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Abstract

We present a statistical inference model for the detection and characterization of outbreaks of 

hospital associated infection. The approach combines patient exposures, determined from 

electronic medical records, and pathogen similarity, determined by whole-genome sequencing, to 

simultaneously identify probable outbreaks and their root-causes. We show how our model can be 

used to target isolates for whole-genome sequencing, improving outbreak detection and 

characterization even without comprehensive sequencing. Additionally, we demonstrate how to 

learn model parameters from reference data of known outbreaks. We demonstrate model 

performance using semi-synthetic experiments.
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1. Introduction

Hospital-associated infections (HAIs) are an unfortunate reality in the hospital setting. The 

Centers for Disease Control and Prevention estimated that 722,000 HAIs occurred in the 

U.S. acute care hospitals in 2011, resulting in 75,000 deaths [23]. Some HAIs represent 

hospital-associated transmission (HAT), in which bacteria or other pathogens are transmitted 

in the hospital. In addition, because of HAI case definitions, not all HAT is considered to be 

HAI.

Under the current standard of practice, investigation into potential instances of HAT are 

conducted in response to reports of suspicious infections by hospital staff or review of HAIs 

by infection prevention teams. Review of HAIs can identify circumstantial similarities 

among infection cases and exposures that may be indicative of HAT [12, 1]. This process 

may be iterative, working from an initial group of suspicious infections and adding or 

removing cases as evidence is accumulated. Evidence for common exposure is often found 

by reviewing electronic medical records (EMR), which can be labor intensive for complex 

hospital stays involving, for example, a patient being housed in different locations within the 

hospital or involving multiple medical procedures. High levels of genetic similarity across 

pathogens is often indicative of possible transmission, though whether such infections 

constitute HAT is contingent on the nature of their relationship. For example, transmission 

may have occurred at a common long-term care facility prior to arrival at the hospital. While 

understanding such instances may be clinically relevant they may not be considered HAT.

Due to falling costs and high discriminatory power, it is becoming feasible to use whole 

genome sequencing (WGS) as a basis for measuring genetic similarity of pathogens in 

clinical practice. A common measure of genetic similarity during outbreak investigations 

involving HAT is the single-nucleotide polymorphism (SNP) differences between bacterial 

isolates. Sequencing environmental or device isolates is commonly performed to adjudicate 

hypothesized root-cause exposures [24]. Upon identification of the root-cause, infection 
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prevention teams can intervene to mitigate subsequent transmission and, ideally, similar 

outbreaks in the future. Interventions may include removing a contaminated device from 

clinical service, sanitizing contaminated hospital environments, educating healthcare 

personnel to improve infection prevention practice, or other suitable actions.

There is a need to improve HAT identification [1, 28] and root-cause analysis to reduce the 

risk of outbreaks going unnoticed and to reduce the time between launching an investigation 

and root-cause identification, thus allowing timely and effective interventions. We present a 

statistical framework for analysis of HAT that (i) comprehensively monitors patient 

exposures and clinical microbiology records to detect cases of HAT, (ii) probabilistically 

ranks potential root-causes, and (iii) suggests which patients’ isolates to submit for WGS to 

maximize performance on tasks (i) and (ii) under budgetary and resource constraints. We 

demonstrate the performance of our proposed approach using semi-synthetic data 

experiments. Our results suggest that the proposed approach to monitoring may be 

operationally effective at improving HAT detection and investigation in practical settings.

The remainder of the document is structured as follows. In Section 2 we review related 

work, Section 3 presents our model and methods for inference, Section 4 demonstrates the 

approach on semi-synthetic simulations constructed from known historical outbreaks. 

Finally, Section 5 concludes with some remarks on the strengths and weaknesses of the 

approach, issues to consider for deployment, and alternative strategies.

2. Related Work

The concept of ‘outbreak’ can mean either an unexpected increase in the number of disease 

cases, or the introduction of a pathogen strain into a particular environment [12]. Here we 

use the term, as does much of the related literature, in the latter sense. The related literature 

largely breaks down along lines of outbreak detection and outbreak characterization. 

Outbreak detection methods often use primarily count based statistics to identify groups of 

patients for whom the number of infections is unusually large [10]. Outbreak 

characterization methods primarily focus on reconstructing the transmission tree for a given 

outbreak. Little work is apparent at the intersection of these two viewpoints, in particular 

when the number of cases per incident is very small.

2.1. Bio-surveillance

de Bruin et al. [7] review 27 early electronic HAI surveillance systems for effectiveness. The 

authors focus on how data sources leveraged by these systems correlate with reported 

performance. It was noted that increased use of EMR was correlated with a shift toward 

increased sensitivity and decreased specificity. Hota et al. [17] translated manual chart 

review processes for bloodstream infection into an automated algorithm. The authors 

identified heterogeneous nomenclatures and a lack of standardized data as a major 

challenge. Other studies have demonstrated that electronic surveillance out performs manual 

efforts while reducing overall effort [6, 31]. Yet, it has been pointed out that automated 

systems may miss cases in which critical evidence, such as remarks in physician’s 

narratives, are not included in the electronic analyses [31].
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Deng et al. [8] reviewed the use of WGS in bio-surveillance in the food industry. The 

authors point toward cases in which the combination of WGS and epidemiological data were 

able to improve precision of investigative efforts; ruling out potential causes that looked 

plausible based on epidemiological data alone. Hill et al. [15] used simulation to study the 

benefit of combining WGS with epidemiological data, in the form of tracking individual 

food units. The authors stressed the importance that the epidemiological data be relevant; 

capturing important system dynamics.

Stachel et al. [29] evaluated WHONET [32] in combination with SaTScan [27] (WHONET-

SaTScan) as a tool for combining EMR and microbiological culture data for outbreak 

detection. The approach is to find spatio-temporal regions in which the number of observed 

infections is significantly higher than expectation, based on comparable baselines derived 

from the outside of the region of interest. The analysis considered cultures collected not less 

than 3 days after admission and analyzed hospital, unit, and service lines as spatial 

dimensions. Identified groups of patients were escalated for investigation if they met 3 of 6 

criteria that included common exposure and pathogens with similar antibiotic susceptibility 

profiles.

Grad and Lipsitch [12] discuss in detail many of the issues and opportunities at the heart of 

outbreak detection and characterization from the perspective of public health. The need to be 

robust is a common theme across issues of sampling, genetic measurements, data and 

analysis development, and inference. Often many sources of information may be incomplete, 

inference may be incorrect or uncertain, and there may be privacy and legal concerns.

2.2. Transmission tree reconstruction

Largely motivated by falling costs for WGS, recently there has been significant interest in 

using high precision genomic techniques in combination with epidemiological data to 

characterize outbreaks of infectious disease. These efforts have largely focused on 

reconstructing the transmission tree from observed data. Generally, these methods do not 

focus on root-cause analysis. Unless health-care workers, devices, linens, and other 

environmental factors are sampled, they will not be included in the reconstructed 

transmission tree and any outbreak stemming from such potential causes will not be 

correctly explained by the transmission tree alone. A notable exception is [9] which accounts 

for partially observed outbreaks with unsampled “hosts.” However, to the extent that patient-

to-patient transmission can be reliably identified, some potential root-causes may be ruled 

out. We view this body of literature as germane to outbreak detection and characterization, 

but a full review of this literature is beyond the scope of this paper. For relevant reviews, we 

refer the reader to Ray et al. [26] and Hatherell et al. [14].

Cottam et al. [4] and Cottam et al. [5] have been pointed to as seminal papers in the 

combination of molecular and epidemiological data for outbreak characterization [26, 21]. 

Cottam et al. [5] developed a probability model describing the likelihood of farm-to-farm 

virus transmission that incorporated known infection timings. The authors demonstrate that 

the addition of the epidemiological data significantly increases the power of inference over 

genetic evidence alone. Jombart et al. [19] use a maximum weight spanning tree approach 

constrained to respect time ordering of isolates. Lapidus and Carrat [22] developed a 

Miller et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probabilistic model based on contacts between infected subjects and chronology of disease 

symptoms to infer likely transmission trees. More recently, many authors have employed 

Bayesian modeling and the accompanying Markov Chain Monte Carlo (MCMC) sampling 

methods to perform inference over transmission trees [35, 13, 20, 25]. Such models usually 

include mathematical terms that describe the likelihood of the infected population and 

measured pathogen similarities under a supposed transmission tree. MCMC sampling is then 

conducted to make inferences (usually on the transmission tree), such as finding the most 

likely tree.

Worby et al. [34] introduced a geometric-Poisson model for inferring the likelihood of SNP 

distance between pairs of isolates in the same outbreak based on the time of lineage 

divergence, sampling times, and expected time of coalescence. The authors demonstrate that 

probabilistic reasoning using the model outperformed previous graph based [19] and 

Bayesian [20] approaches at identifying cases of direct transmission. The authors note that 

the method performs best when there is a high mutation rate. However, other studies have 

suggested that outbreaks, in fact, tend to have low genetic diversity [19, 3].

Worby et al. [35] propose a full Bayesian model for computing the posterior probability of 

transmission routes. The model relaxes several assumptions common in prior work including 

known infection times, fully connected transmission trees, and presumed irrelevance of the 

uninfected population. Similar to [34], it assumes either a Poisson or geometric distribution 

on SNP distances. The model further assumes homogeneous mixing of patients within a 

hospital, modeling the transmission likelihood using an exponential distribution. The authors 

explore the improvements that can be gained by considering shared genetic variants when 

computing genetic similarity.

Frequent criticisms of the above approaches include that they require densely sampled 

genetic data (most/all of the constituent individuals in an outbreak), either require a model of 

within-host diversity (which may not be known) or fail to account for within-host diversity, 

and ignore individuals who avoided infection [12, 35, 26, 14]. Didelot et al. [9] relaxes the 

need for dense genetic sampling, improving the utility of transmission tree inference for 

ongoing outbreak investigation.

3. Methods

As noted above, a number of researchers have observed that WGS based measures of 

pathogen similarity cannot resolve all of the uncertainty in the transmission tree. To use 

WGS most advantageously, proper models of within- host population dynamics, within-

environment population dynamics, and transmission bottleneck sizes, are required. Further, 

the genetic similarity of distinct lineages of a given pathogen are a function of the local 

environment. Unfortunately, the necessary information to account for these factors may not 

be wholly available for most pathogens and/or environments a priori. Furthermore, in this 

application, important portions of the available epidemiological data can be expected to be 

co-opted from existing data streams designed to serve other purposes (e.g. billing). 

Therefore, the derived epidemiological data may be coarse, incomplete, or otherwise 

suboptimal for HAT detection and root-cause analysis. Finally, recent studies have pointed to 
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high degrees of uncertainty in resolving transmission trees from genetic data, due to low 

within-outbreak genetic diversity [34, 3].

We therefore attempt to find a middle ground between exploiting the available genetic and 

epidemiological data, and being robust to those issues. We accomplish this in two ways. 

First, we do not try to infer the complete transmission tree. Since we are primarily concerned 

in HAT detection and secondarily in root-cause identification, the underlying transmission 

tree is only of tertiary interest. Second, we use machine learning approaches to learn, from 

historical examples, the within-outbreak transmission probabilities conditioned on the 

observed epidemiological data. This allows the model to incorporate and contextualize the 

epidemiological information without being overly constrained by it.

For the semi-synthetic experiments performed here, epidemiological data include admission, 

discharge, and isolate collection dates, room and unit occupancy, as well as the date and type 

of each procedure undergone by each patient. We refer to these pieces of information as 

EMR data. Genetic data include pathogen species and antibiotic resistance profiles. Since 

species identification and measurement of antibiotic resistances are routine in most 

hospitals, we include these elements in our reference to EMR data. Our experiments 

consider exposures to 245 of the most common procedures and procedure groups. We refer 

to pairwise SNP distances as WGS data. In the simulation experiments presented here, the 

EMR data used are real-world and the WGS data are generated synthetically.

3.1. Direct/Indirect Transmission Outbreak (DITO) model

We propose a simple inference model for outbreak detection and characterization. The 

model considers only the top of the transmission tree, i.e. those patients infected by the root-

cause, leaving the remainder of the tree undefined. We show how the structure of this model 

allows analytic maximization or marginalization over the set of patients infected by the root-

cause. This approach results in a flexible probabilistic model with which the presence of an 

outbreak, as well as its constituent patients and root-cause can be inferred simultaneously.

We begin by introducing some notation. Let ℐ denote a set of infected patients, for example: 

all patients with a positive culture for a common species of bacteria within a fixed window 

of time (analysis window). Let 𝒪r ⊆ ℐ be a decorated1 set of patients who are part of an 

outbreak with root-cause r. Here, we presume a single outbreak, though our methods can be 

extended to multiple concurrent outbreaks. Let εr be the set of patients exposed to the root-

cause, which infects patients upon exposure with probability θ. The set εr includes non-

infected patients as well as infected patients. Infected patients are only included in εr if they 

were exposed to the root-cause before their positive culture (time of isolate collection). 

Then, the set a ⊆ 𝒪r ∩ εr identifies the patients in the outbreak who were infected by the root-

cause. For each patient i ∈ ℐ, we denote the probability that patient i was infected by a not-

1𝒪r is a set of patients with the property that for each i ∈ 𝒪r, either patient i was infected via r or there exists a j ∈ 𝒪r, j ≠ i, such 

that patient i was infected by patient j.
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HAT cause as ηi. We denote the probability that patient i ∈ 𝒪r was infected by intermediate 

transmission (indirect) as γi.

The probability ηi can be an arbitrary function of patient i’s characteristics (e.g. age, gender, 

medical history, and/or co-morbidities) and is assumed to not depend on a, or θ. The 

probability γi is also assumed to not depend on a or θ, but can otherwise be a function of the 

specific outbreak instance 𝒪r. This might include isolate collection time, the size of the 

outbreak, co-residence with previously infected within-outbreak patients, and/or patient 

specific characteristics. For the purposes of our experiments, we take ηi and γi to be 

constants, but treat them as general functions in the following presentation. In Section 3.2 

we demonstrate how these functions can be determined from historical outbreak data using 

machine learning.

We take 𝒮 to denote some notion of infection similarities. These similarities may be derived 

from WGS (e.g. SNP distance), or antibiotic susceptibility patterns, or some combination of 

the two. Following [35], we treat pairwise similarities as mutually independent, conditioned 

on whether the infections are of common origin. Let Si, j
+  be the probability of the observed 

similarity between the infections of patients i and j conditioned on i, j ∈ 𝒪r. Let Si, j
−  be the 

probability of the observed similarity otherwise (i.e. i and j not both in 𝒪r). S
+ and S− are 

assumed to not depend on a or θ. Here, we treat them as fixed (i.e. independent of 𝒪r) 

symmetric matrices with Si, i
+ = Si, i

− = 1. Under these assumptions, the probability of 𝒮 is 

modeled as

ℙ(𝒮 ∣ ℐ, 𝒪r) = ∏
i, j ∈ ℐ, i < j

[Si, j
+ 𝟙{i, j ∈ 𝒪r} + Si, j

− (1 − 𝟙{i, j ∈ 𝒪r})], (1)

where 𝟙{ ⋅ } is the indicator function.

Under this framework, there are three possible explanations for each patient infection; non-

HAT (i ∈ ℐ ∖ 𝒪r), infected through the particular root-cause (i ∈ a), or infected by 

intermediate transmission within the outbreak (i ∈ 𝒪r ∖ a). The probability of observing the 

infected patient population given these explanations is given by

ℙ(ℐ ∣ 𝒪r, a, θ) = θ ∣ a ∣(1 − θ)
∣ εr ∖ a ∣ ∏

i ∈ 𝒪r ∖ a
γi ∏

i ∈ ℐ ∖ 𝒪r

ηi . (2)

Combining (1) and (2), the probability of the observed data and likelihood ratio are given by
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ℙ(𝒮, ℐ ∣ 𝒪r, a, θ) = ℙ(𝒮 ∣ ℐ, 𝒪r, a, θ)ℙ(ℐ ∣ 𝒪r, a, θ)

= ℙ(𝒮 ∣ ℐ, 𝒪r)ℙ(ℐ ∣ 𝒪r, a, θ)

ℙ(𝒮, ℐ ∣ 𝒪r, a, θ)
ℙ(𝒮, ℐ ∣ 𝒪r = ∅ . ) = θ ∣ a ∣(1 − θ)

∣ εr ∖ a ∣ ∏
i ∈ a

1
γi

∏
i ∈ 𝒪r

γi
ηi

∏
i, j ∈ 𝒪r, i < j

Si, j
+

Si, j
− .

(3)

Equation (3) represents the likelihood ratio of the observed data under an outbreak to the 

null hypothesis; 𝒪r = ∅. where ℙ(𝒮, ℐ ∣ 𝒪r = ∅ . ) = ∏i, j ∈ ℐSi, j
− ∏i ∈ ℐ ηi. Considering this 

ratio cancels out terms corresponding to non-outbreak patients. In the presence of an 

outbreak we expect to find an 𝒪r and a that cause (3) to give a high value. Whereas in the 

absence of an outbreak we expect that one cannot find both a set of patients with high 

infection similarities ∕
Si, j

−
Si, j

+
. and a root-cause r with few negative exposures ∣ εr ∖ a ∣ and 

high coincidence ∣a∣. We therefore infer the presence, cause, and constituents of an outbreak 

by maximizing (3). To perform maximum likelihood inference, we will need to maximize 

(3) over 𝒪r, a, and θ. We will maximize over a and θ analytically and then turn to numerical 

methods to complete the inference. Additionally, in Section 3.3 we require the probability of 

an outbreak 𝒪r to optimize a decision reward function. This too can be computed 

analytically by assuming e.g. uniform priors and marginalizing over a and θ. It is toward 

these two tasks that we turn our attention now.

Maximizing over a and θ.—The θ terms in (3) take their maximal value at 

θ⋆ = ∕ ∣ εr ∣
∣ a ∣ . For any fixed ∣a∣, ∏i ∈ a ∕γi

1  can be maximized by taking the first ∣a∣ 

patients sorted by γi in ascending order. Therefore (3) can be maximized in a and θ in 

𝒪( ∣ 𝒪r ∣ log ∣ 𝒪r ∣ ) time, assuming the γi can be computed efficiently, by first sorting the 

patients in 𝒪r and then iterating over values of ∣a∣ from 1 to ∣ 𝒪r ∩ εr ∣. Note that a = ∅ is a 

degenerate solution, and is disallowed. Supposing the patients are sorted by γi, let a* be the 

value of ∣a∣ that maximizes (3). Then, the contribution due to the choice of route r is

∏
i = 1

a⋆
1
γi

a⋆

∣ εr ∣
a⋆ ∣ εr ∣ − a⋆

∣ εr ∣

( ∣ εr ∣ − a⋆)

(4)

and (3) takes the value P*:
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P⋆(𝒪r) = ∏
i ∈ 𝒪r

γi
ηi

∏
i, j ∈ 𝒪r, i < j

Si, j
+

Si, j
− ∏

i = 1

a⋆
1
γi

a⋆

∣ εr ∣
a⋆ ∣ εr ∣ − a⋆

∣ εr ∣

( ∣ εr ∣ − a⋆)

. (5)

Marginalizing over a and θ.—Integrating over θ gives the Beta function. Since ∣a∣ and 

∣ εr ∖ a ∣ are integers, we have ∫ 0
1θ ∣ a ∣(1 − θ)

∣ εr ∖ a ∣
dθ = ( ∣ εr ∣ + 1)

∣ εr ∣
∣ a ∣

−1
. It remains to 

sum over values of a. We first consider sets of fixed cardinality. Let 

ξm = ∑a, ∣ a ∣ = m ∏i ∈ a ∕γi
1 , then

ℙ(𝒮, ℐ ∣ 𝒪r)
ℙ(𝒮, ℐ ∣ 𝒪r = ∅ . ) = 1

( ∣ εr ∣ + 1) ∏
i ∈ 𝒪r

γi
ηi

∏
i, j ∈ 𝒪r, i < j

Si, j
+

Si, j
− ∑

m = 1

∣ 𝒪r ∩ εr ∣

ξm
∣ εr ∣

m

−1
. (6)

As it happens, the vector ξ can be computed efficiently by adapting a discrete Fourier 

transform based approach proposed by [16]. In brief, we define a vector x, with elements 

xl = 1
∣ 𝒪r ∩ εr ∣ + 1 ∏ j = 1

∣ 𝒪r ∩ εr ∣
1 + 1

γ j
exp 2πl −1

∣ 𝒪r ∩ εr ∣ + 1 , l = 0, …, ∣ 𝒪r ∩ εr ∣. Then, ξ is given by 

the discrete Fourier transform of x. In this way, ∑m = 1
∣ 𝒪r ∩ εr ∣

ξm
∣ εr ∣

m

−1
 can be computed in 

𝒪( ∣ 𝒪r ∩ εr ∣2 ) time. Again, a = ∅ is a degenerate case, and so the summation begins at m = 

1.

3.2. Learning

Here, we demonstrate how the component probability functions of our model can be learned 

from historical data to better adapt the method to the local operating environment. There are 

four functions that need to be learned: ∕
Si, j

−
Si, j

+
 based on antibiotic resistance profiles, 

∕
Si, j

−
Si, j

+
 based on SNP distance, ηi, and γi.

In our empirical data, not all bacterial isolates are tested for resistances to all antibiotics, 

moreover resistance information is often missing. Additionally, the number of known HAT 

outbreaks is small. In this situation, it is prudent to use a simple model that treats missing 

values as uninformative, such as a simple naïve Bayes model. For a given pair of bacterial 

isolates and antibiotic indexed by k, let ck ∈ {−1, 0, 1} indicate whether the pair are both 

susceptible (ck = −1), both resistant (ck = 1), or one is susceptible while the other resistant 

(ck = 0). The probability of ck given that the pair of patients were part of the same outbreak 

ℙ(ck ∣ y = 1) (y denotes whether the pair is part of the same outbreak) can be estimated from 
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historical outbreaks data. Similarly, the probability given that the pair of patients were not 

part of the same outbreak ℙ(ck ∣ y = 0) can be estimated by randomly sampling pairs. If 

outbreaks are rare, most such randomly assembled pairs will not be part of the same 

outbreak. We use Laplace smoothing to estimate the probabilities. Finally, we calibrate the 

estimated likelihood ratio using a logistic function. Specifically, this means we define 

zi, j = ln ∏k
ℙ(ck ∣ y = 1)
ℙ(ck ∣ y = 0) , then fit a logistic regression model to labeled pairs and take

ln
Si, j

+

Si, j
− = α2zi, j + α1 − ln ( ∕1 − p

p ), (7)

where α are the logistic regression coefficients and p is the proportion of positive pairs in the 

training data. Equation (7) follows from 

∕ℙ(x ∣ y = 0)
ℙ(x ∣ y = 1) = ∕ℙ(y = 0 ∣ x)ℙ(y = 1)

ℙ(y = 1 ∣ x)ℙ(y = 0) , and we take 

ℙ(y = 1 ∣ zi, j) = [1 + exp( − α2zi, j − α1)]−1 where y = 1 indicates within-outbreak and y = 0 

otherwise.

To compute ∕
Si, j

−
Si, j

+
 using SNP distance, we can take exactly the same approach, except we 

exchange zi,j in (7) for the SNP distance. This approach is directly related to the importation 

structure model proposed by [35] as a generative-discriminative pair; the importation model 

being the generative model. Both methods result in linear log-likelihood ratios.

Under the assumption that infections are common, but outbreaks are rare, one could use the 

probability of developing an infection as proxy ground truth to fit ηi. However, labels used 

for its estimation ought to be in good supply. One could fit any calibrated classification 

model to such proxy. Here we take ηi to be a constant, as thus take its value to be the mean 

proportion of patients who are infected.

The strategy we use to learn γi is to select its parameter values in such a way as to best 

differentiate the true root-cause from alternatives. For a fixed set of outbreak patients, only 

the θ and ∕γi
1  terms depend on the choice of route. Using historical outbreak data, we create 

a route score for each candidate route r, normalizing by outbreak-size, as

max
a ⊆ 𝒪r, θ

1
∣ 𝒪r ∣ ln θ ∣ a ∣(1 − θ)

∣ εr ∖ a ∣ ∏
i ∈ a

1
γi

= − ∑
i = 1

ar
⋆

ln γi
∣ 𝒪r ∣ +

Cr
∣ 𝒪r ∣ , (8)

where Cr = ar
⋆ ln (

ar
⋆

∕ ∣ εr ∣) + ( ∣ εr ∣ − ar
⋆) ln(

( ∣ εr ∣ − ar
⋆)

∕ ∣ εr ∣ ) is a constant in the 

parameters of γi. The patients in 𝒪r are taken to be the true (or known) outbreak population, 
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regardless of the value of r. The parameter values of γi can then be learned using appropriate 

loss function (e.g. logistic loss) and optimization techniques. Dividing by ∣ 𝒪r ∣ is a heuristic 

to make distinct outbreaks comparable for the purposes of learning. Here, we take γi to be 

constant, and so using logistic loss reduces to fitting a logistic regression model with a two 

column design matrix Xr, . =
Cr

∣ 𝒪r ∣ ,
−ar

⋆

∣ 𝒪r ∣ . That is, let 

ℙ(yr = 1; α) = [1 + exp(
ar

⋆

∣ 𝒪r ∣α1 −
Cr

∣ 𝒪r ∣α0)]−1 and take γi = exp ( ∕α0

α1 ).

3.3. Inference

WGS recommendations..—We assume some information on strain similarity is 

available routinely. For example, antibiotic resistance profiles are routinely available in the 

experiments presented here. It is expected however, that WGS can provide measures of 

similarity (e.g. SNP distance) that are more precise, by which we mean better able to 

discriminate within-outbreak pairs from unrelated pairs. The availability of precise 

comparisons improves the quality of inference both in detection and characterization. We 

now demonstrate how our model can be used to give recommendations regarding which 

isolates ought to be selected for WGS given a fixed budget. We define a reward function 

ℝ(d, 𝒪r) which measures the reward one would receive if a set of patients d was selected, 

given 𝒪r is the true outbreak. One choice of reward measure might be the estimated increase 

in detection performance. Here we take ℝ(d, 𝒪r) = max{1 − 2
3 ∣ d ∩ 𝒪r ∣ + 1

3
−1, 0} which 

serves to illustrate the approach. A reward function of this form saturates as more is learned 

about the outbreak mimicking an expected diminishing returns in the information gained 

about the root-cause. This encodes an exploitation versus exploration trade-off in a thusly 

established search strategy. Finally, we recommend d⋆ = argmaxd 𝔼𝒪r
[ℝ(d, 𝒪r)] under the 

constraint that ∣d∣ ≤ K, where K is the budget (measured in number of WGS samples). To 

estimate the expected value we use (6) to perform importance sampling, described in 

Appendix B.

Maximum likelihood..—We use the above model to solve two inference problems. The 

first is to detect and characterize outbreaks, the second is to recommend isolates for whole-

genome sequencing (not necessarily executed in that order). For detection and 

characterization we use a maximum likelihood approach, which means we must find the set 

of patients and route 𝒪r that maximize (5). The pairwise similarity terms introduce a bilinear 

term with binary constraints in the logarithm of (5). Optimizing bilinear forms with binary 

constraints is known to be NP-complete [11]. The remaining terms are convex in a* when γi 

is constant. The result is that (5) is difficult to maximize.

We propose two remedial approaches. For both methods, we consider a set of patients and 

then maximize over routes by brute force as follows. If γi does not depend on r, then γi can 

Miller et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be computed and patients sorted once for the set. Maximizing over r requires computing (4), 

which involves a set intersection to get 𝒪r ∩ εr and a linear scan to find a*.

The first approach is a heuristic optimization strategy. For each choice of likelihood cutoff τ, 

we collect the sets of patients who are jointly connected by pairs where ∕
Si, J

−
Si, j

+
> τ. Each 

such connected component is a candidate outbreak patient set. We sweep over all values of τ 
and then take the set of patients that yields maxr P

⋆(𝒪r). Finally, a rank of routes is produced 

by fixing the patient set and ordering the routes according to P⋆(𝒪r). The second approach 

for optimizing over the patient set is to use cross-entropy optimization [2]. This is a simple 

general purpose stochastic strategy that has been shown to perform effectively, even on NP-

complete problems [2]. In brief, outbreak patient sets are drawn by sampling patients 

without replacement. The proposal distribution is a mixture (in our experiments, we use 5 

components) of patient-probability vectors. The top 25% of samples, ranked by maxr P
⋆(𝒪r)

are then used to update the proposal distribution until convergence. We perform cross-

entropy optimization using the complete infected patient population ℐ, and again for each 

cluster obtained by performing spectral clustering on the ℐ using the ∕
Si, j

−
Si, j

+
 as the 

adjacency matrix (obtaining 15 clusters). We take the highest value over all clusters. This 

addendum is a simple heuristic strategy to focus additional effort on promising portions of 

the solution space.

We refer to the method of optimizing P⋆(𝒪r) using cross-entropy optimization as ‘DITOc,’ 

since it uses comprehensive WGS. The heuristic connected-component method is referred to 

as ‘DITOH
c ’. Optimizing P⋆(𝒪r) using only antibiotic resistance based similarities (i.e. no 

WGS) is referred to as ‘DITO0.’ Recommending 10 isolates for WGS prior to inference by 

means of d⋆ = argmaxd 𝔼𝒪r
[ℝ(d, 𝒪r)] is referred to as ‘DITO10.’

3.3.1. Baseline methods—We introduce four baseline methods to quantify the benefits 

of using the EMR data together with the WGS data. As our point of departure, recall that the 

DITO model uses WGS and/or similar data such as antibiotic susceptibilities to quantify the 

likelihood of a common origin through the Si, j
+ ∕ Si, J

−  terms, and EMR data to determine 

exposure and approximate time of infection used to infer the sets of patients a and ℰr. The 

first baseline method uses no genetic data; we set Si, j
+ ∕ Si, J

− = 1, we call this ‘ExpR’ since it 

considers only exposures. The second method uses no EMR; we optimize 

∏i ∈ 𝒪r

γi
ηi

∏i, j ∈ 𝒪r, i < j
Si, j

+

Si, j
−  instead of (5), which is accomplished using either cross-entropy 

optimization or the above heuristic. We call these ‘SIM’ when using cross-entropy 

optimization and ‘SIMH’ when using the heuristic optimization. Finally, to demonstrate the 
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performance of a pipeline inference strategy we rank routes by (4) using the outbreak patient 

population inferred by SIM, which we refer to as ‘SIM+(4)’.

Finally, we use CODA [18]; a CUSUM control charting method for detecting unexpected 

increases in a count of events, popular in bio-surveillance applications. Let Ct be the number 

of events in a fixed-width sliding window ending at time t. Here we take Ct to correspond to 

the number of pairs of patients with pairwise SNP distance less than a cutoff τ in a 7-day 

window. Let μt and σt be the mean and standard deviation for event counts at ‘similar’ times, 

learned from historical data. Here we take μt and σt to correspond to the mean and standard 

deviation of Ct in the same month of the previous 2 years. Then the control charting score 

CODAt is computed as

CODAt = max CODAt − 1 + 1
σt

(Ct − μt − σt), 0 , (9)

with CODA0 = 0. An outbreak alert is generated if CODAt rises above a decision threshold. 

The SNP cutoff τ can be chosen by maximizing Area Under Receiver Operating 

Characteristic (AUC) on historical outbreaks. The optimal cutoff turns out to be 0 for our 

simulations. We refer to ‘Coda0’ as the CODA algorithm run on count of pairwise SNP 

distances equal to 0, ‘Coda∞’ as the CODA algorithm run on count of pairs, and ‘Coda#’ as 

the CODA algorithm run on count of patients. The later two do not use any WGS or EMR 

data apart from the count of infected patients.

3.4. Simulation environment

3.4.1. Data—The empirical data consist of all bedded patients at the University of 

Pittsburgh Medical Center (UPMC) Presbyterian Hospital, Pittsburgh, Pennsylvania between 

2012 and 2016, inclusive. We consider infected patients to be those with a positive culture 

for Klebsiella pneumoniae. For each patient, we have their room and procedure information 

as well as the antibiotic susceptibilities for each infected patient. During this time period 

there were 5 outbreaks of Klebsiella pneumoniae infection, ranging from 2 to 28 patients in 

size. For these outbreaks, the data include the antibiotic resistance profiles for the associated 

bacterial isolates. The data used in this study represent approximately 240 thousand unique 

patients, with 335 thousand room stays and 10 million billing transactions (aggregated at the 

daily level) limiting analysis to the 245 most common procedures and procedure groups. All 

data were de-indentified to protect patient identity and approved by IRB in this use.

These data were used to sample from plausible distributions of patient experiences for the 

purposes of evaluating the proposed algorithms. We create semi-synthetic outbreaks by 

spiking these real-world records with synthetic infection events using an SIR model; 

identifying patients as Susceptible, Infected, or Recovered over time. The SIR model 

approach follows [33] and is described presently. Each such outbreak is generated for a 

randomly selected 30-day period of time (analysis window) by randomly choosing a root-

cause and transmission tree. It should be noted that the synthetic outbreaks are not simulated 

to completion (zero infected patients). The leading edge of the 30-day analysis window is 

treated as the present time, and thus the outbreaks are in progress at the time of observation. 
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We independently simulated two sets of 500 positive and negative examples each, for 

training and evaluation purposes, respectively.

3.4.2. Transmission tree—A medical procedure is randomly chosen as the simulated 

root-cause of a HAT outbreak. Initially, all uninfected patients are considered members of 

the susceptible population, subject to their arrival date. For each day, the likelihood of each 

patient in the susceptible population of becoming infected is determined by whether they are 

exposed to the root-cause, whether they share a room or unit with an outbreak-infected 

patient, and the current size of the outbreak-infected population. This assumes a hierarchical 

mixing of patients with maximal mixing occurring within rooms, less within units, and still 

less hospital-wide. The number of days for each outbreak-infected patient to recover follows 

a geometric distribution (probability=0.2). The approach closely follows [33], save that we 

do not simulate the bacterial population alongside the transmission tree, and we assume a 

slightly more expressive mixing structure.

3.4.3. SNP distances—Once the transmission tree is sampled, SNP distances are drawn 

from a geometric distribution (probability=0.001) for pairs of patients that are not both 

within-outbreak. For within-outbreak patients, SNP distances are generated using the 

geometric-Poisson distribution proposed in [34]. Antibiotic susceptibilities for within-

outbreak patients are drawn with replacement from historical outbreaks. We observed that 

antibiotic susceptibility information was more discriminative than we would expect. This 

happened because bootstrapping the historical isolates did not produce sufficient variation in 

susceptibility patterns between training and testing data. Additionally, the isolates in 

question were extended spectrum beta lactamase producers (ESBL), which represent about 

25% of the Klebsiella pneumoniae isolates in our data and have a somewhat different 

antibiotic resistance profile than the remaining 75% of isolates, which further increased the 

differentiation between the within-outbreak patterns and those of the general population. 

This forced us to artificially decrease the informative power of antibiotic resistances to 

demonstrate the value of seeking more discriminative measures (e.g. WGS). We raised the 

likelihood ratio Si, j
+ ∕ Si, j

−  to the power of 0.2 to simulate a less informative distribution of 

resistance profiles. Methods that use the weakened information are given the subscript w: 

DITOw
10 and DITOw

0 . Results for the unadulterated alternatives are given in Appendix A.

3.4.4. Analysis—In summary, semi-synthetic experiments were conducted as follows. 

We generate snapshots of exposures and infections by randomly selecting a 30-day window 

in time and taking infections and patient exposures from empirical hospital data. We then 

generate pathogen similarities by sampling SNP distances and antibiotic resistances. To 

generate an outbreak (a “positive”), we first sample a route and then sample a transmission 

tree using empirical patient experiences and add the resulting synthetic infections to the 

data.

These semi-synthetic windows are used as the units of analysis. Each window being 

“positive” if an outbreak is present and “negative” otherwise. The presence and makeup of 

outbreaks are known during the training phase and used to estimate model parameters. The 

presence and time-to-detection of an outbreak is inferred during the testing/inference phase 
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if the detection score exceeds a threshold. In this case, the ranking of routes and inferred 

outbreak population are compared to the true values.

4. Results

Our semi-synthetic simulations resulted in an infected patient population of 164.4 subjects 

on average (within a 30 day window), with a standard deviation of 23.4. To this population, 

outbreaks contributed additional infected patients. Table 1 shows the distribution of outbreak 

sizes generated. Most of the outbreaks are small, with a minimal size of 2 patients. The 

largest outbreak generated consisted of 48 patients.

We evaluate the above methods both in their ability to detect outbreaks, as well as identify 

the root-cause and constituent patient population. Detection ability is often measured using 

true positive rate (TPR) and false positive rate (FPR) as well as time-to-detection. TPR 

measures the proportion of outbreaks successfully detected, ignoring time in some fashion. 

Here TPR is measured for an ongoing outbreak, as opposed to after an outbreak has run its 

course, and the time of this evaluation is taken to be the leading edge of the 30-day analysis 

window as described in Section 3.4.1. FPR measures the rate of false alarms. Time-to-

detection measures how promptly an outbreak is detected after its onset. However, outbreaks 

may differ in their temporal evolution depending on the frequency with which patients are 

exposed to their root-cause and the behavior or location of the infected patients, as well as 

parameters of the biology of infection such as incubation periods. Therefore, in this context 

time-to-detection somewhat conflates the dynamics of outbreak evolution with time. In the 

place of time-to-detection, we measure outbreak size at time of detection. This puts 

outbreaks which evolve at differing rates on a common basis of comparison.

Here, we show results for our proposed methods (DITOc and DITOw
10) as well as a few 

selected baselines. We show performance for those baselines that do not use one of three 

types of information; WGS, antibiotic resistances, and epidemiological data. Where multiple 

baselines use the same information, we show results for the best performing method. 

Complete results for all methods and baselines are given in Appendix A. Coda0 uses WGS 

information but no EMR data (apart from species identification). DITOw
0  uses antibiotic 

susceptibilities and EMR data, but no WGS data. ExpR uses only EMR data.

Figure 1 shows receiver operating characteristic (ROC) curves for our proposed methods and 

the DITOw
0  baseline. Figure 2 shows ROC curves for the DITOc method along with the 

Coda0 and ExpR baselines. Table 2 gives the area under the ROC curve (AUC), TPR at a 

fixed FPR of 0.05, and mean outbreak size at time of detection at a fixed FPR of 0.05. 

Figures 1, 2, and Table 2 give aggregate performance metrics. Tables 3 and 4 show how 

AUC and TPR at an FPR of 0. 05 vary across outbreaks of different sizes.

Figures 3 and 4 show mean outbreak size at time of detection as it relates to FPR. DITOc is 

shown in red (solid) in both figures. DITOw
10 is shown in yellow (dash), DITOw

0  in green 

(dash-dot), Coda0 in blue (dash), and ExpR in purple (dash-dot). The random curve is shown 
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in gray (dot) in both figures. Shaded regions indicate 95% confidence envelopes. These 

colors (line types) are consistent across figures.

Table 5 shows the proportion of outbreaks for which the root-cause ranked highly in the 

inference. Methods not capable of ranking causes are not included. The table shows the 

proportions of samples for which the root-cause was ranked first among potential causes, as 

well as the proportion of samples for which the root-cause ranked within the top 3. 

Additionally, this table includes performance for an oracle method, which is given the true 

within-outbreak patient population and ranks hypotheses according to (2) maximized over a 
and θ. This serves as a bench mark for the other methods. Performance is shown for 

different sizes of outbreak.

For methods that infer the identity of the within-outbreak patients, we can measure the 

precision and recall of these predictions. Table 6 shows these metrics by outbreak size.

4.1. Interpretation of results

Our proposed method DITOc which uses comprehensive WGS and available EMR data 

outperforms other baseline methods. This is unsurprising since it uses more information that 

the other methods. SIM+(4) gives only slightly worse performance. These two methods are 

intimately related; DITOc performs joint inference whereas SIM+(4) does so in a pipeline 

architecture. It is common that joint models outperform pipeline strategies. Yet, these results 

suggest a pipeline architecture may be a reasonable approach if desired. The heuristic 

optimization method proposed in Section 3.3 gives mediocre performance. Thus, we 

recommend the use of cross-entropy optimization even though it is more computationally 

expensive. DITOc and SIM perform significantly better than Coda0, suggesting that mutual 

similarity between patients carries significant information over count of similar pairs. The 

poor performance of ExpR suggests that WGS information carries significantly more 

information content than route exposures. It may be that utilizing more of the EMR data, e.g. 

by including infection timing and unit/room residences, will further boost performance. We 

leave this for future work. Using EMR data provides gains in detection performance for 

small outbreaks, size 2–3. This is likely due to the fact that these are the noisiest cases, and 

using EMR allows the algorithms to dismiss a pair of patients when they do not share any 

common routes. Coda∞ and Coda# perform only slightly better than random, indicating 

expectedly that patient counts alone are insufficient for detecting outbreaks as small as those 

simulated here.

A clear progression in all performance measures is observed moving from DITOw
0  to DITOw

10

to DITOc. This demonstrates the value of the WGS recommendation strategy. By sequencing 

only 10 isolates the DITOw
10 method recovers much of performance lost by DITOw

0  over 

DITOc, at approximately 6% of the sequencing costs (10 of 164 isolates sequenced).

DITOc and SIM+(4), to a lesser extent, do very well in identifying the root-cause. 

Interestingly, root-cause performance peaks for outbreaks of size 4–6, dropping for larger 

outbreaks. This is because the larger outbreaks simulated here tend to have much higher 

amounts of intermediate transmission. Those patients infected by intermediate transmission 
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may not have been exposed to the root-cause, adding additional noise to the signal. 

Additionally, the effective hypothesis space (routes to which at least one within-outbreak 

patient was exposed) grows with the size of the outbreak. Modeling γi as a function of the 

outbreak size, increasing the outbreak size say, would likely mitigate some of this effect.

5. Discussion and Conclusion

We have presented a statistical inference model for the detection and characterization of 

outbreaks of bacterial infection in the hospital setting: Direct/Indirect Transmission 

Outbreak, DITO model. We demonstrated, using semi-synthetic experiments, the use of the 

model for two complementary inference tasks; the first being detection of outbreaks with 

simultaneous explanation of their root-causes and constituent patient populations, the second 

being WGS recommendations in which isolates are selected for sequencing to maximize 

performance of the first task under a limited budget. We measured the performance of our 

proposed methods against several baselines as well as ablated versions, demonstrating that 

the combination of both WGS and EMR data improves performance on the above tasks. We 

conclude that the DITO model can effectively detect outbreaks, identify root-cause, and 

identify constituent patients when the root-cause is present in the model’s hypothesis space. 

Further, performance appears to strengthen with the size of the outbreak population. Our 

results suggest that good performance can be achieved at low false positive rates, suggesting 

that an outbreak monitoring system based on these methods may be a viable approach for 

reducing the hundreds of thousand of HAIs that occur in U.S. acute care hospitals annually 

[23].

Our model is best characterized as striking a middle ground between transmission tree 

reconstruction and biosurveillance or control-chart based techniques. This allows our 

method to naturally take genetic and epidemiological data into account, as in transmission 

tree reconstruction based approaches. Our model is capable of significant flexibility in the 

nature of the data included; easily combining antibiotic susceptibility information with WGS 

based SNP distance and including infection timing and room information where available. 

On the other hand, our model uses a control population ℰr and prior belief ηi, as in bio-

surveillance based approaches, to direct inference in the most promising directions. This 

middle ground position represents a novel contribution.

Whereas we use semi-synthetic data here, Sundermann et al. [30] provide a real-world 

evaluation of a key component of the proposed model. They demonstrate that expression (4) 

effectively identifies root-cause and/or the principal transmission route on real world 

outbreaks. In their study, the outbreak population was predetermined by molecular 

characterization of the bacterial isolates, making the approach evaluated something akin to 

SIM+(4).

Time has largely been removed from the proposed model. Temporal considerations feature 

in choice of analysis window, that is which patients are included in the infected population 

ℐ and exposed populations ℰr, and possibly γi depending on modeling choices. Choice of 

analysis window can impact inference performance. If one chooses a narrow window, 

outbreaks that are sparse in time may go undetected. If one chooses a wide window, there 
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are more patients to consider and a higher likelihood of finding spurious correlations, i.e. 

false positives. One can control for the later to some degree by penalizing patient-to-patient 

transmission γi if there is a significant gap in time between patient i’s infection and the most 

recent outbreak patient prior to i. Another practical resolution is to simultaneously conduct 

inference for various time scale settings to minimize the risk of missing slowly evolving 

events, and enable additional benefit of identifying the most likely dynamics of expansion of 

an outbreak.

Choice of control population ℰr is a related consideration. One may wish to make design 

choices for ℰr depending on the value of 𝒪r. Nothing in the presented method precludes this 

possibility. This would allow inference methods to control for commonalities in the 

outbreak. For example, procedures are likely correlated with unit. If many patients within an 

outbreak are on a common unit, procedures common to that unit may be scored unduly 

highly. This bias can be corrected by constraining ℰr to patients on said unit. This is similar 

to traditional case-control methodologies used in some outbreak investigations.

In the experimental evaluation, the true root-cause of each outbreak was among the set of 

candidate routes r. In practice however, considerable attention must be paid to the 

construction and management of this hypothesis space. Depending on the contents and 

latency of data streams available, it is likely that not all physically plausible root-causes can 

be enumerated with associated patient exposures identified. Additionally, as alluded to 

above, there may be considerable overlap and correlation between different route 

hypotheses. As a result, root-cause identification of the kind presented here will likely only 

ever be directional in nature. It will be necessary for domain experts to review inference 

results in the context of the limits of the hypothesis space being used. Thus, we expect our 

proposed algorithm will be of most benefit when developed into an interactive system for 

exploring the observed data, tracking, and escalating potential outbreaks for further 

investigation.

The level of aggregation of candidate routes in the hypothesis space can also impact 

inference results. If the true root-cause is split across several routes in the hypothesis space, 

evidence will be divided (∣ 𝒪r ∩ ℰr ∣ will be too small) and the power of the inference will 

suffer. Alternatively, if candidate routes are too broad, encompassing a multitude of potential 

causes, evidence will be diluted (∣ ℰr ∣ will be too large) and the power of the inference will 

suffer.

A notable characteristic of our method is that significant genetic similarity and plausible 

epidemiological link (route) are required for strong posterior scores. While this property 

significantly improves the quality of inference, it would be naïve to think that all outbreaks 

will necessarily meet these conditions. Incomplete data, incomplete hypothesis space, and/or 

multi-strain or multi-species outbreaks may subvert our approach. It would be prudent 

therefore, to consider ways to be robust in these cases. One approach may be to adjust our 

proposed model to account for missing exposures and/or dissimilar outbreak pathogens. This 

could be accomplished simply by artificially treating 𝒪r ∩ ℰr = 𝒪r and increasing ηi for 
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those patients not observed to be exposed to route r. This effectively encodes a penalized 

pseudo-exposure for every patient by every route. Additionally, one could impose a minimal 

value on Si, j
+ ∕ Si, j

− . to decrease the penalty for dissimilar pathogens. These modifications 

may decrease overall performance however. Another, perhaps more practical approach 

would be to implement alternative fall-back methods that are based on genetic similarity 

alone (to be robust to incomplete data) and exposures alone (to be robust to genetic 

dissimilarity).

In the simulation experiments presented, ample training data were provided. In practice 

however, it is unlikely that large numbers of historical outbreaks, complete with full 

characterization, will be available. For some parameters such as ηi, training data is in large 

supply assuming outbreaks are rare. Fitting γi may be more difficult however. Choosing 

functional forms of γi and Si, j
+  that have few parameters or regularizing heavily can help 

avoid overfitting to the few examples in hand. In the simulation experiments here, most 

parameter values appeared to converge quickly, using as few as 3 examples of historical 

outbreaks. The γi parameter however, required more examples taking 15–20 positive 

examples to converge.

The discriminatory power of infection similarity measures, i.e. the magnitude of Si, j
+ ∕ Si, j

− , 

can have a significant impact on performance. Bootstrapping antibiotic resistances from 

historical Klebsiella pneumoniae outbreaks to construct our simulation environment resulted 

in antibiotic resistances demonstrating a higher degree of discriminatory power than we 

expected. This forced us to artificially decrease the informative power of antibiotic 

resistances to demonstrate the value of seeking more discriminative measures (e.g. WGS). 

While this reduced the elegance of the semi-synthetic simulation environment, we do not 

believe that it detracts from the method. Overall, our results show that if commonly available 

measures of infection similarity are only weakly informative, performance gains can be 

made by seeking more discriminative measures, and our method can effectively identify 

those isolates which are likely to provide significant information under a constrained budget.

Appendix A. Additional Results

Here we give tables of performance measures for all methods and baselines studied. Table 

A.7 gives the area under the ROC curve (AUC), TPR at a fixed FPR of 0.05, and mean 

outbreak size at time of detection at a fixed FPR of 0.05. Tables A.8 and A.9 show how AUC 

and TPR at an FPR of 0.05 vary across outbreaks of different sizes.

Table A.10 shows the proportion of outbreaks for which the root-cause ranked highly in the 

inference. Methods not capable of ranking causes are not included. The table shows the 

proportions of samples for which the root-cause was ranked first, within the top 3, and 

within the top 10 among potential causes. Additionally, this table include performance for an 

oracle method, which is given the true within-outbreak patient population and ranks 

hypotheses according to (2) maximized over a and θ. This serves as a bench mark for the 

other methods. Performance is shown for different sizes of outbreak.
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For methods that infer the identity of the within-outbreak patients, we can measure the 

precision and recall of these predictions. Table A.11 shows these metrics by outbreak size.

Table A.7:

Overall detection performance for select methods. AUC gives area under the ROC curve, 

TPR and Outbreak Size give the true positive rate and mean size of outbreak at time of 

detection for a fixed false positive rate of 0.05, respectively.

Method AUC TPR Outbreak Size

DITOc 0.94 ± 0.028 0.83 ± 0.064 2.8 ± 0.12

DITO10 0.83 ± 0.048 0.43 ± 0.11 4.6 ± 0.69

DITO0 0.79 ± 0.052 0.35 ± 0.088 5.2 ± 1.0

DITOw
10 0.74 ± 0.054 0.48 ± 0.050 4.2 ± 0.60

DITOw
0 0.56 ± 0.067 0.17 ± 0.063 6.8 ± 3.4

DITOH
c 0.68 ± 0.060 0.33 ± 0.052 4.0 ± 1.7

ExpR 0.50 ± 0.048 0.051 ± 0.013 9.1 ± 20.

SIM 0.87 ± 0.029 0.77 ± 0.040 3.0 ± 0.12

SIMH 0.65 ± 0.032 0.34 ± 0.054 3.8 ± 1.2

Coda0 0.75 ± 0.056 0.34 ± 0.079 5.5 ± 1.0

Coda∞ 0.57 ± 0.067 0.14 ± 0.063 7.0 ± 6.9

Coda# 0.53 ± 0.068 0.086 ± 0.039 8.1 ± 13.

Table A.8:

AUC by true outbreak size.

Outbreak size

Method 2–3 4–6 7–9 ≥ 10

DITOc 0.85 ± 0.070 0.97 ± 0.029 0.95 ± 0.048 0.95 ± 0.051

DITO10 0.71 ± 0.095 0.83 ± 0.083 0.94 ± 0.062 0.95 ± 0.051

DITO0 0.68 ± 0.099 0.78 ± 0.095 0.89 ± 0.092 0.94 ± 0.058

DITOw
10 0.62 ± 0.10 0.74 ± 0.095 0.86 ± 0.099 0.91 ± 0.077

DITOw
0 0.53 ± 0.11 0.52 ± 0.12 0.53 ± 0.16 0.73 ± 0.14

DITOH
c 0.65 ± 0.099 0.75 ± 0.092 0.70 ± 0.14 0.51 ± 0.17

ExpR 0.51 ± 0.077 0.49 ± 0.089 0.52 ± 0.13 0.48 ± 0.14

SIM 0.71 ± 0.059 0.96 ± 0.035 0.95 ± 0.048 0.95 ± 0.051

SIMH 0.62 ± 0.052 0.72 ± 0.062 0.67 ± 0.099 0.55 ± 0.090

Coda0 0.54 ± 0.11 0.80 ± 0.089 0.89 ± 0.090 0.94 ± 0.057

Coda∞ 0.52 ± 0.11 0.54 ± 0.12 0.61 ± 0.16 0.72 ± 0.15

Coda# 0.49 ± 0.11 0.53 ± 0.12 0.58 ± 0.17 0.56 ± 0.17
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Appendix B. Importance Sampling

Our importance sampling routine is self-normalizing with a heuristic proposal distribution. 

We begin by sampling a threshold value τ from a manually defined discrete distribution. We 

then sample an outbreak size k with probability proportional to K – k, where K is the 

maximum size. The outbreak is then sampled by drawing k patients uniformly without 

replacement from the set of patients satisfying Si, j
+ ∕ Si, j

− > τ (the size of the set determines 

K). The sample weight is computed as the ratio of the outbreak probability, computed by 

marginalizing (6) over choice of route r

Table A.9:

True positive rate for a fixed false positive rate of 0.05, by true outbreak size.

Outbreak size

Method 2–3 4–6 7–9 ≥ 10

DITOc 0.55 ± 0.18 0.96 ± 0.042 0.98 ± 0.024 0.97 ± 0.044

DITO10 0.18 ± 0.16 0.26 ± 0.14 0.90 ± 0.22 0.97 ± 0.044

DITO0 0.12 ± 0.14 0.27 ± 0.18 0.52 ± 0.26 0.91 ± 0.13

DITOw
10 0.17 ± 0.066 0.49 ± 0.094 0.82 ± 0.090 0.92 ± 0.075

DITOw
0 0.055 ± 0.075 0.12 ± 0.088 0.27 ± 0.14 0.55 ± 0.15

DITOH
c 0.23 ± 0.081 0.49 ± 0.094 0.40 ± 0.085 0.13 ± 0.11

ExpR 0.052 ± 0.018 0.049 ± 0.030 0.052 ± 0.047 0.049 ± 0.056

SIM 0.46 ± 0.091 0.95 ± 0.031 0.98 ± 0.024 0.97 ± 0.044

SIMH 0.29 ± 0.076 0.48 ± 0.087 0.38 ± 0.13 0.11 ± 0.12

Coda0 0.090 ± 0.074 0.23 ± 0.16 0.56 ± 0.26 0.92 ± 0.12

Coda∞ 0.085 ± 0.076 0.072 ± 0.091 0.23 ± 0.19 0.26 ± 0.19

Coda# 0.090 ± 0.057 0.076 ± 0.088 0.11 ± 0.13 0.091 ± 0.10

Table A.10:

Probability of root-cause route rank, by true outbreak size.

Outbreak size

Method Rank 2–3 4–6 7–9 ≥ 10

Oracle ≤1 0.73 ± 0.062 0.76 ± 0.065 0.66 ± 0.10 0.62 ± 0.11

DITOc ≤1 0.55 ± 0.069 0.78 ± 0.064 0.71 ± 0.10 0.66 ± 0.11

DITO10 ≤1 0.14 ± 0.049 0.35 ± 0.073 0.19 ± 0.088 0.19 ± 0.091

DITO0 ≤1 0.035 ± 0.027 0.091 ± 0.045 0.075 ± 0.062 0.12 ± 0.077

DITOw
10 ≤1 0.21 ± 0.057 0.47 ± 0.076 0.62 ± 0.11 0.57 ± 0.11

DITOw
0 ≤1 0.035 ± 0.027 0.061 ± 0.038 0.16 ± 0.083 0.23 ± 0.097

DITOH
c ≤1 0.25 ± 0.060 0.35 ± 0.073 0.30 ± 0.10 0.067 ± 0.061
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Outbreak size

Method Rank 2–3 4–6 7–9 ≥ 10

ExpR ≤1 0.030 ± 0.025 0.030 ± 0.028 0.037 ± 0.047 0.040 ± 0.051

SIM+(4) ≤1 0.36 ± 0.068 0.75 ± 0.068 0.71 ± 0.10 0.66 ± 0.11

Oracle ≤3 0.91 ± 0.041 0.92 ± 0.044 0.80 ± 0.090 0.77 ± 0.097

DITOc ≤3 0.65 ± 0.066 0.91 ± 0.045 0.85 ± 0.081 0.80 ± 0.093

DITO10 ≤3 0.22 ± 0.057 0.46 ± 0.076 0.27 ± 0.098 0.31 ± 0.11

DITO0 ≤3 0.055 ± 0.033 0.12 ± 0.051 0.11 ± 0.072 0.22 ± 0.095

DITOw
10 ≤3 0.27 ± 0.062 0.59 ± 0.075 0.75 ± 0.097 0.74 ± 0.10

DITOw
0 ≤3 0.060 ± 0.034 0.097 ± 0.046 0.23 ± 0.093 0.36 ± 0.11

DITOH
c ≤3 0.30 ± 0.064 0.46 ± 0.076 0.37 ± 0.11 0.080 ± 0.066

ExpR ≤3 0.035 ± 0.027 0.067 ± 0.040 0.062 ± 0.057 0.094 ± 0.070

SIM+(4) ≤3 0.44 ± 0.070 0.88 ± 0.051 0.85 ± 0.084 0.80 ± 0.096

Oracle ≤10 0.95 ± 0.031 0.96 ± 0.033 0.89 ± 0.072 0.87 ± 0.080

DITOc ≤10 0.70 ± 0.064 0.95 ± 0.035 0.94 ± 0.057 0.89 ± 0.073

DITO10 ≤10 0.30 ± 0.064 0.55 ± 0.076 0.44 ± 0.11 0.51 ± 0.11

DITO0 ≤10 0.090 ± 0.041 0.19 ± 0.060 0.27 ± 0.098 0.32 ± 0.11

DITOw
10 ≤10 0.33 ± 0.065 0.64 ± 0.074 0.82 ± 0.086 0.80 ± 0.093

DITOw
0 ≤10 0.13 ± 0.047 0.23 ± 0.064 0.35 ± 0.11 0.54 ± 0.11

DITOH
c ≤10 0.32 ± 0.065 0.49 ± 0.077 0.39 ± 0.11 0.12 ± 0.077

ExpR ≤10 0.090 ± 0.041 0.15 ± 0.055 0.16 ± 0.083 0.24 ± 0.099

SIM+(4) ≤10 0.48 ± 0.070 0.93 ± 0.043 0.94 ± 0.062 0.89 ± 0.078

with uniform probability, and the sample likelihood under the proposal distribution. A 

uniform prior is assumed for 𝒪r. Finally, the sample weights are normalized.

Table A.11:

Precision and recall for identifying the patients who are part of an outbreak.

Outbreak size

Method Metric 2–3 4–6 7–9 ≥ 10

DITOc precision 0.68 ± 0.065 0.99 ± 0.012 1.0 ± 0.0 1.0 ± 0.0

DITOc recall 0.68 ± 0.065 0.97 ± 0.019 1.0 ± 0.0 1.0 ± 0.0

DITO10 precision 0.22 ± 0.037 0.36 ± 0.032 0.36 ± 0.019 0.50 ± 0.021

DITO10 recall 0.60 ± 0.056 0.85 ± 0.035 0.91 ± 0.029 0.99 ± 0.011

DITO0 precision 0.12 ± 0.0060 0.20 ± 0.0081 0.28 ± 0.011 0.44 ± 0.022

DITO0 recall 0.91 ± 0.026 0.93 ± 0.021 0.94 ± 0.025 0.99 ± 0.0057

DITOw
10 precision 0.29 ± 0.062 0.62 ± 0.073 0.90 ± 0.054 0.80 ± 0.047
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Outbreak size

Method Metric 2–3 4–6 7–9 ≥ 10

DITOw
10 recall 0.26 ± 0.056 0.46 ± 0.059 0.64 ± 0.060 0.73 ± 0.058

DITOw
0 precision 0.062 ± 0.028 0.11 ± 0.040 0.22 ± 0.076 0.46 ± 0.077

DITOw
0 recall 0.059 ± 0.026 0.072 ± 0.029 0.23 ± 0.083 0.53 ± 0.10

DITOH
c precision 0.32 ± 0.065 0.47 ± 0.078 0.36 ± 0.11 0.071 ± 0.061

DITOH
c recall 0.32 ± 0.065 0.47 ± 0.077 0.36 ± 0.11 0.071 ± 0.061

ExpR precision 0.012 ± 0.0095 0.029 ± 0.017 0.023 ± 0.023 0.14 ± 0.048

ExpR recall 0.015 ± 0.011 0.015 ± 0.0085 0.010 ± 0.012 0.019 ± 0.0069
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Highlights

Joining pathogen similarity with epidemiological data increases outbreak detection

Joint root cause and patient inference improves detection of small outbreaks

Machine learning methods can effectively tune outbreak detection models

Miller et al. Page 26

J Biomed Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 

Receiver operating characteristic (ROC) curves for proposed methods and the DITOw
0

baseline. Shaded region represents 95% confidence envelope.
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Figure 2: 
Receiver operating characteristic (ROC) curves for DITOc and select baselines. Shaded 

region represents 95% confidence envelope.
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Figure 3: 

Activity monitoring characteristic (AMOC) curves for proposed methods and the DITOw
0

baseline. Shaded region represents 95% confidence envelope.
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Figure 4: 
Activity monitoring characteristic (AMOC) curves for DITOc and select baselines. Shaded 

region represents 95% confidence envelope.
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Table 1:

Synthetic outbreak size distribution

2–3 4–6 7–9 ≥ 10

0.39 0.32 0.15 0.14
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Table 2:

Overall detection performance for selected methods. AUC gives area under the ROC curve, TPR and Outbreak 

Size give the true positive rate and mean size of outbreak at time of detection for a fixed false positive rate of 

0.05, respectively.

Method AUC TPR Outbreak Size

DITOc 0.94 ± 0.028 0.83 ± 0.064 2.8 ± 0.12

DITOw
10 0.74 ± 0.054 0.48 ± 0.050 4.2 ± 0.60

DITOw
0 0.56 ± 0.067 0.17 ± 0.063 6.8 ± 3.4

ExpR 0.50 ± 0.048 0.051 ± 0.013 9.1 ± 20.

SIM 0.87 ± 0.029 0.77 ± 0.040 3.0 ± 0.12

Coda0 0.75 ± 0.056 0.34 ± 0.079 5.5 ± 1.0
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Table 3:

AUC for select methods by true outbreak size.

Outbreak size

Method 2–3 4–6 7–9 ≥ 10

DDITOc 0.85 ± 0.070 0.97 ± 0.029 0.95 ± 0.048 0.95 ± 0.051

DITOw
10 0.62 ± 0.10 0.74 ± 0.095 0.86 ± 0.099 0.91 ± 0.077

DITOw
0 0.53 ± 0.11 0.52 ± 0.12 0.53 ± 0.16 0.73 ± 0.14

ExpR 0.51 ± 0.077 0.49 ± 0.089 0.52 ± 0.13 0.48 ± 0.14

SIM 0.71 ± 0.059 0.96 ± 0.035 0.95 ± 0.048 0.95 ± 0.051

Coda0 0.54 ± 0.11 0.80 ± 0.089 0.89 ± 0.090 0.94 ± 0.057
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Table 4:

True positive rate for a fixed false positive rate of 0.05, by true outbreak size.

Outbreak size

Method 2–3 4–6 7–9 ≥ 10

DDITOc 0.55 ± 0.18 0.96 ± 0.042 0.98 ± 0.024 0.97 ± 0.044

DITOw
10 0.17 ± 0.066 0.49 ± 0.094 0.82 ± 0.090 0.92 ± 0.075

DITOw
0 0.055 ± 0.075 0.12 ± 0.088 0.27 ± 0.14 0.55 ± 0.15

ExpR 0.052 ± 0.018 0.049 ± 0.030 0.052 ± 0.047 0.049 ± 0.056

SIM 0.46 ± 0.091 0.95 ± 0.031 0.98 ± 0.024 0.97 ± 0.044

Coda0 0.090 ± 0.074 0.23 ± 0.16 0.56 ± 0.26 0.92 ± 0.12
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Table 5:

Probability of root-cause route rank, by true outbreak size.

Outbreak size

Method Rank 2–3 4–6 7–9 ≥ 10

Oracle 1 0.73 ± 0.062 0.76 ± 0.065 0.66 ± 0.10 0.62 ± 0.11

DITOc 0.55 ± 0.069 0.78 ± 0.064 0.71 ± 0.10 0.66 ± 0.11

DITOw
10 0.21 ± 0.057 0.47 ± 0.076 0.62 ± 0.11 0.57 ± 0.11

DITOw
0 0.035 ± 0.027 0.061 ± 0.038 0.16 ± 0.083 0.23 ± 0.097

ExpR 0.030 ± 0.025 0.030 ± 0.028 0.037 ± 0.047 0.040 ± 0.051

SIM+(4) 0.36 ± 0.068 0.75 ± 0.068 0.71 ± 0.10 0.66 ± 0.11

Oracle ≤ 3 0.91 ± 0.041 0.92 ± 0.044 0.80 ± 0.090 0.77 ± 0.097

DITOc 0.65 ± 0.066 0.91 ± 0.045 0.85 ± 0.081 0.80 ± 0.093

DITOw
10 0.27 ± 0.062 0.59 ± 0.075 0.75 ± 0.097 0.74 ± 0.10

DITOw
0 0.060 ± 0.034 0.097 ± 0.046 0.23 ± 0.093 0.36 ± 0.11

ExpR 0.035 ± 0.027 0.067 ± 0.040 0.062 ± 0.057 0.094 ± 0.070

SIM+(4) 0.44 ± 0.070 0.88 ± 0.051 0.85 ± 0.084 0.80 ± 0.096
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Table 6:

Precision and recall for identifying the patients who are part of an outbreak.

Outbreak size

Method Metric 2–3 4–6 7–9 ≥ 10

DITOc
precision 0.68 ± 0.065 0.99 ± 0.012 1.0 ± 0.0 1.0 ± 0.0

recall 0.68 ± 0.065 0.97 ± 0.019 1.0 ± 0.0 1.0 ± 0.0

DITOw
10 precision 0.29 ± 0.062 0.62 ± 0.073 0.90 ± 0.054 0.80 ± 0.047

recall 0.26 ± 0.056 0.46 ± 0.059 0.64 ± 0.060 0.73 ± 0.058

DITOw
0 precision 0.062 ± 0.028 0.11 ± 0.040 0.22 ± 0.076 0.46 ± 0.077

recall 0.059 ± 0.026 0.072 ± 0.029 0.23 ± 0.083 0.53 ± 0.10

ExpR
precision 0.012 ± 0.0095 0.029 ± 0.017 0.023 ± 0.023 0.14 ± 0.048

recall 0.015 ± 0.011 0.015 ± 0.0085 0.010 ± 0.012 0.019 ± 0.0069

SIM
precision 0.44 ± 0.069 0.97 ± 0.027 1.0 ± 0.0 1.0 ± 0.0

recall 0.44 ± 0.069 0.96 ± 0.028 1.0 ± 0.0 1.0 ± 0.0
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