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Abstract

M-fluctuation tests are a recently proposed method for detecting differential item
functioning in Rasch models. This article discusses a generalization of this method to
two additional item response theory models: the two-parametric logistic model and
the three-parametric logistic model with a common guessing parameter. The Type I
error rate and the power of this method were evaluated by a variety of simulation
studies. The results suggest that the new method allows the detection of various
forms of differential item functioning in these models, which also includes differential
discrimination and differential guessing effects. It is also robust against moderate vio-
lations of several assumptions made in the item parameter estimation.
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Introduction

A general assumption of item response theory (IRT) models is that the item para-

meters are constant over the population of test takers. In practical assessments, viola-

tions of this assumption are often summarized as differential item functioning (DIF;

Holland & Wainer, 1993; Millsap, 2012; Osterlind & Everson, 2009).
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Among the methods for the detection of DIF, methods relying on an IRT frame-

work can be discerned from those not relying on an IRT framework (Magis, Béland,

Tuerlinckx, & De Boeck, 2010), which are also named nonparametric DIF methods

by some authors. Examples for nonparametric DIF methods include the Mantel-

Haenszel method (Mantel & Haenszel, 1959; see also Holland & Thayer, 1988), the

simultaneous test bias method and its variations (e.g., Li & Stout, 1996), and meth-

ods based on logistic regression (Swaminathan & Rogers, 1990).

A recently proposed method for detecting DIF in an IRT framework are M-fluc-

tuation tests (Komboz, Strobl, & Zeileis, 2018; Strobl, Kopf, & Zeileis, 2015; T.

Wang, Strobl, Zeileis, & Merkle, 2018; Zeileis & Hornik, 2007). Approaches based

on M-fluctuation tests aim at detecting DIF effects by considering the relationship

between the item parameters and person covariates, such as age, gender, or educa-

tional level, in a data-driven way. They test the null hypothesis that the item para-

meters are constant over all values of person covariates. M-fluctuation tests can be

thus considered as an alternative to DIF tests, which are based on focal and reference

groups (for an overview, see Magis et al., 2010) and mixture distribution IRT models

(Rost, 1990, 1991; Rost & von Davier, 1995; von Davier & Yamamoto, 2004, 2007).

M-fluctuation tests are further related to work of Glas on the Lagrange-multiplier

test (Glas, 1999, 2010; Glas & Suárez-Falcón, 2003; Glas & van der Linden, 2010).

Glas (1998, 2001) already described the Lagrange-multiplier test as a tool for the

detection of DIF in the two-parametric logistic (2PL) and three-parametric logistic

(3PL) models (Birnbaum, 1968). However, his method requires the a priori definition

of reference and focal groups. As a consequence, continuous person covariates (e.g.,

age) have to be discretized to allow the definition of reference and focal groups. The

approach discussed here can be applied to detect DIF in covariates of any type,

including metric covariates such as age, without previous discretization.

The purpose of this article is the derivation and evaluation of M-fluctuation tests,

which are based on marginal maximum likelihood (MML) estimation, in order to

broaden the scope of IRT models for which this class of tests can be applied. We have

analytically derived the score contributions necessary for formulating the test statis-

tics and will evaluate these tests as a new method for testing DIF in the widely used

2PL model and a constrained 3PL model. Besides the new derivation of M-fluctua-

tion tests in the MML framework, the main contribution of this article is the investi-

gation of their power and Type I error rate for these models under various conditions.

We also discuss additional results on the robustness of M-fluctuation tests to viola-

tions of the distributional assumptions, which is an important aspect of their practical

application.

The remainder of this article is organized as follows: The second section briefly

reviews the statistical framework underlying the M-fluctuation tests and provides

technical details on M-fluctuation tests for the 2PL model and the 3PL model with a

common pseudo-guessing parameter. The third section outlines three Monte Carlo

simulation studies that aimed at evaluating the new method. The fourth section pro-

vides a summarizing discussion.
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M-Fluctuation Tests for Detecting DIF in the 2PL Model and a
Constrained 3PL Model

We begin our discussion with the 2PL model of Birnbaum (1968). In the context of

this article, we use a parametrization of this model that is based on the following item

response function:

P(uji = 1juj, ai, di) =
exp (ai � uj + di)

1 + exp (ai � uj + di)
ð1Þ

In this equation, uj denotes the person parameter of respondent j, and ai and di are

the slope (or discrimination) and intercept parameters for item i. Similar forms of the

2PL model were used by McDonald (1999) and Fox (2010). In contrast to other para-

metrizations, higher di values increase the probability of a correct response.

The inclusion of an additional parameter ci for the lower asymptote, which is

called the guessing or pseudo-guessing parameter in the literature, leads to the 3PL

model. However, for small to moderate sample sizes, the item parameters of the 3PL

model are usually difficult to estimate (De Ayala, 2009). We therefore consider a

constrained 3PL model with a common lower asymptote c for all items:

P(uji = 1juj, ai, di, c) = (1� c) + c � exp (ai � uj + di)

1 + exp (ai � uj + di)
ð2Þ

The application of M-fluctuation tests for testing the stability of the Rasch model

generally consists of two steps: First, the item parameters are estimated based on the

whole sample. Second, the stability of the item parameter estimates with regard to a

person covariate of interest is investigated.

We start with a brief discussion of the first step. The M-fluctuation tests for

Rasch-type models that were presented so far (Komboz et al., 2018; Strobl et al.,

2015) used conditional maximum likelihood estimates for the first step, which are not

available for the 2PL and constrained 3PL models. A possible alternative approach is

joint maximum likelihood estimation. However, a fundamental problem of this

approach is that it leads to inconsistent item parameter estimates (Baker & Kim,

2004); a formal proof for the special case of the Rasch model was provided by Ghosh

(1995). In this study, we therefore used MML estimation of the item parameters,

which assumes a normal distribution of the person parameters.

In the second step, the individual contributions to the score function (i.e., the deri-

vative of the log-likelihood for each individual person) are ordered with respect to a

covariate of interest (e.g., age). If this person covariate does not affect the item para-

meters, the individual contributions should show no clear pattern but lead to random

fluctuations of the cumulative score process that summarizes the individual contribu-

tions over the range of the covariate. However, any relationship between the person

covariate and the item parameters would lead to systematic fluctuations in the cumu-

lative score process (as was illustrated, e.g., in Strobl et al., 2015). Let 0 � t � 1
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denote a relative proportion of the overall sample size N , then the cumulative score

process is defined as (Zeileis, Hothorn, & Hornik, 2008)

Wl(t) : = V̂�1=2N�1=2
XN �tb c

j = 1

c(u(jjl), b̂)

In this equation, b̂ denotes the vector of the estimated item parameters, u(jjl) denotes

the jth ordered observation with respect to the lth covariate, and c(u(jjl), b̂) denotes

the individual score function, which is the derivative of the individual contributions

to the log-likelihood C(uj) for a person j. V̂ is an estimate of the covariance matrix

for the score function.

In a first step, we therefore determined the individual score functions for the 2PL

and constrained 3PL models. A derivation of these score functions will be made

available as an online document (https://doi.org/10.5167/uzh-151192) accompanying

this study. Given these score functions, an important decision concerns the choice of

the test statistic, which aims to summarize the resulting cumulative score process.

An overview on possible choices is given by T. Wang, Merkle, and Zeileis (2014).

As in the study of Strobl et al. (2015), the double maximum test statistic was used in

this study. Based on the choice of this summary statistic, p values can be calculated

by comparing its value with its distribution under the null hypothesis.

A possible problem concerns the presence of actual mean differences in the distri-

bution of the person parameters between several groups of respondents, which is usu-

ally called an impact effect (e.g., Chen, Chen, & Shih, 2014; DeMars & Jurich, 2015;

Kopf, Zeileis, & Strobl, 2015a, 2015b; W.-C. Wang, Shih, & Sun, 2012). Ability dif-

ferences between groups of respondents are ubiquitous in psychological research

(e.g., between female and male respondents; Halpern, 2012), and should not be con-

fused with DIF.

A suitable general estimation framework in the context of IRT was developed by

Bock and Zimowski (1997). The purpose of this framework is to estimate item para-

meters from data obtained from multiple known groups. In all groups, the person

parameters are usually assumed to follow a normal distribution; for calibration pur-

poses, a standard normal distribution is typically assumed for the first group. The

multiple group framework generally allows the definition of different constraints on

the item and person parameters. The means and variances of the person parameter

distributions can be estimated freely for each group of respondents based on the data,

or be constrained to be equal for all groups (i.e., m = 0 and s2 = 1). Likewise, it is

possible to estimate each item parameter freely for each group of respondents, or to

constrain it to be equal across all respondent groups. This approach was also inde-

pendently suggested by T. Wang et al. (2018) in a study on M-fluctuation tests for

the two-parametric normal-ogive (2PNO) model.

In summary, M-fluctuation tests for the 2PL model and the constrained 3PL model

can be calculated by the following steps: First, estimate the item parameters using an
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MML approach in combination with a multiple group framework to account for the

possibility that the data were obtained from groups with different ability distribu-

tions. Second, calculate the scores based on the parameter estimates and the response

data. Third, calculate an appropriate test statistic to detect systematic deviations of

the cumulative score process and calculate the corresponding p value.

Simulation Studies

For practical applications, it is important to investigate the power of these tests with

regard to the instability of various item parameters. For the 2PL model and the con-

strained 3PL model, this point was evaluated by three simulation studies. We will

summarize the first of those in the following subsection, and will then report the

results of the remaining two, which investigated the robustness of the method, in a

separate subsection.

Simulation Study I: Principal Results on the Power and Type I Error Rate
Aim of Simulation Study I. The principal goal of Simulation Study I was to investigate

the Type I error rate and power of M-fluctuation tests against DIF effects in the vari-

ous model parameters of the 2PL model and constrained 3PL model under a limited

set of conditions, which will be described below. We used a multiple-group IRT

framework to estimate the item parameters. This framework allows the modeling of

ability differences between known groups of respondents, and therefore also allows

to model impact effects. We expected that impact effects that are not modeled would

lead to a bias in the item parameters, and thus to false-positive results in the M-fluc-

tuation tests. The second goal of this study was to test this assumption. Finally, the

third goal was to investigate the effect of constraints on the item parameters on the

power of M-fluctuation test. We expected the M-fluctuation tests to be most sensitive

against uniform and nonuniform DIF effects if all item parameters were constrained

to be equal for all respondents in the parameter estimation.

This study is an important extension of the previous studies of Strobl et al. (2015)

and Komboz et al. (2018) that investigated the Type I error and power for dichoto-

mous and polytomous Rasch models under the conditional maximum likelihood

framework. It further complements the study of T. Wang et al. (2018), which investi-

gated M-fluctuation tests for the 2PNO model.

Design of Simulation Study I. In this study, we simulated the responses of a sample of

two groups to an item set of 30 items based on the 2PL model or the constrained 3PL

model. Each simulated dataset contained two groups of respondents, of which one

could be affected by DIF. In each simulated dataset, each respondent was assigned to

one of the two groups by the result of a Bernoulli experiment, with both outcomes

being equally likely. The simulated datasets shared the following characteristics:
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� Number of items and item parameters: All datasets contained the responses to

30 items. Our method for creating the item parameters resembles that chosen

in earlier simulation studies on DIF (Cao, Tay, & Liu, 2017; Tay, Huang, &

Vermunt, 2016). The intercept parameters were first drawn from a uniform

distribution U(� 1:45, 1:45) and then centralized to a mean of 0, with the same

values being used under all conditions. The slope parameters were drawn from

a normal distribution N (1, 0:25), with one negative value being replaced by

0.3. For the constrained 3PL model, the pseudo-guessing parameter was set to

0:1. The item parameters were generated independently, and there was no sys-

tematic relationship between the item parameters and the position of the item.
� Number of respondents: The simulated samples consisted of 500, 1,000, or

3,000 respondents, similar to earlier studies on tests for DIF effects (e.g., Kopf

et al., 2015a, 2015b).
� Presence of an impact effect: If no impact effect was present, the ability para-

meters in both groups were drawn from a standard normal distribution. If an

impact effect was simulated, the ability parameters in the first groups were

drawn from a standard normal distribution, whereas the ability parameters in

the second group were drawn from a normal distribution N (1, 1). Very similar

conditions were investigated in a variety of simulation studies, for example,

DeMars and Jurich (2015), Kopf et al. (2015a), and W.-C. Wang et al. (2012).
� Presence of a DIF effect: In addition to a possible impact effect, the item para-

meters could also differ for the same groups of respondents. Overall, these

conditions varied with regard to the following factors:

s Percentage of items with DIF effect: The last 12 items (40%) were DIF

items. Similar conditions were used in the studies of Chen et al. (2014),

Kopf et al. (2015a), and W.-C. Wang et al. (2012). As there was no sys-

tematic relationship between the position of the items and their item

parameters, the DIF items did not differ systematically from the rest of

the item set. For DIF items, at least one item parameter (intercept,

slope, and, if the constrained 3PL model was the data generating model,

the pseudo-guessing parameter) was changed for a part of the sample.

All DIF items were manipulated in the same way, as will be described

in the following.

s Type and size of DIF effect: If the item slope parameter was affected by

DIF, it was altered by 0.3. If the intercept parameter was affected by

DIF, it was altered by 0.6; and if the pseudo-guessing parameter was

affected by DIF, it was altered by 0.1. Similar sizes of DIF effects on

the intercept parameters were used in the studies of Chen et al. (2014),

Kopf et al. (2015a), and Kopf et al. (2015b). A similar effect for the

slope parameter was used in the study of W.-C. Wang et al. (2012).

Changes in the slope or pseudo-guessing parameters led to nonuniform

DIF effects, whereas changes which affected only the intercept para-

meters led to uniform DIF effects.
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s Direction of DIF: Under the first simulated condition, the change of the

item parameters was the same for all DIF items, leading to an unba-

lanced DIF effect. In the second simulated condition, item parameters

were increased for the even-numbered DIF items, and decreased for

the odd-numbered DIF items, leading to a balanced DIF effect. If the

DIF was unbalanced and if an impact effect was present, the intercept,

slope, and the pseudo-guessing parameters were increased in the group

with a higher mean ability parameter. As can be seen from Equations

(1) and (2), an increase of the intercept and pseudo-guessing para-

meters increases the probability of a correct response. This corresponds

to earlier simulation studies, where unbalanced DIF effects favored the

more able group (e.g., Chen et al., 2014; Kopf et al., 2015a, 2015b;

W.-C. Wang et al., 2012).

Under each condition, 1,000 datasets were simulated. Each dataset was analyzed with

several variations of M-fluctuation tests, which differed with regard to the constraints

of the item parameter estimation. As outlined in the introduction, we used a multiple

group framework for estimating the item parameters. In this framework, both the item

parameters and the parameters of the person parameter distribution are allowed to dif-

fer between the two groups of respondents. We focus here on model specifications

which assumed the item parameters to be constant for both respondent groups. Under

this constraint, the distribution of the person parameters could be either assumed to

be standard normal for each group, or a normal distribution with group-specific m

and s2 parameters.

Results of Simulation Study I. Overall, the power and Type I error rate were heavily

influenced by the choice of the model specification. We first focus on the results

obtained with a model specification in which the impact groups were allowed to dif-

fer with regard to their person parameter distribution, but all item parameters were

assumed to be equal for all groups. When the data were generated from a 2PL model

without DIF, the rate of significant results was between 0.019 and 0.040 under all

conditions and therefore slightly below the nominal alpha level of 0.05, which indi-

cates a conservative behavior of the M-fluctuation tests. For the constrained 3PL

model, the Type I error rate was between 0.017 and 0.047 under all conditions.

Similar results had been found by Strobl et al. (2015) and Komboz et al. (2018) for

M-fluctuation tests for dichotomous and polytomous Rasch models, and by T. Wang

et al. (2018) for the 2PNO model.

Figure 1 presents results on the power of M-fluctuation tests when either the slope,

the intercept, or both parameters were affected by DIF.

The corresponding results for the constrained 3PL model are presented in

Figure 2. When all three parameters (slope, intercept, and pseudo-guessing) were

affected by DIF, the power rates were near 1 under all conditions for this model.
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When alternative model specifications were used in the item parameter estimation,

worse results were obtained. Model specifications that did not model an impact effect

in the data usually led to a highly inflated Type I error rate, which reached values of

up to 1 for both models under some conditions. Model specifications that allowed

item parameters to differ between the respondent groups led to lower power rates and

did not seem promising for practical applications. We omit details for brevity.

Conclusions From Simulation Study I. Simulation Study I aimed at three goals. The first

goal was the investigation of the power of M-fluctuation tests when the item para-

meters are estimated under a wide range of different model constraints. Generally,

we found that M-fluctuation tests had power against uniform and nonuniform DIF

effects. The power of the M-fluctuation tests increased with the size of the sample of

simulated respondents and was generally larger for balanced than for unbalanced DIF

effects.

The second goal aimed at testing our assumption that impact effects can lead to

false-positive results if they are not modeled in the parameter estimation. The results

of the simulation study indicate that this assumption is correct and therefore underline

Figure 1. Results of M-fluctuation tests for the 2PL model if the slope (solid lines), intercept
(dotted line), or both parameters (broken line) are affected by DIF for various conditions of
sample size, balanced (top row) and unbalanced (bottom row) DIF effects when impact was
present (right column) or not (left column). All results were obtained using model constraints
that modeled impact effects.
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our recommendation to model possible impact effects as part of the item parameter

estimation. In our simulations, a model specification that allowed a free estimation of

mean and variance for each impact group, but which also constrains the item para-

meters to be equal across the population, was found to be most useful.

The third goal was to test the assumption that the power of M-fluctuation tests is

highest when all item parameters are constrained to be equal for all respondents.

Again, this assumption was confirmed. In summary, the results of Simulation Study I

agree with those of previous studies (Komboz et al., 2018; Strobl et al., 2015;

T. Wang et al., 2018) and generalize these findings to the 2PL and 3PL models.

A Summary of Simulation Studies II and III: Investigating the Robustness of
M-Fluctuation Tests

The conditions used in Simulation Study I can be regarded as rather ideal situations,

which are usually not encountered in practical data analysis. In Simulation Studies II

and III, we therefore aimed at investigating the power of M-fluctuation tests under a

wide range of more realistic conditions. We focus on the principal results of these

Figure 2. Results of M-fluctuation tests for the constrained 3PL model if the slope (solid
lines), intercept (dotted line), or pseudo-guessing parameters (broken line) are affected by
DIF for various conditions of sample size, balanced (top row) and unbalanced (bottom row)
DIF effects when impact was present (right column) or not (left column). All results were
obtained using model constraints that modeled impact effects.
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studies here and only present a summary of the design and the main findings; addi-

tional details will be made available as a second online document (https://doi.org/

10.5167/uzh-151192) accompanying this study.

Simulation Studies II and III included datasets which differed with regard to the

following characteristics from the datasets investigated in Simulation Study I:

� The person parameters were drawn from a normal or from a skewed distribu-

tion (Simulation Studies II and III)
� DIF and impact effects were parallel or orthogonal (i.e., related to orthogonal

person covariates) (Simulation Study II)
� Datasets for which the groups affected by impact were slightly misspecified in

the item parameter estimation (Simulation Study III)

As in Simulation Study I, impact was modeled using a model constraint that allowed

the impact groups to differ with regard to their person parameter distribution, but

assumed all item parameters to be constant for all groups.

In summary, Simulation Studies II and III investigated conditions in which spe-

cific assumptions of the item parameter estimation, like the normal distribution of the

person parameters or the groups for which impact is modeled, were violated. This is

a novel aspect that has not been investigated in previous simulation studies by Strobl

et al. (2015), Komboz et al. (2018), or T. Wang et al. (2018).

Central Findings From Simulation Studies II and III. Overall, M-fluctuation tests were

found to have power against uniform and nonuniform DIF also under the more gen-

eral conditions of Simulation Studies II and III. Again, the Type I error rate was close

to the nominal alpha level if impact effects were modeled. In general, the model con-

straints have only little effect on the power of the M-fluctuation tests in both simula-

tion studies. The only exception are constraints that do not account for impact effects

that are present in the variable that is tested for DIF. This further supports our recom-

mendation that it is crucial to model possible impact effects in variables that are

tested for DIF in the estimation step of the procedure.

Orthogonal impact effects do not seem to increase the Type I error rate or to affect

the power of the M-fluctuation tests, even if they are not modeled. Finally, it was

found that M-fluctuation tests tend to be robust against a moderately skewed distribu-

tion of the person parameters and against misspecifications of the groups affected by

impact effects.

General Discussion

This article described a method to calculate M-fluctuation tests for the 2PL model

and a constrained 3PL model. As the results of the simulation studies showed, the

M-fluctuation tests generally have power against DIF in the slope, intercept, and
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pseudo-guessing parameters. The presented method therefore allows the detection of

uniform and nonuniform DIF effects.

In contrast to the M-fluctuation tests for Rasch models (Komboz et al., 2018;

Strobl et al., 2015), the presented method is based on a MML estimation of the item

parameters, which assumes normally distributed person parameters. The results of

Simulation Studies II and III indicated that M-fluctuation tests are robust against

moderate violations of this assumption (i.e., a skewed person parameter distribution).

In empirical datasets, person covariates are often related to differences in ability.

We proposed the application of the multiple-group IRT framework described by

Bock and Zimowski (1997) to model possible impact effects. As the results of

Simulation Study I suggest, an impact effect in a person covariate that is tested for

DIF can increase the Type I error if it is not accounted for in the item parameter esti-

mation step. However, we found that impact effects in orthogonal covariates do not

lead to an increase in the Type I error rate. Our results also indicated that a slight

misspecification of the groups affected by impact does generally not lead to a severe

Type I error inflation.

Among the possible constraints on the item and person parameters in the multiple-

group framework, we found a specification that constrains the item parameters to be

equal across all groups, but which allows a free estimation of the person parameter

distributions, to be most useful. This model constraint can therefore by recommended

for practical data analyses.

As a conclusion of this article, we also want to present a brief outlook on future

work. In empirical datasets, the distribution of latent traits may not only differ with

regard to categorical person covariates (such as gender), but also with regard to con-

tinuous person covariates (such as age). In this case a discretization could be used to

define groups of respondents in the multiple-group IRT framework with potentially

different ability distributions. As the results presented in our simulations indicate,

M-fluctuation tests are robust against a slight misspecification of the groups that are

affected by impact effects. Nevertheless, it seems interesting to evaluate and com-

pare possible strategies for addressing continuous person covariates.

The presented approach for developing M-fluctuation tests for the 2PL

model and constrained 3PL model can be easily applied to develop M-fluctuation

tests for additional IRT models, like multidimensional models (Reckase, 2009),

and models for polytomous items, like the generalized partial credit model

(GPCM; Muraki, 1992). We did not consider these models here, since they typi-

cally require larger samples. However, preliminary simulations, which we did not

present in this article for brevity, indicate that M-fluctuation tests can also be used

with the 3PL model, the two-dimensional 2PL model (Reckase, 2009), and the

GPCM. An R package that allows the calculation of M-fluctuation tests for these

models is currently in preparation. Finally, the presented M-fluctuation tests can

be used as a foundation for developing methods analogous to Rasch trees (Strobl

et al., 2015).
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Software Used in This Study

All analyses were carried out using the R environment for statistical computing (R Core

Team, 2017), versions 3.3.2 and 3.3.3. The item parameters for the 2PL and 3PL models

were estimated using the mirt package (Chalmers, 2012), version 1.20.1. The subse-

quent calculation of the M-fluctuation tests was carried out with the strucchange pack-

age (Zeileis, Leisch, Hornik, & Kleiber, 2002), version 1.5-1. The calculation of the

scores was carried out with new R code, which was written specifically for this study.
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