a test for 

directional pleiotropy (meaning the genetic variants exert pleiotropic effects on the outcome)

(Burgess & Thompson, 2017). In the protocol below, we describe how to conduct an MR 

analysis using these methods and provide guidance for utilizing MR software in R in order 

to perform, interpret, and visualize results of MR analyses.

Necessary Resources

Hardware—Computer running Linux, Mac OS, or Windows

Software—R package version >= 3.1.0 (Team, 2014)

Files—GWAS summary statistics (including SNP, major allele, minor allele, allele 

frequency, effect size, standard error, p-value, and sample size) for the exposure and 

outcome of interest.

Note that GWAS summary statistics may be available in different kinds of formats-- in this 

case, look at the header of the GWAS summary statistics file and identify if the following 

data are included, at a minimum: SNP, major allele, minor allele, allele frequency, effect 

size, standard error, p-value, and sample size. Remember that some information that may be 

missing from your summary statistics file, may be present in the paper referencing the 

GWAS.

The protocol and code below was inspired by the short course offered in the Mendelian 

Randomization Conference on July 10, 2017 by the MRC Integrative Epidemiology Unit.

Protocol steps —Step annotations

1. Obtain GWAS summary statistics for your exposure (Figure 1, X) and outcome 

(Figure 1, Y) of interest. Resources such as the NHGRI-EBI Catalog(Burdett et 

al., n.d.) can be leveraged to search for and download publicly-available GWAS 

summary statistics.

2. In this approach, genetic variants are utilized as instrumental variables (IVs), or 

“instruments” for the exposure. Determine usability of GWAS summary 

statistics from Step 1 by ensuring that the instrument-exposure data and the 

instrument-outcome data have listed the effect allele, allele frequency, beta, 

standard error, p-value, and sample size (as shown in Figure 2).

3. Determine if the IV assumptions hold for conducting an MR analysis. The first 

assumption can be evaluated by linear regression of the exposure on the 
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instrument and calculating the F-statistic for your instrument (Palmer et al., 

2011; Teumer, 2018). This can be calculated as,F = N − K − 1
K * R2

1 − R2 , for N 

sample size, Knumber of genetic variants, and R2the proportion of the variance 

of the exposure explained by the IV (Burgess, Thompson, & CRP CHD Genetics 

Collaboration, 2011). An F statistic less than 10 denotes a weak instrument 

(Teumer, 2018).

The second and third assumptions are more challenging to formally validate due 

to the possibility of unknown effects(Palmer et al., 2011; Teumer, 2018). In 

assessing the second assumption, consider any potential confounding variables 

(Figure 1, U) that may play a role in the association between your exposure and 

outcome, and in assessing the third assumption, consider potential issues such as 

pleiotropy or population substructure that may serve as a violation (Palmer et al., 

2011; Teumer, 2018).

4. Run R package. Input exposure and outcome GWAS summary statistic data, 

using the read.table function.

exposure_data<-read.table(“exposure_filename.txt”, head=T,

sep=“\t”) outcome_data<-read.table(“outcome_filename.txt”,

head=T, sep=“\t”)

5. Identify instruments. Find independent SNPs that are GWAS significant (P < 5.0 

× 10−8) for the exposure and identify the effects for these “instrument” SNPs 

from the outcome GWAS. Independent SNPs that are GWAS significant for the 

exposure are “instruments” – or proxies for exposure -- in this analysis.

6. Harmonize the exposure and outcome datasets. Ensure that the effect alleles 

from both files are the same. If not, then “flip” the log odds ratio of the effect 

allele of one of the datasets (multiply by −1). Ensure that the effect in the 

exposure file reflects the trait-increasing allele.

Note that the steps listed below for the ratio of coefficients (Steps 7-8), the inverse-variance 

weighted method (Step 9), and MR-Egger (Step 10) are independent and do not have to be 

performed consecutively (the results from one analysis do not affect the results of another 

analysis).

Ratio of coefficients (or Wald) method

7. Calculate the ratio of coefficients, or the Wald ratio. This is the simplest method 

for estimating the causal effect of the exposure on the outcome, and is the 

coefficient of the genetic variant in the regression of the outcome (represented 

here as outcome_data$beta) divided by the coefficient of the genetic variant in 

the regression of the exposure (represented here as exposure_data$beta)

(Burgess, Small, & Thompson, 2017).
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wald_ratio <- outcome_data$beta/exposure_data$beta

wald_ratio_standard_error <- outcome_data$SE/exposure_data$beta

z_statistic <- wald_ratio/wald_ratio_standard_error

p_value <- 2*pnorm(abs(z_statistic) ,lower.tail=F)

Note: The Wald ratio corresponds to the log odds ratio for the outcome per unit change of 

the exposure.

8. Perform a fixed-effects meta-analysis using the Wald ratio.

effect <- sum(wald_ratio*wald_ratio_standard_error^−2)/

(sum(wald_ratio_standard_error^−2))

standard_error <- sqrt(1/sum(wald_ratio_standard_error^−2))

Z_statistic <- effect/standard_error

p_value <- 2*pnorm(abs(Z_statistic) ,lower.tail=F)

Inverse-variance weighted (IVW) method

9. Perform an inverse-variance weighted (IVW) linear regression to estimate the 

effect of the exposure on the outcome.

IVW_weights <- outcome_data$SE^−2

inverse_weighted_LR <- lm(outcome_data$beta ~ exposure_data$beta

- 1 ,weights=IVW_weights)

The command summary(inverse_weighted_LR) displays the effect, standard error, and p-

value of the exposure on the outcome.

Note that the intercept term here is zero in order to calculate the IVW estimate (Burgess & 

Thompson, 2017). In the case that a single genetic variant satisfies the IV assumptions, the 

effect of the exposure on the outcome can be estimated as a ratio of the estimated coefficient 

for the outcome to the estimated coefficient for the exposure for the genetic variant (Burgess 

& Thompson, 2017).

MR-Egger Regression

10. Perform an MR-Egger regression to estimate the effect of the exposure on the 

outcome.

MR_egger_regression <- lm(outcome_data$beta ~ exposure_data$beta,

weights=1/IVW_weights)

The command summary(MR_egger_regression) displays the effect, standard error, and p-

value of the exposure on the outcome. Note that the intercept term here is calculated in the 

MR-Egger analysis (Bowden et al., 2015; Burgess & Thompson, 2017).

Rasooly and Patel Page 5

Curr Protoc Hum Genet. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ALTERNATE PROTOCOL 1: Performing Mendelian randomization using the 

TwoSampleMR package in R.

The TwoSampleMR package in R facilitates conducting two-sample MR analyses by 

offering access to the large MR-Base repository of GWAS summary statistics and providing 

easy-to-use software for proper harmonization of datasets, estimating the causal effect using 

a range of MR methods, conducting sensitivity analyses, and visualizing results (Hemani et 

al., n.d., 2018).

This protocol and code below was inspired by the TwoSampleMR documentation provided 

by the MRC Integrative Epidemiology Unit and the MR-Base Collaboration, which can be 

found on https://mrcieu.github.io/TwoSampleMR/(Hemani et al., n.d., 2018).

Necessary Resources

Hardware—Computer running Linux, Mac OS, or Windows

Software—R package version >= 3.1.0 (Team, 2014) with the following libraries installed: 
devtools(Wickham, Hester, & Chang, 2018), TwoSampleMR(Hemani et al., n.d., 2018), 

MRInstruments(Hemani’, n.d.),and tidyverse(Wickham, 2017).

Files—GWAS summary statistics (including SNP, major allele, minor allele, allele 

frequency, effect size, standard error, p-value, and sample size) for the exposure and 

outcome of interest OR these files can be obtained by browsing through existing catalogues 

from the MR Base databases accessible through the MRInstruments package(Hemani’, n.d.). 

Note that some information that may be missing from your summary statistics file, may be 

present in the paper referencing the GWAS or may be calculated using the information in the 

file. Further note that your data can be formatted in the correct manner for use in the 

TwoSampleMR package by using the function format_data (as described in step #2 of the 

protocol below)(Hemani et al., n.d., 2018).

The .Rmd file “TwoSampleMR_protocol.Rmd” included in this manuscript will serve as a 

guide through the protocol below.

Protocol steps—Step annotations

1. Load the TwoSampleMR package in R (Hemani et al., n.d., 2018). You can 

install the

devtools package from CRAN-like repositories with the

install.packages(“devtools”) command in order to utilize the

install_github function(Wickham et al., 2018).

install.packages(“devtools”)

library(devtools)

install_github(“MRCIEU/TwoSampleMR”)

library(TwoSampleMR)
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2. Identify and obtain GWAS summary statistics. You can either obtain your own 

summary statistics or browse through the MR Base GWAS database(Hemani et 

al., 2018) (available_outcomes() can show the list of available GWASs).

External summary statistics can be read in and converted to the correct format using 

format_data. For example, the body mass index (BMI) GWAS summary statistics as shown 

in Figure 2 can be converted as follows:

exposure_converted_dataframe <- format_data(exposure_dataset,

type = “exposure”, snp_col = “SNP”, beta_col = “BETA”, se_col =

“SE”, effect_allele_col = “Tested_Allele”, other_allele_col =

“Other_Allele”, eaf_col = “Freq_Tested_Allele_in_HRS”, pval_col =

“P”, samplesize_col = “N”)

The R package MRInstruments contains data sources to search for genetic instruments that 

can be used for your MR analysis(Hemani’, n.d.). In this demonstration, we use data from 

the gwas_catalog to search for the instruments from the 2010 GWAS on BMI published in 

Nature Genetics by Speliotes et al (Speliotes et al., 2010). This data can be searched for and 

installed as follows:

devtools::install_github(“MRCIEU/MRInstruments”)

library(MRInstruments)

data(gwas_catalog)

exposure_data <- subset(gwas_catalog, PubmedID == “20935630”)

3. Ensure that your data is presented in the correct input format as required by the 

package by running the format_data function and perform linkage 

disequilibrium (LD) clumping to remove any non-independent SNPs.

exposure_data <- format_data(exposure_data)

exposure_data <- clump_data(exposure_data)

4. Extract the instrumental SNPs for your outcome of interest. In this example, we 

are using the 2014 GWAS summary statistics for type 2 diabetes susceptibility 

as published in Nature Genetics by the DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAM) consortium (DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAM) Consortium et al., 2014).

outcome_data <- extract_outcome_data(

     snps = exposure_data$SNP,

     outcomes = 23

)
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5. Harmonize exposure and outcome datasets to ensure the reference alleles from 

both datasets match. Prune your harmonized dataset. Here, the exposure and 

outcome datasets are harmonized (shown in Figure 3) and renamed as dat.

dat <- harmonise_data(

    exposure_dat = exposure_data,

    outcome_dat = outcome_data

)

dat <- power.prune(dat)

6. Perform an MR analysis (results shown in Figure 4) and specify the types of 

method in method_list() of the mr()function.

results <- mr(dat)

It is conventional to report results from multiple methods. The full list of 

available MR methods can be identified from mr_method_list().

7. Conduct sensitivity analyses. Check for heterogeneity and test for directional 

horizontal pleiotropy.

mr_heterogeneity(dat)

mr_pleiotropy_test(dat)

8. Perform a leave-one-out sensitivity analysis (by sequentially removing each SNP 

from the MR analysis and running MR) and visualize results from this 

sensitivity analysis (shown in Figure 5).

results_leaveoneout <- mr_leaveoneout(dat).

mr_leaveoneout_plot(results_leaveoneout)

plot_leaveonout[[1]]

9. Visualize MR results.

scatter_plot <- mr_scatter_plot(results, dat)

scatter_plot[[1]]

The command mr_scatter_plot(results, dat) creates a scatterplot for each exposure-outcome 

association (shown in Figure 6). A specification of the method in method_list() visualizes 

the estimated causal effect according to the specified MR method.

Additionally, a forest plot can be made to compare the MR estimates derived from the 

different MR methods (shown in Figure 7).
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single_snp_analysis <- mr_singlesnp(dat)

forest_plot <- mr_forest_plot(single_snp_analysis)

forest_plot[1]

GUIDELINES FOR UNDERSTANDING RESULTS

By leveraging a genetic approach as demonstrated in our example above, we were able to 

provide evidence in support of a positive causal effect of BMI on type 2 diabetes, which was 

consistent across all MR methods. We obtained effect sizes of 0.25, 0.18, and 0.19 for MR 

Egger, weighted median, and inverse variance weighted, respectively, which correspond to 

the estimated causal effect on type 2 diabetes per unit increase in BMI (kg/m2). In a “leave-

one-out” sensitivity analysis, where we sequentially excluded a SNP and performed MR, we 

observe that the causal estimate remains robust. The forest plot compares the estimated 

causal effects for all the SNPs as determined by MR-Egger and IVW to the estimated causal 

effect as determined per each SNP. While the MR-Egger and IVW estimates agree in our 

demonstrated example, the IVW estimate can substantially differ from the MR-Egger 

estimate, suggesting the possibility of directional pleiotropy (Burgess & Thompson, 2017). 

Directional pleiotropy is the phenomena when genetic variants affect multiple traits on 

different causal pathways, potentially resulting in a violation of the instrumental variable 

assumptions necessary for conducting an MR analysis (Burgess & Thompson, 2017). In 

summary, we highlight the utility of MR in assessing causal relationships, while accounting 

for limitations prone to many conventional observational epidemiological studies.

COMMENTARY

Background Information

The concept of utilizing IVs to examine causal effects was first introduced in econometrics 

90 years ago, and applied to disease outcomes in 1986 by Martijn Katan (Thomas & Conti, 

2004). In assessing the causal role of low serum cholesterol levels and cancer, Katan 

explained that the relationship was likely not affected by diet or other confounding factor, 

but that the relationship can be elucidated by observation of the number of cancer patients 

who carry the E-2 isoform of the apolipoprotein (ApoE) gene, which is associated with 

lower serum density lipoprotein than major isoforms E-3 and E-4 (Katan, 1986). Since then, 

there have been many studies that have attempted to assess causal relationships using MR 

for a range of exposures and outcomes, including biomarkers (i.e. C reactive protein in 

association with coronary heart disease (C Reactive Protein Coronary Heart Disease 

Genetics Collaboration (CCGC) et al., 2011)), clinical traits (i.e. BMI in association with 

cardiometabolic traits (Holmes, Lange, et al., 2014)), disease phenotypes (i.e. a range of 

biomarkers in association with coronary heart disease (Bennett & Holmes, 2017)), 

socioeconomics (i.e. educational attainment in association with coronary heart disease 

(Tillmann et al., 2017)), behavioral characteristics (i.e., alcohol consumption in association 

with cardiovascular disease (Holmes, Dale, et al., 2014)), and intrauterine effects on 

offspring outcomes (D. Lawlor et al., 2017) (i.e., maternal homocysteine levels in 

association with offspring birthweight (Lee et al., 2013)).Results from these studies attempt 
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to assess causality for a broad range of exposures and have shown feasibility of use of MR to 

explore promising areas for therapeutic intervention.

For example, an MR study demonstrated that genetic variants in the gene encoding the target 

of statin therapy, HMG-CoA reductase or HMGCR, is associated with increased risk for 

type 2 diabetes and related traits such as higher body weight and waist circumference, 

highlighting a potential pharmacological application of MR(Swerdlow et al., 2015). In 

another example, MR was used to determine that tobacco smoking may cause a reduced 

BMI and a higher resting heart rate, but did not find a strong causal association between 

smoking and adverse blood pressure, serum lipids, and glucose levels(Åsvold et al., 2014). 

MR promises to be a valuable method for identifying disease risk factors and areas for 

intervention and can be leveraged to inform public health policy.

Critical Parameters

There are a number of statistical and methodological challenges and limitations to MR that 

have been discussed at length in other articles (Burgess, 2012; Haycock et al., 2016; 

VanderWeele, Tchetgen Tchetgen, Cornelis, & Kraft, 2014). Possible limitations include 

linkage disequilibrium (i.e., when different loci within a population have correlated allelic 

states(D. A. Lawlor et al., 2008)), population stratification (i.e., when a population can be 

broken into subpopulations that exhibit different frequencies of genetic variants or 

disease(D. A. Lawlor et al., 2008)), or pleiotropy (i.e., when a genetic variant is associated 

with more than one phenotype(D. A. Lawlor et al., 2008)). Challenges may arise from 

utilizing a weak instrument (F statistic less than 10), or from situations where the core 

assumptions are violated or weakly satisfied, and even from cases where the core 

assumptions are satisfied, but an external factor is at play (i.e., canalization) (Zheng et al., 

2017). In fact, the development of novel MR approaches and extensions to the conventional 

methodology to account for these limitations is a rapidly growing field (Bowden, Del Greco 

M, et al., 2016; Bowden et al., 2017, 2018; van Kippersluis & Rietveld, 2017; Verbanck, 

Chen, Neale, & Do, 2018).

For a description of potential limitations that may affect interpretation of MR findings and 

recommended practices in those situations, we recommend referring to Table 2 from a 

review article by Zheng (Zheng et al., 2017) and Table II from Lawlor (D. A. Lawlor et al., 

2008). We also recommend referring to Table 2 from the review article by Burgess for 

descriptions of various sensitivity analyses and situations where they would be of relevance 

(Burgess, Bowden, Fall, Ingelsson, & Thompson, 2017).
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Significance Statement

Conventional observational epidemiological studies aimed at assessing the effect of a 

modifiable exposure on a disease phenotype can be subject to confounding such as 

reverse causation, where the disease precedes the exposure(Smith & Ebrahim, 2002). A 

technique termed ‘Mendelian randomization’ (MR) can overcome this limitation by 

leveraging genetic variants such as single-nucleotide polymorphisms (SNPs) as 

instrumental variables to estimate exposure-outcome associations (Smith & Ebrahim, 

2004). Summary statistics from genome-wide association studies (GWAS) facilitate 

conducting an MR analysis without the need for costly direct genotyping or obtaining 

individual-level data (Burgess et al., 2015). We describe here a protocol for assessing 

exposure-outcome associations in an MR framework using published GWAS summary 

statistics.
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Figure 1. 
Directed acyclic graph depicting the IV assumptions for conducting Mendelian 

randomization. G, the genetic variant, must be (i) associated with exposure X, (ii) 

independent of any confounder U, and (iii) independent of outcome Y.
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Figure 2. 
Shown are the first few rows of the body mass index GWAS summary statistics published 

from the UK Biobank and The Genetic Investigation of ANthropometric Traits (GIANT) 

Consortium meta-analysis(Yengo et al., 2018).
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Figure 3. 
Shown are the first few rows of the harmonized dataset.
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Figure 4. 
The causal effects, standard errors, and p-values obtained from the MR analysis using the 

default methods of MR Egger, weighted median, inverse variance weighted, simple mode, 

and weighted mode, are shown.
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Figure 5. 
The results from the leave-one-out sensitivity analyses are shown on the scatterplot. The 

estimated causal effect is shown for each excluded SNP and the overall estimate using all the 

SNPs is shown in red. The error bars represent the 95% confidence intervals.
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Figure 6. 
The scatterplot suggests a positive causal relationship of the SNP effects on BMI against the 

SNP effects on type 2 diabetes. Each point displayed on the graph represents a single genetic 

variant. The horizontal and vertical lines extending from each point represent the 95% 

confidence interval for the genetic associations. The horizontal axis of the graph displays the 

estimated genetic associations with the exposure (BMI), and the vertical axis displays the 

estimated genetic associations with the outcome (type 2 diabetes). The color of the lines 

indicate the type of MR test used (light blue for inverse variance weighted, dark blue for MR 

Egger, light green for simple mode, dark green for weighted median, and red for weighted 

mode).
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Figure 7. 
The forest plot shows the causal estimate using each SNP alone as well as the overall causal 

estimate using all the SNPs with MR-Egger and IVW. The error bars represent the 95% 

confidence intervals.
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