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Abstract
The present communication warrants the presence of significant wound healing bio-efficacy of aq. alc. extract of the seed 
(49.78%) of the plant Madhuca longifolia. A family of seven flavonoid fractions have been ascertained in the seed aq. alc. 
extract of the target plant using LCMS-8030 analysis. In vivo wound healing parameters (wound area, wound closure, 
epithelization period, skin breaking strength and hydroxyproline content) have been examined in Swiss albino mice mod-
els. Statistically significant (p < 0.001) enhancement in the wound healing bio-efficacy has been effectively induced using 
flavonoid-loaded gold: (Mlf@AuNps), silver: (Mlf@AgNps), and Au–Ag bimetallic: (Mlf@Au–AgNps) nanoparticles. Among 
the biofabricated nano-biomaterials, Mlf@AgNps exhibited an exceptional enhancement in the wound healing bio-efficacy 
(80.33%) attaining almost to the  level of reference drug Placentrex (84.02%). All the fabricated nano-biomaterials were 
thoroughly characterized using UV–Vis, XRD, FE-SEM, TEM, EDX, and DLS. The promising enhancement in the wound 
healing potential of the nano-biomaterial (Mlf@AgNps) has been explained based on the cumulative effects of biological 
and nanotech parameters. The bio-fabricated (Mlf@AgNps) nano-biomaterials using the plant M. longifolia have lustrous 
prospects for the development of complimentary herbal nanomedicine for scaling-up the wound healing bio-efficacy.
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Abbreviations
Mlf@AuNps	� Madhuca longifolia flavonoid-loaded 

gold nanoparticles
Mlf@AgNps	� Madhuca longifolia flavonoid-loaded 

silver nanoparticles
Mlf@Au–Ag Nps	� Madhuca longifolia flavonoid-loaded 

gold–silver bimetallic nanoparticles

Introduction

The wound is a rupture in the epithelial integrity of the skin-
based structural changes and functions of tissues. Three 
important phases have been concomitant with the wound 
healing process (inflammation, cellular proliferation, and 
remodeling phase). Impaired wound healing results in severe 
morbidity leading to long hospitalization of patients. There 
is always demand for treating wounds for minimization of 
the time taken for healing and to step down the risks of 
undesired complications (Ahmadi and Adibhesami 2017; 
Kandhasamy et al. 2017). The use of conventional syn-
thetic drugs over a long time is affiliated with side effects 
such as coma, hallucinations, kidney, heart, and liver fail-
ure (Biondi-Zoccai et al. 2006). The medicinal plants have 
been borne witnessed as the paramount source of various 
phytochemicals used for the biogenic synthesis. The use of 
plant-based nanomaterials has been accounted as a practi-
cal approach with improved physico-biochemical properties 
and functionality (Khoobchandani et al. 2013; Katti 2016). 
The biogenic nanoparticles have shown promising potential 
as wound healing agents. The green nanotechnology is an 
open inquisitive field of research for the enhancement of 
bio-efficacy and has been exploited in the development of 
nanodrugs (Murugan et al. 2015; Singh et al. 2018).

Numerous variety of metal nanomaterials are being 
acquired using gold, zinc, titanium, magnesium, silver, 
and copper (Sharma et al. 2007; Raliya and Tarafdar 2014; 
Bhakya et al. 2016; Chung et al. 2017). Among the noble 
metals, silver and gold have been a focus of interest for phar-
macological bio-efficacies (Elia et al. 2014; Fatimah 2016). 
Silver, in particular, has potent antimicrobial activity includ-
ing antifungal, anti-oxidant, anti-inflammatory, and wound 
healing (Kumar et al. 2016). Further, bimetallization can 
often surpass the enhancement of the catalytic properties 
of the original single metal, which may not be achieved by 
monometallic nanoparticles. The bimetallic nanoparticles 
are likely to exhibit not only additive combination of the 
properties of two individual metals, but also demonstrate 
the synergistic effects of the two metals.

Plant-mediated nanoparticles are non-toxic and ecof-
riendly than chemically synthesized nanoparticles (Ahmed 
et al. 2016). Considering the rapid blossoming of nanomedi-
cine, particularly in prevention, diagnosis, and treatment of 

chronic wounds, this innovative technology will be soon on 
our doorstep.

Recent realization that the plants having particular bio-
efficacy should be explored and enhanced for other bonafide 
activities, have motivated us to enhance anti-inflammatory 
bio-efficacy of the plant Madhuca longifolia using seed 
extract saponin-loaded Ag nanoparticles (Sharma et  al. 
2018). In continuation of our work on this plant; explor-
ing wound healing bio-efficacy in the seeds of the plant M. 
longifolia, the present communication reports a facile green 
synthesis of seed-extracted flavonoid-loaded Ag, Au, and 
Au–AgNps bimetallic nanoparticles, characterization and 
statistically significant enhancement in wound healing bio-
efficacy. The observed highest enhancement in the wound 
healing bio-efficacy of Mlf@AgNps has been ascribed to the 
inherent antimicrobial property of silver, nanosizing, bio-
logical factors responsible for higher uptake, and coating of 
medicinally important flavonoid on the nanoparticles.

Madhuca longifolia (Sapotaceae family) is grown in hot 
and damp climates of India. There is century’s old belief 
and observations of the medicinal uses of plant M. longifolia 
for skin-related issues (Mishra and Padhan2013; Sinha et al. 
2017). In spite of its wide use over a long period of time, not 
much scientific approach has been made to study the wound 
healing activity of this plant at the nanoscale.

Materials and methods

Microwave–ultrasound assisted extraction

The plant seeds were collected from the village of Rajabo-
rari, Madhya Pradesh, India and were identified by Taxon-
omy Division, Department of Botany, Dayalbagh Educa-
tional Institute, Agra, India, where the sample was deposited 
with the voucher specimen number DEI/DB/DH/2015-073. 
The defatted seed powder (250 g) was subjected to micro-
wave-assisted extraction (200 W; 20 min; 25 °C) in aq. alc. 
solution and cooled. The extract was subjected to an ultra-
sonic bath for 40 min at room temperature, concentrated by 
rotavapor and dried with purging nitrogen.

Isolation and characterization of flavonoids

The dried fraction of extract (25 g) was subjected to col-
umn chromatographic separation (length 120 cm; diameter 
4 cm; stationary phase silica gel 125 g) and eluted with 
CH3Cl/CH3OH/H2O (70:30:1 v/v). After the removal of 
solvent, a brown mass was acquired. The brown mass frac-
tion was subjected to LCMS-8030 for characterization of 
the flavonoid compounds. The experimental conditions 
were as follows: column; C18 column (4.6 mm × 150 mm, 
2.5 µm), stationary phase; silica gel, mobile phase; 0.1% 
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formic acid and 90.9% methanol, N2 nebulizing gas flow 
rate; 2 L/min, temp; 40 °C, injection volume; 0.2 µL scan-
ning range (m/z); 100–1000; wavelength 254 nm followed 
by 15 min run time. The mass spectrometric analysis was 
performed in positive ESI mode.

Biofabrication and characterization 
of bio‑nanomaterials

Optimized experimental conditions of biofabricated 
nanoparticles were as follows: Madhuca longifolia fla-
vonoid-loaded gold nanoparticles (Mlf@AuNps): At pH 
5.5, 1 mL of flavonoid fraction (70 mg/mL) was mixed 
with 5 mL of hydrogen tetrachloroaurate dihydrate solu-
tion (HAuCl4·2H2O: 1mM) in a beaker and reaction mix-
ture was subjected to sonication for 20 min at 20 kHz. 
Madhuca longifolia flavonoid-loaded silver nanoparticles 
(Mlf@AgNps): At pH 11.5, 1 mL of flavonoid fraction 
(70 mg/mL) was added with 10 mL of silver nitrate solu-
tion (1 mM) in a beaker and reaction mixture was sub-
jected to sonication for 40 min at 20 kHz. Madhuca longi-
folia flavonoid-loaded bimetallic nanoparticles (Mlf@
Au–AgNps): At pH 10, 1 mL of flavonoid fraction (70 mg/
mL) was added to 10 mL of hydrogen tetrachloroaurate 
dihydrate solution (HAuCl4∙2H2O:1 mM), followed by 
the addition of 10 mL of silver nitrate solution (1mM) 
in a beaker and mixture was subjected to sonication for 
40 min at 20 kHz. The formation of Mlf@AuNps, Mlf@
AgNps, and Mlf@Au–AgNps were perceived by the change 
in color from pale yellow to ruby red, brown and pink, 
respectively.

The biofabricated nanoparticles were characterized 
using Ultraviolet/visible spectroscopy (UV–Vis 3000+ Lab 
India, India), X-ray diffraction (Bruker AXS D8 Advance, 
Germany), Field emission scanning electron microscopy 
(Nova Nano FE-SEM 450, Netherlands), Transmission 
electron microscopy, Energy dispersive X-ray spectros-
copy (Tecnai G2 T 20 ST, Germany), and Dynamic light 
scattering (Nano ZS90 model Malvern, Germany).

Formulation prior to topical application

Hard paraffin (25 g) and cetostearyl alcohol (25 g) were 
mixed and heated gently to 60 °C with constant stirring in 
a water bath to acquire a gel. White soft paraffin (425 g) 
and wool fat (25 g) were mixed together and allowed to 
cool. The optimized doses of the selected amount of refer-
ence drug, seed extract, flavonoid fraction, and biofabri-
cated nanoparticles were added into per gram of this oint-
ment and gently mixed.

In vivo bioassay (excision and incision wound 
model)

Male Swiss albino mice (weight 25–30 g) were obtained 
from animal house of Jawaharlal Nehru Cancer and Research 
Centre Bhopal, Madhya Pradesh and used for the evaluation 
of in vivo experiments (vide Ethical permission; CPCSEA 
Registration no. 500/01/9/CPCSEA/2017). The animals 
were kept at a temperature of 25–28 °C in clean polypro-
pylene cages with 12 h light and dark cycles with proper 
pellet diet and water ad libitum. The mice were divided into 
seven groups, having six animals in each group. Group I 
served as control. Group II was treated with the reference 
drug (Placentrex; 70 mg/g ointment). The groups III and 
IV were treated with seed extract and flavonoid fraction at 
an optimized dose of 70 mg/g ointment. The groups V, VI, 
and VII were treated with Mlf@AuNps, Mlf@AgNps,and 
Mlf@Au–AgNps at an optimized dose of 70 mg/g oint-
ment. The posterior dorsal side hairs of the mice of all the 
groups were shaved. Animals were anesthetized prior to the 
creation of wound using the subcutaneous injection of local 
xylocaine (0.2 mL; 2% w/v). All the treatment groups along 
with reference drug, seed extract, flavonoids, and biofabri-
cated nano-biomaterials were applied gently to cover the 
wounded area daily, until complete healing was achieved. In 
excision model, an area of 100 mm2 was carefully excised. 
The percentage of wound closure was calculated from the 
wound area (Mekonnen et al. 2013). The healing tissues 
were isolated on the 12th day from all the groups of the 
mice evaluated for histological investigation. The period of 
epithelization was calculated (Gutierrez and Vargas 2006) 
in terms of the number of days required for falling off the 
dead tissue remnants without any residual raw wound. In 
incision model, a longitudinal para vertebral incision of 3 cm 
in length was made deep through the skin. The wounds were 
closed with interrupted sutures 1 cm apart. The sutures were 
removed on the 8th day of post-incision and the treatment 
was continued. The skin breaking strength of the wound 
was measured on the 10th day after treatment (Kokane et al. 
2009) with a tensiometer (Model: XU22DTF, Shanghai Lun 
Jie Mechanical and Electrical Co. Ltd., China 2000).

Estimation of hydroxyproline content

On the 15th day, a piece of skin from the healed wound 
area of all the treatment groups was collected and analyzed 
for hydroxyproline content (Woessner 1961). The tissues 
(10 mg) were dried in a hot air oven at 60–70°C and hydro-
lyzed in 6 N HCl (5 mL) at 130 °C for 4 h in a sealed tube. 
The hydrolyzate was neutralized to pH 7.0, and was sub-
jected to chloramine T oxidation for 20 min, and the reac-
tion was terminated by the addition of 0.4 M perchloric acid 
(10 mL). The color developed by the addition of Ehrlich 
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reagent (10 mL) at 60 °C was measured at 557 nm using 
UV–Vis spectrophotometer.

Statistical analysis

The results were expressed as the mean ± SD of six ani-
mals. The data were analyzed by one-way ANOVA fol-
lowed by Tukey test. The data were considered significant 
at p < 0.001. Statistical analysis was done using Graph Pad 
Insat 3.0 software.

Results

Presence of flavonoids

LCMS-8030 chromatogram of the column chromato-
graphic fraction of native seed extract scanned in the lower 
(230–310) and higher (350–700) ranges of m/z, exhibited the 
presence of 3-hydroxy flavones (m/z: 239), 3,6 dihydroxy-
flavone (m/z: 255), dihydroquercetin (m/z: 301), Quercetin 
(m/z: 303), Myricetin 3-O-arabinoside (m/z: 451), Myricetin 
3-O-galactoside (m/z: 481) and dihydroxyl quercetin (m/z: 
621) on the basis of their [M−H]+ mode (Fig. 1a, b).

Characterization of biofabricated nano‑biomaterials

UV–Vis spectroscopy

The synthesis of Mlf@AuNps and Mlf@AgNpswas carried 
out at different concentrations (10−4–10−2 M) of hydrogen 
tetrachloroaurate dihydrate and silver nitrate solution keep-
ing the concentration of flavonoid constant (1 mL; 70 mg/
mL) as a function of pH (2.5–13.5) in each case. The sur-
face plasmon resonance bands at the concentration (10−3) 
of HAuCl4.2H2O at λmax = 534 nm (pH 5.5) and AgNO3 
solution at λmax = 432 nm (pH 11.5) were considered opti-
mum for the biofabrication of Mlf@AuNps and Mlf@AgNps 
because of their higher intensity (Fig. 2). The SPR bands at 
desirable λmax may be ascribed to the coherent oscillation of 
the electrons in the conduction band of respective gold and 
silver nanoparticles.

Formation of Au–Ag bimetallic nanoparticles involved 
simultaneous co-reduction of Au(III) and Ag(I) solution. At 
pH 4 and 6, initially, a single peak of Au was obtained at 
characteristic wavelength 510 and 500 nm, respectively. At 
both the pH values with the passage of time, one more peak 
of Ag appeared at characteristic wavelength 430 and 420 nm. 
The delay in the newly generated peak may be attributed 
to the relatively slow formation of AgNps, highlighting the 
assembling of AgNps onto the surface of the AuNps. At pH 8 
and 10, a single peak at 470 and 460 nm appeared. However, 
no change was discerned at further higher pH. The hyp-
sochromic shift from 470 to 460 nm at pH 10 attributed the 

Fig. 1   LCMS chromatogram of seven flavonoids in seed extract of the plant M. longifolia in the range a 230–310, b 350–700
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formation of small-sized and more stable bimetallic nano-
particles (Fig. 3). The observation is in harmony with earlier 
observation (Ganaie et al. 2016), depicting a single peak of 
the formation of bimetallic Au–Ag nanoparticles at pH 10. 
The appearance of wide and shoulder bands in the UV–Vis 
spectra may be ascertained to the loading of flavonoids 
on the surface of biofabricated gold, silver, and bimetallic 

nanoparticles (Shaik et al. 2018). The fact has been sup-
ported on the basis of our TEM and DLS studies.

X‑ray diffraction

The X-ray diffraction (XRD) profiles of all the biofabricated 
nanoparticles are depicted in Fig. 4. The three distinct peaks 
of biofabricated gold and silver nanoparticles were found at 
38.18°, 44.39° and 64.57; 38.11° 44.27° and 64.42° diffrac-
tion angle, respectively. These peaks correspond to (111) 
(200) and (220) lattice planes of face-centered cubic struc-
ture of gold and silver nanoparticles (JCPDS file 04-0784, 
04-0783). The bimetallic Au–AgNps had two diffraction 
peaks at diffraction angles 38.12° and 44.15°. It could be 
indexed to (111) and (200) having lattice planes of face-
centered cubic structure of bimetallic Au–AgNps. The inten-
sity of the diffraction peak corresponding to (200) crystallo-
graphic plane was lower than (111). The 111 plane is known 
to be more reactive because of its high atom density (Cruz 
et al. 2010). Some unassigned peaks were also observed due 
to the crystallization of bio-organic phase (Niraimathi et al. 
2013).

FE‑SEM and EDX studies

FE-SEM images (Fig. 5a–c) were acquired from drop-
coated films of nanoparticles, indicated polydispersed 
spherical-shaped surface morphology of all the three bio-
fabricated nanoparticles. The desirable signals of gold and 
silver metals were found in EDX spectra at 2 and 3 keV, 

Fig. 2   UV–Vis spectra of Mlf@AuNps and Mlf@AgNps

Fig. 3   UV–Vis spectra of Mlf@Au–AgNps bimetallic nanoparticles
Fig. 4   XRD of Mlf@AuNps, Mlf@AgNps, and Mlf@Au–AgNps 
bimetallic nanoparticles
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respectively (Fig. 6a, b). Both characteristic peaks of Au 
and Ag at 2 and 3 keV were observed in the EDX spectra 
of Au–Ag bimetallic nanoparticles (Fig. 6c). The appeared 
peak of Cu was presumably related with Cu grid on which 
sample was coated. The peaks of C, O, and N might have 
initiated from the biomolecules that are adhered to the 
surface nanoparticles.

TEM and DLS studies

TEM analysis (Fig. 7a–c) also confirmed the spherical 
shape of all the three biofabricated nanoparticles hav-
ing diameter range 36–60, 35–50 and 34–66 nm, at the 
magnification of 300,000×. The appearance of the faint 
thin layer around the nanoparticles in TEM images was 
the indication of the coating of secondary metabolites 
(flavonoids). The average hydrodynamic size (Z average 
given by DLS) of biofabricated nanoparticles, viz Mlf@
AuNps, Mlf@AgNps, and Mlf@Au–AgNps were 74.20, 
54.50 and 81.50 nm, respectively. An asymmetric dis-
tribution of these nanoparticles was as follows: 50–180, 
13–170 and 15–185 nm (Fig. 8a–c). Size of the particles, 
appeared larger when measured by DLS as compared to 
the TEM. TEM provides the accurate size of nanoparticles 
but DLS delivers important information regarding the size 
distribution of particles. The difference possibly reflects 
the fact that TEM only measures the physical size while 
DLS measures the hydrodynamic size of the particles 
along with the ions attached to the surface and move with 
nanoparticles in solution (Huang et al. 2007; Cumberland 
and Lead 2009). The biofabricated nanoparticles Mlf@
AuNps, Mlf@AgNps, and Mlf@Au–AgNps exhibited zeta 
potentials as− 33.9, −22.5 and − 31.9 mV, respectively 
(Fig. 9a–c) are quite stable.

In vivo bioassay (excision and incision wound 
model)

In vivo wound healing bioassay on Swiss albino mice was 
carried out with native seed extract in the various ranges 
(30, 50, 70 and 80 mg/g ointment). Based on the maxi-
mum wound healing potential (wound area, epithelization 
period, skin breaking strength, and hydroxyproline content 
in tissues), the dose of native seed extract was optimized 
(70 mg/g ointment). All the groups except control, dose 
(70 mg/g ointment) of reference drug, seed extract, flavonoid 
fraction, Mlf@AuNps, Mlf@AgNps, and Mlf@Au–AgNps 
were provided. Table 1 includes various wound healing 
parameters in the excision and incision wound model at an 
optimized dose.

Percentage of wound closure in each case was calculated 
from the reduction in wound area (Fig. 10). The wound 
closure of seed extract (49.78%) was increased to a level 
of (59.93%) by flavonoids at the optimum dose (70 mg/g 
ointment). Interestingly, an increase in the percentage 
wound closure was induced by all the biofabricated mono 
and bimetallic nanoparticles at the same dose. The order of 
the percentage wound closure in different treatment groups 
was as follows: Mlf@AgNps (80.33%) > Ml@Au–AgNps 
(65.97%) > Mlf@AuNps (64.37%), highlighting promising 
wound healing bio-efficacy of Mlf@AgNps. It seems the 
combination of silver and gold nanoparticles in the bime-
tallic Ml@Au–AgNps is not enhancing wound healing bio-
efficacy greater than Mlf@AgNps.

Discussion

Since ancient time, seeds of the plant M. longifolia are used 
as folk medicine for skin-associated ailments which indicate 
the presence of medicinally important secondary metabolites 

Fig. 5   FE-SEM of Mlf@AuNps, Mlf@AgNps and Mlf@Au–AgNps bimetallic nanoparticles
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in the plant. Among the secondary metabolites, the poly-
phenolics and flavonoids have been reported responsible 
for dealing with skin-related issues (Ambiga et al. 2007; 
Lodhi and Singhai 2013; Pang et al. 2017). The detailed 
phytochemical analysis of this plant is lacking. The fact has 
encouraged us to isolate and characterize flavonoids from 
the seeds of the plant M. longifolia. LCMS-8030 studies of 
the column chromatographic fraction of native seed extract 
scanned in the lower (230–310) and higher (350–700) ranges 
of m/z, exhibited a family of seven flavonoids (Fig. 1a, b). 
The strong synergistic reduction potential of flavonoids pre-
sent in the target plant (seeds) was used for the biofabrica-
tion of all the flavonoid-loaded nanoparticles and explored 
for wound healing bio-efficacy.

A tentative mechanism of reduction of Ag+ to Ag0 nano-
state form is presented (Scheme 1). The bond dissociation 
energy (4.6–14.1 kcal/mol) of two –OH groups of catechol 
moiety of flavonoid is comparatively less (Trouillas et al. 
2006) than normal phenolic –OH group (89.0 kcal/mol), 
facilitating the replacement of 2H+ with 2Ag+ ions and 
finally reducing into Ag0. Therefore, one catechol moiety of 
flavonoid molecule may reduce two silver ions (two protons 
per catechol) along with the corresponding quinone moi-
ety. The oxidized quinone being electron deficient in nature 
may impart additional antioxidant bio-efficacy (free radical 
scavenging).

The wound healing is a complicated process involv-
ing competition in several skin components to permit the 
repair of damaged tissues. It is promoted by higher cellu-
lar uptake of antimicrobial agents enhancing deposition of 
collagen (increased level of hydroxyproline content), enzy-
matic interactions, regulation of matrix metalloproteinase 
enzyme, and pro-inflammatory factors (Shin et al. 2007; 
Prabhu and Poulose 2012; Caley et al. 2015). The cellular 
uptake of metal nanoparticles, in addition to the shape and 
size of nanoparticles, also depends (Zhang et al. 2008) on 
the extent of binding with the cell membrane (charge differ-
ence). Zeta potential values are often used as an indication 
of the stability of colloidal particles. The absolute values 
replicate the net electrical charge of the particles of func-
tional groups present on the external surface (Aljabali et al. 
2018). The negative value indicated the stability (repulsive 
barrier) of the nanoparticles preventing the agglomeration 
of nanoparticles (Patil et al. 2012). The negative potential, in 
the present case, therefore, might be arising from the loading 
of negatively charged functional groups (–OH groups of the 
flavonoids) (Somchaidee and Tedsree 2018). All the biofab-
ricated nanoparticles possess negative charge (zeta potential) 
in the order: Mlf@AgNps (− 22.5 mV) < Mlf@Au–AgNps 
(− 31.5 mV) < Mlf@AuNps (− 33.9 mV) indicating the least 

Fig. 6   EDX of Mlf@AuNps, Mlf@AgNps and Mlf@Au–AgNps bime-
tallic nanoparticles

▸
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negative charge on Mlf@AgNps. The weak negative charge 
on silver nanoparticles is likely to encounter weak repulsion 
from strong electronegatively charged cell membrane and 

result into comparatively higher uptake. The uptake of Mlf@
AgNps ions is also facilitated by the strong tendency of Ag+ 
ions with thiol groups (–SH) of the cell membrane. Such 

Fig. 7   TEM of Mlf@AuNps, Mlf@AgNpsand Mlf@Au–AgNps bimetallic nanoparticles

Fig. 8   DLS size distribution curve of Mlf@AuNps, Mlf@AgNps and Mlf@Au–AgNps bimetallic nanoparticles

Fig. 9   Zeta potential of Mlf@AuNps, Mlf@AgNps and Mlf@Au–AgNps bimetallic nanoparticles
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enzymatic interactions are associated with the generation 
of ATP formation (Klueh et al. 2000). Silver catalyzes the 
reaction between the cellular O2 molecule and the H atom of 
(–SH) groups forming a disulfide bond (Ag–S–S–Ag) along 
with the formation of a water molecule instead of being con-
sumed in structure, finally causing cell death (Davies and 
Etris 1997). Overall, the phenomenon allows accumulation 

and penetration of nanodrug into living tissues compara-
tively deeper. Further, a significant increase in the hydroxy-
proline content in healed tissues confirms the accumulation 
of collagen level and thus facilitates wound healing bio-effi-
cacy. The enhanced percentage in wound closure (34.03%) 
compared to flavonoid (59.93%) also supports (Fig. 10) the 
promising wound healing efficacy of biofabricated Mlf@
AgNps (80.33%).

The skin healing tissues of all the treated groups were 
isolated on the (12th) day for histological evaluation. In the 
control group, no recovery appeared in ruptured stratum cor-
neum. The Mlf@AgNps, exhibited trends of good recovery 
of stratum corneum with the progressively growing a num-
ber of well-defined hair follicles (Fig. 11a–c). However, ref-
erence drug-treated group revealed sound stratum corneum 
and fully developed hair follicles with all the three stages. 
Among the various treatments, Mlf@AgNps showed faster 
wound closure rate (80.33%) and epithelization of the wound 
(18.00 days) (Table 1) with higher wound healing effects 
as compared to the native seed extract, flavonoid fraction, 
Mlf@AuNps, and Ml f@Au–AgNps (Fig. 12a–f).

Conclusions

A stable, simple and eco-friendly technique of biosynthesiz-
ing silver (Mlf@AgNps), gold (Mlf@AuNps) and bimetallic 
gold–silver (Mlf@Au–AgNps) nanoparticles loaded with fla-
vonoids extracted from the seeds of the plant M. longifolia 
were effectively established under ambient conditions. The 
presence of a family of seven flavonoids in the seed extract 
of the plant was ascertained using LCMS-8030 analysis. The 
flavonoids played the major role in the reduction and capping 
during biofabrication of nanoparticles. All the biofabricated 
nano-biomaterials were thoroughly characterized. UV–Vis 
spectroscopy confirmed the surface plasmon resonance 
band of Mlf@AgNps, Mlf@AuNps, and Mlf@Au–AgNps at 
λmax = 432, 534 and 470 nm, respectively. XRD revealed that 
all biofabricated nanoparticles were of cubic symmetry. The 
FE-SEM images reported spherical shapes. The presence 
of silver, gold and both Au and Ag in the respective nano-
biomaterials were confirmed by EDX spectra. TEM analy-
sis reported the accurate size of (Mlf@AgNps: 35–50 nm; 
Mlf@AuNps: 36–60 nm and Mlf@Au–AgNps: 34–66nm). 
The surface charge (zeta potential) on the nanoparticles 
were found Mlf@AgNps (− 22.5), Mlf@AuNps (− 33.9), 
and Mlf@Au–AgNps (− 31.9). In vivo healing parameters 
(wound area, wound closure, epithelization period, skin 
breaking strength and hydroxyproline content) have been 
examined in Swiss albino mice models. Among all bio-
fabricated nanoparticles, Mlf@AgNps showed significant 
enhancement (30.40%) in wound healing bio-efficacy com-
pared to native seed extract. The enhanced wound healing 

Fig.10   Wound closure % in various treatment groups

Scheme 1   Proposed chemical reaction of flavonoid fraction with Ag+ 
ions rendering the formation of Mlf@AgNps
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Fig. 11   T.S. of skin: a control 
group, b seed extract, c flavo-
noid content, d Mlf@AuNps, 
e Mlf@Au–AgNps, f Mlf@
AgNps, g reference drug at opti-
mum dose 70 mg/g ointment, 
demonstrating progressive skin 
healing in terms of number 
of hair follicles and recovered 
stratum corneum
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potential of Mlf@AgNps was assigned to the inherent anti-
microbial property of Ag, zeta potential difference, the large 
surface area of nanoparticles, and coating of medicinally 
important flavonoid content on the nanoparticles. The oxi-
dized flavonoids (quinone moiety) being electron deficient 
also impart additional antioxidant properties. The flavonoid-
loaded silver nanoparticles have valuable future and open a 

novel channel for the development of effective complimen-
tary herbal nanomedicine.
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Groups optimized dose (70 mg/g 
ointment) except for control

Wound area (mm2) 
excision model

Epithelization period (days) Breaking strength (g) 
incision model

Hydroxyproline (mg/g)

12th day – 10th day 15th day
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7. Mlf@Au–AgNps 34.02***±1.62 21.00*** ±1.50 616.01*** ± 1.55 70.03*** ± 1.42

Fig. 12   Photographs of skin on 
initial day and 12th day: (G1, 
G1

I) control group, (G3, G3
I) 

seed extract, (G4, G4
I) flavonoid 

content, (G5, G5
I) Mlf@AuNps, 

(G7, G7
I) Mlf@Au–AgNps, (G6, 

G6
I) Mlf@AgNps, (G2, G2

I) 
reference drug at optimum dose 
70mg/g ointment demonstrating 
progressive decrease in wound 
size
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