Skip to main content
. 2018 Aug 10;79(2):358–384. doi: 10.1177/0013164418791673

Table 4.

Latent Class Enumeration Across Simulations for the Ordinal Regression Mixture Model.

Balanced design Estimated models
True model
Selecting two- over one- and three-class
Selecting three- over two-class
Percentage of runs not converged
N 1 N 2 % AIC % BIC % aBIC % BLRT % AIC % BIC % aBIC % BLRT One-class Two-class Three-class
Balanced (50/50 split) 3,000 3,000 76.4 5.0 50.6 73.8 22.8 0.6 0.8 23.2 0.0 1.6 71.6
1,500 1,500 60.6 4.2 15.0 39.4 24.1 4.2 4.2 23.6 0.0 17.2 71.4
500 500 42.0 0.4 9.2 18.6 27.4 10.8 12.6 20.6 0.0 32.2 73.0
250 250 34.8 0.0 15.4 17.6 27.6 14.3 18.9 19.0 0.0 36.2 69.8
100 100 36.0 0.4 34.4 20.6 25.6 13.0 23.8 23.4 0.0 30.6 61.2
Unbalanced (75/25 split) 4,500 1,500 61.8 1.0 22.4 53.8 31.1 3.7 3.7 25.0 0.0 12.2 63.0
2,250 750 52.2 0.0 6.8 29.4 29.3 7.3 7.6 22.0 0.0 24.0 67.4
750 250 40.6 0.4 6.4 18.2 24.5 10.1 10.9 18.8 0.0 32.4 73.2
375 125 38.2 0.0 15.0 22.8 28.9 15.0 17.3 22.4 0.0 32.8 65.6
150 50 37.0 0.4 36.0 21.4 29.4 16.4 26.1 27.2 0.0 32.6 61.0

Note. AIC = Akaike information criterion; aBIC = adjusted bayesian information criterion. % BIC is the percentage of simulations selecting this model using the Bayesian information criteria and BLRT is the bootstrap likelihood ratio test.