
Article

Educational and Psychological
Measurement

2019, Vol. 79(2) 217–248
� The Author(s) 2018

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0013164418773494

journals.sagepub.com/home/epm

Estimation of Random
Coefficient Multilevel Models
in the Context of Small
Numbers of Level 2 Clusters

Jocelyn H. Bolin1, W. Holmes Finch1

and Rachel Stenger1

Abstract

Multilevel data are a reality for many disciplines. Currently, although multiple
options exist for the treatment of multilevel data, most disciplines strictly adhere
to one method for multilevel data regardless of the specific research design cir-
cumstances. The purpose of this Monte Carlo simulation study is to compare sev-
eral methods for the treatment of multilevel data specifically when there is
random coefficient variation in small samples. The methods being compared are
fixed effects modeling (the industry standard in business and managerial sciences),
multilevel modeling using restricted maximum likelihood (REML) estimation (the
industry standard in the social and behavioral sciences), multilevel modeling using
the Kenward–Rogers correction, and Bayesian estimation using Markov Chain
Monte Carlo. Results indicate that multilevel modeling does have an advantage
over fixed effects modeling when Level 2 slope parameter variance exists. Bayesian
estimation of multilevel effects can be advantageous over traditional multilevel
modeling using REML, but only when prior probabilities are correctly specified.
Results are presented in terms of Type I error, power, parameter estimation bias,
empirical parameter estimate standard error, and parameter 95% coverage rates,
and recommendations are presented.
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Introduction

Multilevel data arise when lower level sampling units (e.g., students) are nested

within higher level sampling units (e.g., schools). This multilevel structure can occur

at more than two levels, for example, when students are nested in classrooms, which

are in turn nested within schools. Such structure needs to be accounted for in data

analysis, otherwise model parameters, particularly standard errors, will be biased

(Snijders & Bosker, 2012). Multilevel data is a reality for many different areas of

research, including the social, behavioral, educational, medical, and managerial

sciences. Given the prevalence of this issue across disciplines, it is interesting that

there appear to be differences in terms of how researchers from different fields

choose to analyze multilevel data. For example, researchers in the social, educa-

tional, and behavioral sciences frequently use a family of methods called multilevel

modeling (MLM) for such analyses, whereas those working in business and manage-

ment research often use fixed effects models (FEM) for analysis of multilevel data

(McNeish & Stapleton, 2016). Recent work has discussed the theoretical differences

between MLM and FEM, and their application to multilevel data structures (Chaplin,

2003; Galbraith, Daniel, & Vissel, 2010; Huang, 2016; McNeish, Stapleton, &

Silverman, 2017; Setodji & Shwartz, 2013).

An issue that has not been completely resolved with respect to multilevel data

modeling involves the best approach for dealing with situations where higher level

sample sizes are relatively small. In studies that have addressed this issue (e.g.,

McNeish & Stapleton, 2016), two alternative approaches for MLM have been

described, a variant for MLM allowing for smaller Level 2 cluster sizes known as

the Kenward–Roger (KR) correction and Bayesian estimation using a Markov Chain

Monte Carlo (MCMC) approach.

The purpose of the present study was to compare standard MLM estimation with

several alternative estimation approaches, including FEM, MLM with the KR correc-

tion, and MCMC, when there is random slope variation, particularly when samples

are small. Although FEM is not subject to the assumption of endogeneity and thus

does not need all predictors present to be unbiased, it is unclear how FEM will com-

pare with more complex models when random slope variation is indeed present.

MLM would generally be the method of choice as it allows for direct modeling of

random slope variation; however, it is unknown how it will compare to FEM or other

complex methods when higher level samples are small. Following are descriptions of

each method included in the present simulation study.

Multilevel Modeling (Using REML Estimation)

In the social, educational, and behavioral sciences, when multilevel/nested data are

encountered, the standard analysis involves fitting MLMs using restricted maximum

likelihood (REML) estimation. As described by Raudenbush and Bryk (2002), this

approach accounts for the multilevel structure of data by allowing for predictors at

all levels of analysis to be used. In order to accomplish this, prediction equations are
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created for each level of the nested structure. The Level 1 equation involves simple

prediction of the outcome from Level 1 (e.g., student) characteristics much like the

prediction equation of a traditional regression model. This relationship is demon-

strated in Equation (1), where Yij is the outcome for individual i in group j, b00 is the

intercept of the Level 1 equation, b10 is a slope for a Level 1 predictor variable, and

rij is the Level 1 error term.

Yij = b00 + b10 Xij

� �
+ rij ð1Þ

In order to account for variance from higher levels of analysis, Level 2 (and higher)

prediction equations can be used to obtain estimates of the intercept and slope coeffi-

cients from the Level 1 model. As can be seen in Equations (2) and (3), g00 is the

intercept for the prediction equation for b00 (which in most cases is interpreted as

the grand mean), g10 and g01 are slope coefficients for the prediction of the Level 1

coefficients, and u0j and u1j are unique or random effects associated with the Level 1

intercept and slope, respectively.

b00 = g00 + g01 Zð Þ+ uoj ð2Þ

b10 = g10 + g11 Zð Þ+ u1j ð3Þ

Considering Equations (2) and (3), it is evident that MLM provides a very flexible

framework for understanding nested effects by allowing for predictors at multiple

levels of analysis, accounting for multiple levels of data structure (sample size per-

mitting), and accommodating model customization such as cross-level interactions,

variation in coefficients (b00, b10) at higher data levels, or use with categorical out-

comes. MLM generally requires relatively larger sample sizes (Hox, 2010 ) and is

subject to reasonably strict assumptions about the sample and data distributions

(Raudenbush & Bryk, 2002). Given these potential limitations with respect to sample

size, it seems important to consider other possible options for the analysis of multile-

vel data.

The Kenward–Roger Correction

The KR correction is described in detail in Kenward and Roger (2009), and thus the

interested reader is referred there for a more in-depth discussion of the calculations.

The purpose of the correction is twofold, namely, to address problems of negative

bias in the standard errors of Level 1 model parameter estimates and to correctly

approximate the denominator degrees of freedom in the hypothesis tests used to

assess statistical significance for these estimates. These issues are not typically pro-

blematic in the context of sufficiently large Level 2 sample sizes, because of the

asymptotic properties associated with the test statistics, and the sufficient amount of

information in the sample necessary for accurate estimation (Kenward & Roger,

2009). However, with a small number of Level 2 units these desirable properties are

no longer available. Kenward and Roger proposed their correction to the coefficient
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standard errors, using a modified Taylor Series expansion first described by Kackar

and Harville (1984). In addition, they also developed a technique to approximate the

denominator degrees of freedom for the hypothesis tests that is based on the com-

monly used Satterthwaite approach (Satterthwaite, 1946). Taken together, these

methods have been shown to yield more accurate hypothesis testing results in the

context of small number of units at Level 2 (e.g., McNeish & Stapleton, 2016).

Fixed Effects Models

While MLM has historically been the gold standard for analysis of multilevel data in

the social, educational, and behavioral sciences, it is not as frequently used in the

fields of business and econometrics. When researchers in these fields encounter mul-

tilevel data, they are quite likely to use FEM. Allison (2009) noted that FEMs pro-

vide the data analyst with a simpler model to account for the influence of higher

levels in the data structure by including dummy variables for each Level 2 unit as

fixed effects in a regression model. For example, if a researcher were dealing with a

dataset containing students nested within schools, in the context of FEM the variance

associated with schools would be accounted for by assigning a dummy variable to

each of the schools. Regarding the dummy coding of Level 2 units, dummy variables

can either be created as absolute, meaning all Level 2 units have a dummy variable

and the intercept is omitted, or reference, meaning one Level 2 unit is left out and

the intercept is retained. Using an absolute coding scheme, the FEM model can be

represented as shown in Equation (4) where bn are regression coefficients for Level

1 model covariates (X) and ck are regression coefficients for Level 2–unit dummy

variables (a).

Yij =
X

bn Xð Þ+
X

ck að Þ+ r ð4Þ

Regardless of dummy coding scheme, when the FEM is used, the focus is on the

interpretation of the relevant Level 1 covariates. The dummy variable context effects

are generally not interpreted and are included in order to account for Level 2 var-

iance. Representing Level 2 context effects in this manner allows for such variance

to be accounted for, thereby yielding unbiased estimates of standard errors for Level

1 parameter estimates (Allison, 2009). FEM does not, however, allow for the specific

effects of Level 2 covariates to be examined.

Markov Chain Monte Carlo

Bayesian estimation using the MCMC estimator has been suggested as being advan-

tageous for small sample cases, including in the context of multilevel data (Gelman,

2006). Given space limitations, and the plethora of literature describing MCMC esti-

mation, we will not delve deeply into this topic here. Readers who would like to learn

more about the details of Bayesian estimation using MCMC are referred to Kaplan

(2014) and Congdon (2003) for a general treatment of the topic. With regard to
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MLM specifically, Browne and Draper (2006) provide discussion of the topic as well.

Very briefly, the use of MCMC estimation requires that the researcher select a prior

distribution for each of the model parameters, which are themselves conceptualized

as distributions rather than as single values as in the frequentist analysis paradigm

that underlies REML estimation. The MCMC algorithm combines this prior informa-

tion with information taken from the data in order to estimate the distribution of the

parameter, which is referred to as the posterior distribution. When samples are small,

the selection of these priors is very important because they will have a relatively

large impact on the nature of the posterior distributions (Kaplan, 2014). In other

words, in the absence of much observed data, the posterior will rely more heavily on

the prior distribution. McNeish and Stapleton (2016) addressed this issue by compar-

ing MCMC using several different prior distributions and found that the inverse

gamma and the half-Cauchy prior distributions for the Level 2 variances both per-

formed best among the options that they examined. Given these results, the inverse

gamma distribution was used as the prior for the variance components of the Level 1

parameters in the current study.

Prior Research on Small Samples and Multilevel Analysis

The majority of research comparing different types of multilevel analysis has

focused on MLM compared with FEM as these are the ‘‘industry standards.’’

Much of this discussion has revolved around a comparison of the assumptions for

these methods. Due to its more complex structure, MLM has more strict assump-

tions than FEM. One major point of difference between the two modeling para-

digms is that MLM assumes all relevant predictors and all relevant random effects

are included in the model, and that all covariance structures (i.e., the covariance

structure of the within-cluster residuals and the covariance structure of the random

effects) are properly specified. Thus, in order for MLM to produce unbiased esti-

mates, the model needs to be properly specified both in terms of variables chosen

and model structure. Any omitted Level 2 variables can bias the Level 1 slope

estimates, a problem that does not occur in FEM (Chaplin, 2003). The inclusion of

Level 2 dummy variables in FEM already ensures that all Level 2 variance is

accounted for without requiring specific modeling (Allison, 2009). This relates

closely to the assumption of MLM known as endogeneity. The assumption of

endogeneity requires there to be a lack of correlation between within-cluster resi-

duals and both the random effects and the predictor variables at any level. The

assumption of endogeneity is often violated when necessary predictor variables

are omitted (Raudenbush & Bryk, 2002). Thus, FEM is often suggested as an

alternative when the assumption of endogeneity is questionable.

Within the last decade, there has been an increased focus in empirical research

on the estimation for multilevel data with small samples at Levels 1 and 2, and

extending beyond FEM and traditional MLM. The goal of several of these simula-

tion studies has been to identify estimators and adjustments to estimators that yield
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efficient and unbiased parameter estimates with a small number of clusters at

Level 2. Among other findings, several of these studies have found that when the

standard REML estimator is employed it is necessary to have at least 30 Level 2

units in order to obtain unbiased estimates with standard errors that are in control

(e.g., Bell, Morgan, Schoeneberger, Kromrey, & Ferron, 2014; Maas & Hox,

2005). Kenward and Roger (2009) demonstrated that their correction for small

sample MLM estimation could lower the required number of Level 2 clusters to as

few as 10 in some cases when the goal was to accurately estimate the random inter-

cept and error variance components. Bayesian estimation based on the MCMC

algorithm has also been suggested for use with small sample multilevel data and

has been shown to be quite effective for estimating the random intercept and error

variances, if correct informative priors are selected (Browne & Draper, 2006;

Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009; Gelman, 2006; Hox, van

de Schoot, & Matthijsse, 2012).

One of the limitations of the work cited above is that these various methods for

estimating multilevel models were not compared directly with one another in the

context of a small number of Level 2 units. Recently, McNeish and Stapleton (2016)

addressed this gap in the literature by conducting an extensive Monte Carlo simula-

tion study in which they compared these approaches with small Level 2 samples.

This study was the first to examine the performance of several methods together,

including MLM using REML, MLM using REML with the KR, MCMC using three

different prior distributions for the variance components, as well as generalized esti-

mating equations, and FEMs. The outcomes of interest were parameter estimate rela-

tive bias, coverage, and power rates for the Level 1 regression coefficient, the Level

1 residual variance estimate, and the Level 2 intercept variance estimate. The results

of the McNeish and Stapleton (2016) study revealed that multiple approaches can be

used to obtain accurate estimates of the parameters in question, with reasonable cov-

erage and power rates. For example, with regard to the Level 1 regression parameter

estimate, FEM was found to yield estimates with low levels of bias, and with higher

power for identifying non-0 values in the population than was true for the other

methods. Bias in the regression coefficients for KR was also low across conditions.

With regard to the variance component estimates, REML performed poorly for fewer

than 10 clusters, with lower than nominal coverage rates for the parameter estimate.

However, KR was able to address this problem for the most part, with the exception

of the 4 clusters condition, for which coverage was nearly as low as for the uncor-

rected REML approach. Among the Bayesian estimation techniques, MCMC using

the inverse gamma(0.01, 0.01) prior distribution, and MCMC with a Half-

Cauchy(0,4) prior for the model variance components yielded low parameter estima-

tion bias, and high coverage and power rates. The final recommendations from

McNeish and Stapleton were to consider the use of MCMC with the inverse gamma

prior, and FEM, if the primary goal of the analysis is to estimate a Level 1 regression

relationship and not the variance components.
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Study Goals

As noted above, the purpose of the current study is to build on earlier research exam-

ining the impact of sample size, at both Levels 1 and 2, on the performance of several

estimators for multilevel models in the context of random coefficient effects. The

methods that were used in this study include FEM, REML, KR, MCMC with nonin-

formative inverse gamma priors for the variance components, and MCMC with infor-

mative inverse gamma priors. Prior work, which was reviewed above, has found that

the number of Level 2 units (clusters), as well as the total sample size (clusters 3

sample per cluster) will have an impact on the estimation of the random intercept and

Level 1 residual components in MLMs. Specifically, as noted above, the FEM and

KR approaches were found to be particularly promising for use when there are a small

number of clusters at Level 2 and the interest is in obtaining accurate estimates and

coverage rates for the Level 1 regression coefficients and variance component values

using KR (McNeish & Stapleton, 2016). The current study extends this line of

research by comparing the most promising estimators identified in the earlier research,

for models where the coefficient relating a Level 1 predictor and the outcome variable

has a random component, that is, a random coefficients model. Based on the earlier

studies cited above, several hypotheses regarding the current study are suggested.

Hypothesis 1: With regard to estimating the fixed effects portion of the Level 1 coeffi-

cient, it is anticipated that each of the methods should provide unbiased estimates

across sample sizes. This is a result that has been found in prior work (e.g.,

McNeish & Stapleton, 2016). It is not known, however, what impact the Level 2

random component of the coefficient might have on estimation of the Level 1 fixed

portion.

Hypothesis 2: Based on earlier research, it is hypothesized that FEM will yield the

highest power rates for the Level 1 regression coefficient and that all the methods

will control the Type I error rate for this test. It is important to note, however, that

prior simulation studies included only a fixed effects component to the coefficient,

so that little is known about what impact a random coefficient might have on these

estimators.

Hypothesis 3: Prior research has indicated that estimation of the Level 2 intercept var-

iance component is affected by the number of Level 2 clusters, and the same is

expected to be the case for the Level 2 coefficient variance component in the current

study. Specifically, it is anticipated that the KR coverage rates for the random coef-

ficient parameter estimate will be superior to those for REML, and that those for the

model based on informative MCMC priors will be the best of all.

Method

A Monte Carlo simulation study was used to address the research goals outlined

above. A total of 1,000 replications were generated for each combination of the

manipulated conditions, which are described here. All the manipulated study
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conditions were completely crossed with one another, with the exception of the FEM

estimator, as is discussed below. Data were generated using Mplus version 7.11

(Muthén & Muthén, 1998-2017), and data analyses were conducted using SAS ver-

sion 9.3 (SAS Institute, 2015). The intraclass correlation was set at 0.2 across

manipulated study conditions. This value has been used in prior research (e.g.,

French & Finch, 2013; McNeish & Stapleton, 2016) and represents a moderate level

of correlation within the Level 2 clusters. A number of conditions were manipulated

in this study and were selected in order to build on prior research in this area as well

as to reflect conditions that are seen in practice.

Data Generating Models

Two data generating models were used in the current study. Model 1 included only a

single Level 1 predictor (which served as the target of the simulation study), with

both a random intercept and random slope term, and took the form:

yij = g00 + g10x1ij + U0j + U1jx1ij + eij ð5Þ

where yij is the dependent variable value for subject i in cluster j; simulated from the

N 0, 1ð Þ distribution; g00 is the fixed intercept effect; set at 1 in simulations; g10 is

the fixed coefficient effect for predictor x; manipulated as described below; x1ij is the

target predictor variable value for subject i in cluster j; simulated from the N 0, 1ð Þ
distribution; U0j is the random intercept variance; simulated from the N 0, 1ð Þ distri-

bution; U1j is the random coefficient variance for predictor x1; manipulated as

described below; and eij is the random residual variance; simulated from the N 0, 1ð Þ
distribution.

Model 2 was simulated to include the target predictor from Model 1 as well as a

second Level 1 predictor and a Level 2 predictor. The purpose of including Model 2

was to investigate the performance of the various estimators with more complex mod-

els, for which the burden of the small samples could potentially be greater. Model 2

took the following form:

yij = g00 + g10x1ij + g20x2ij + g01zij + U0j + U1jx1ij + eij ð6Þ

where g20 is the fixed coefficient effect for Level 1 predictor x2; set at 0.5 in all simu-

lations; x2ij is the value of second Level 1 variable; simulated from the N 0, 1ð Þ distri-

bution; g01 is the coefficient for Level 2 predictor; set at 0.5 in all simulations; and zij

is the value of Level 2 predictor; simulated from the N 0, 1ð Þ distribution.

Number of Clusters and Sample Size Per Cluster

The number of Level 2 units was set at 5, 10, 15, or 20, taking values in the range of

those that have been used in previous research focusing on estimation of Level 2

intercept variance (e.g., Kenward & Roger, 2009; Maas & Hox, 2005; McNeish &
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Stapleton, 2016; Schoenberger, 2016). These values are also representative of a num-

ber of studies that take place in educational research contexts where researchers

gather data from a relatively small number of schools or classrooms. The sample size

per cluster (i.e., number of Level 1 units) was set at 10, 20, 30, and 40, again falling

within the range of other research in the area of small sample MLM estimation.

Thus, the total sample sizes ranged from 50 to 800.

Magnitude of the Level 1 Slope

The fixed effects portion of the target predictor coefficient was set at 0, 0.2, 0.4, 0.6,

and 0.8. Given that the data were generated from a standard normal distribution, these

values can be interpreted as representing no relationship between the predictor and

the outcome variable (0), a small relationship (0.2), a moderate relationship (0.4 and

0.6), and a large relationship (0.8). In other words, a large relationship was operatio-

nalized as being 0.8 of a standard deviation of the dependent variable, and a small

relationship was operationalized as being 0.2 of a standard deviation.

Magnitude of the Level 2 Slope Variance Component

The magnitudes of the Level 2 variance component for the Level 1 coefficient (i.e.,

random coefficient effect) were 0.25, 0.5, and 0.75. These values were selected so as

to represent relatively low between-group variation in the relationship between the

target predictor and the dependent variable (0.25), a moderate level of between-group

variance (0.50), and a relatively large amount of between-group variance (0.75).

These results are based on prior educational research in which random coefficient

models have been employed (e.g., Escobar et al., 2013; Morgan & Sideridis, 2006 ;

Timmermans, Kuyper, & van der Werf, 2015).

Estimation Methods

The estimation methods examined in this study were FEM, MLM using REML,

MLM using REML with the KR correction, MCMC with noninformative inverse

gamma(0.01, 0.01) priors for the Level 2 variance components, and MCMC with

informative inverse gamma priors for the Level 2 variance components. For the

informative gamma priors, values for the parameters (a and b) were selected so

that the prior location value was equal to the parameter value, and the variance was

0.01. These were manipulated in the Mplus software using methods outlined in

Asparouhov and Muthén (2010). The priors for the random intercept and Level 1

error were taken from the noninformative gamma(0.01, 0.01), and the noninforma-

tive prior for the fixed effect coefficient was taken from the normal (0, infinity) dis-

tribution. FEM, MCMC, REML, and KR were carried out using SAS version 9.3.

The estimation methods included in this study were selected based on findings in

prior studies, coupled with the focus of the current research on the estimation of the
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random coefficient parameter. Therefore, no GEE approaches were included in the

study. McNeish and Stapleton (2016) found that GEE was relatively less effective

for estimating the fixed effects parameters than were FEM, REML, or MCMC. In

addition, GEE will not provide an estimate of the random coefficient variance, as

will MCMC or REML. FEM will also not provide such an estimate; however, its

superior performance in estimating the fixed portion of the coefficient, as reported in

prior research, led us to include it in the current study. Finally, for Model 2, which

included a Level 2 predictor, FEM was fit using only the Level 1 predictors, under

the assumption that the Level 2 predictor effect would be captured in the cluster vari-

able effect, as described by Allison (2009). When convergence was not obtained for

a replication of a particular estimation method, then additional replications were run

in the simulation until a total of 1,000 successful replications were obtained for each

method across all combinations of study conditions.

Outcomes

As noted above, the goal of this study was to investigate the impact of small Level

2 sample sizes on the estimation of the fixed and particularly the Level 2 variance

component of the regression coefficient relating a target variable to a continuous

dependent variable (g10 and U1j from Models 5 and 6, respectively). The outcomes

of interest in this study included convergence rates, parameter estimation bias,

empirical parameter estimate standard error, parameter 95% coverage rates, and

Type I error/power rates for the Level 1 regression coefficient, and the Level 2

variance component estimate for the coefficient. The empirical standard error was

calculated as the standard deviation of the parameter estimates across simulation

replications. The nominal Type I error was set at 0.05 for both the coefficient and

variance component estimates. In order to identify study factors that were related

to each of the outcomes, analysis of variance (ANOVA) was used with the inde-

pendent model terms being the main effects and interactions of the manipulated

variables described above. For the Type I error and coverage rates, values were

summarized across the 1,000 replications for each combination of study condi-

tions, and then subjected to the ANOVA. In addition to tests of significance, the

h2 effect size was used to identify ANOVA model terms that accounted for at least

10% of the variance in each outcome variable. Thus, in order to warrant further

investigation, a main effect or interaction had to be statistically significant (a =

.05) and had to account for at least 10% of the variance in the outcome variable.

The use of a = .05) is commonly used in simulation research (e.g., McNeish &

Stapleton, 2016). An h2 effect size criterion of 0.1 for identifying an important

effect was selected both because it corresponds to the ANOVA model term

accounting for 10% of the variance in the outcome variable, and because it falls

within the moderate effect size range, as recommended by Cohen (1988).

226 Educational and Psychological Measurement 79(2)



Results

Convergence Rates

Convergence rates by method, sample size per cluster, and number of cluster appear

in Figure 1. These results show that FEM and the two MCMC estimators had cover-

age rates at or near 1.00 across simulated conditions. Conversely, the REML and KR

estimators had lower convergence rates for fewer Level 2 units, as well as for fewer

Level 1 units. Convergence rates for these two approaches were lowest for the smal-

lest total sample sizes (e.g., 5 Level 2 units and 10 individuals per units). When the

sample size per cluster was 30 or 40, and the number of Level 2 units was 10 or more,

the convergence rates for REML and KR were comparable to those for FEM, and the

two MCMC methods.

Figure 1. Convergence rates by estimation method, number of clusters, and sample size per
cluster.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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Coefficient Parameter Estimate

ANOVA results identified the interactions of estimation method by number of clus-

ters by sample size (F27, 567 = 12:76, p\:001, h2 = 0:38), and estimation method by

slope population magnitude by slope random variance (F18, 567 = 12:28,

p\:001, h2 = 0:28) as the highest order statistically significant terms with respect to

coefficient parameter estimation bias. All other terms were either not statistically sig-

nificant, or were subsumed in one of these interactions. Figure 1 contains the slope

parameter estimation bias by the number of clusters, sample size per cluster, and the

estimation method. As evidenced by Figure 2, the FEM slope estimate displayed the

highest levels of bias across sample size per cluster and number of clusters. This bias

was lower for larger sample sizes per cluster, but always remained higher than that

of any of the other methods. From Figure 2, it is also evident that the lowest para-

meter estimate bias was associated with the two MCMC estimators, whereas the

Figure 2. Slope parameter estimation bias by estimation method, number of clusters, and
sample size per cluster.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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parameter estimate bias of REML and KR were higher than those of MCMC. This

was particularly evident with smaller numbers of clusters.

Figure 3 displays the slope parameter estimation bias by the slope variance, slope

magnitude, and estimation method. It is clear from the figure that estimation bias for

FEM, as well as REML and KR increases concomitantly with increased slope var-

iance, for the lower magnitudes of the slope in the population. This increase in the

slope estimation bias was more pronounced for the FEM approach, as compared with

the REML and KR. In contrast to these three techniques, the estimation bias for the

two MCMC techniques remained below that of the other methods, with values all

less than 0.01. When the slope magnitude was 0.6 or 0.8, the bias of REML and KR

was comparable to that of both MCMC approaches. However, for lower such magni-

tudes the MCMC methods both yielded lower estimation bias than any of the other

methods.

Figure 3. Slope parameter estimation bias by estimation method, slope magnitude, and
population slope variance.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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Slope Estimate Standard Errors

The results of the ANOVA indicated that the interaction of estimation method by

population slope magnitude by population slope variance (F18, 567 = 13:07,

p\:001, h2 = 0:29), the interaction of estimation method by number of clusters

(F9, 567 = 32:63, p\:001, h2 = 0:34), and the interaction of estimation method by sam-

ple size (F9, 567 = 20:20, p\:001, h2 = 0:24) were all statistically significantly related

to the empirical standard error of the slope estimates. Figure 4 includes the empirical

standard error values by estimation method, slope magnitude, and slope variance.

Figure 4 clearly shows FEM to have the largest standard errors across all levels of

the slope magnitude and slope variance. In addition, for all estimation methods, slope

standard errors were larger for larger slope variances. Finally, REML and KR had

the smallest standard errors when the slope magnitudes were 0 and 0.2, whereas their

standard errors were comparable to those of the MCMC estimators for slope

Figure 4. Slope parameter empirical standard error by estimation method, slope magnitude,
and slope variance.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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magnitudes of 0.6 and 0.8. This latter result is due to the fact that the standard errors

of REML and KR increased in value for larger slope magnitudes, as opposed to the

standard errors of MCMC declining. This increase in standard error value was

approximately 0.08 in magnitude across slope variance magnitudes.

Table 1 includes the empirical standard errors by method, number of clusters, and

sample size per cluster. As noted above, FEM had the largest standard errors of the

methods studied here and varied little across conditions (between .50 and .55). For

each of the other methods, the standard error declined with increases in the number

of clusters and the sample size per cluster. In addition, REML and KR had the lowest

standard errors (between .26 and .14), with the gap between these techniques and the

two MCMC estimators narrowing with increases in the number of clusters and the

sample size per cluster.

Slope Parameter Estimate Coverage

ANOVA identified that, as with the standard error estimate, the interaction of estima-

tion method by the population slope magnitude by the population slope variance

(F24, 567 = 6:06, p\:001, h2 = 0:16) was statistically significantly related to the slope

parameter coverage rate. In addition, the interaction of estimation method by number

of clusters by sample size per cluster (F36, 756 = 4:44, p\:001, h2 = 0:18) was also sig-

nificantly related to the slope coverage rate. Figure 5 contains the coverage rates by

estimation method, slope variance, and slope parameter magnitude. A reference line

Table 1. Empirical Standard Error by Estimation Method, Number of Clusters, and Sample
Size per Cluster.

MCMC

Number of clusters FEM REML KR Noninformative Informative

5 .51 .26 .26 .33 .33
10 .51 .20 .20 .23 .23
15 .51 .16 .16 .19 .19
20 .51 .14 .14 .16 .16

MCMC

Sample size per cluster FEM REML KR Noninformative Informative

10 .55 .20 .20 .24 .24
20 .51 .19 .19 .23 .23
30 .50 .18 .18 .22 .22
40 .50 .19 .19 .22 .22

Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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has been placed at the nominal 0.95 level. FEM had coverage rates well below the

nominal level, never exceeding 0.7, and rarely exceeding 0.6, across conditions. The

two MCMC estimators, as well as the REML and KR estimators had coverage rates

at the nominal rate across all values of the slope magnitude and slope variance.

Figure 6 displays the coverage rates for the slope parameter by estimation method,

number of clusters, and sample size per cluster, with a reference line at the nominal

0.95 level. FEM had coverage rates that were consistently below the nominal 0.95

level, whereas the other methods all displayed coverage rates at the nominal level.

The coverage of FEM worsened with increases in the sample size per cluster, presum-

ably as a result of the decreasing standard errors as sample size increased, coupled

with the high levels of bias.

Figure 5. Slope parameter coverage rates by estimation method, slope magnitude, and
slope variance.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors. A reference line has been placed at the nominal 0.95

level.
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Slope Parameter Type I Error and Power Rates

With respect to the Type I error rate of the test for the null hypothesis that the slope

is 0 in the population, the interaction of estimation method by number of clusters,

and sample size per cluster (F36, 72 = 2:48, p\:001, h2 = 0:55) was statistically signifi-

cant, as was the interaction of the estimation method and the slope variance

(F8, 32 = 7:22, p\:001, h2 = 0:64). Figure 7 displays the Type I error rate by estima-

tion method, number of clusters, and sample size per cluster. A reference line has

been placed at the nominal 0.05 level. FEM had an error rate exceeding the nominal

0.05 level across all number of clusters and sample size per cluster conditions. The

FEM error rate increased concomitantly with increases in the sample size per cluster.

The REML, KR, and noninformative MCMC methods all uniformly yielded error

rates at or below the 0.05 level. The Informative MCMC estimator had Type I error

Figure 6. Slope parameter coverage rates by estimation method, number of clusters, and
sample size per cluster.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors. A reference line has been placed at the nominal 0.95

level.
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rates of between 0.06 and 0.07 when the number of clusters was 5, but had values at

the nominal level for 10, 15, and 20 clusters. The Type I error rate by estimation

method and slope variance appears in Table 2. The error rates for REML, KR, and

the noninformative MCMC estimators were all at or below the nominal 0.05 level,

regardless of the slope variance. In addition, the informative MCMC estimator had

error rates between 0.06 and 0.07 across conditions. Finally, FEM consistently

yielded inflated Type I error rates, with higher values being associated with a larger

slope variance.

Results of the ANOVA revealed that the interactions of estimation method by

slope variance and slope magnitude (F36, 72 = 2:48, p\:001, h2 = 0:55) and estimation

method by number of clusters by sample size per cluster (F36, 72 = 2:48,

p\:001, h2 = 0:55) were the two highest order terms that were statistically signifi-

cantly related to power rates. All other terms were either not statistically significant

Figure 7. Type I error rate for the slope parameter by estimation method, number of
clusters, and sample size per cluster.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors. A reference line has been placed at the nominal 0.05

level.
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or were subsumed into one of these interactions. Figure 8 includes the power for

detecting a non-0 Level 1 slope by the number of clusters and the sample size per

cluster. Great care must be taken when interpreting the power results of FEM, given

the inflated Type I error rates that were reported above. For this reason, no further

mention of the power for this approach will be made here. In terms of the other

methods, as can be seen in Figure 8 (particularly for the 5 clusters case), the informa-

tive MCMC estimator yielded the highest level of power across number of clusters

and sample size per cluster, though this advantage over the other estimators declined

as the number of clusters and sample size per cluster increased in value. The second

highest power rates for 5 and 10 clusters belonged to the REML and KR methods,

with the lowest power being associated with noninformative MCMC. However, for

15 or 20 clusters the power rates of REML, KR, and the noninformative MCMC

techniques were all quite similar (within 0.02 of one another), and just below those

of informative MCMC.

Figure 9 includes power for the slope parameter by estimation method, slope mag-

nitude, and slope variance. As before, given its elevated Type I error rate across con-

ditions, power results for FEM will not be interpreted here. Similar to the results

reported above with respect to the number of clusters and sample size per cluster, the

informative MCMC estimator yielded slightly higher power rates than did the other

methods, and the noninformative MCMC had slightly lower power. Power for all

methods were larger for larger slope magnitude values and for smaller slope

variances.

Summary of Coefficient Estimate Results

The preceding results demonstrated several patterns with regard to the various esti-

mators being compared in this study. In the presence of random Level 2 variance,

the MCMC-based approaches yielded the least biased estimates of the relationship

between the target Level 1 predictor and the outcome variable, regardless of the

combination of conditions. In addition, their estimation accuracy was largely unaf-

fected by the number of clusters or sample size per cluster. FEM yielded the most

Table 2. Type I Error Rate by Estimation Method and Slope Variance.

MCMC

Slope variance FEM REML KR Noninformative Informative

.25 .43 .05 .05 .03 .07

.50 .54 .05 .05 .03 .06

.75 .61 .05 .05 .03 .06

Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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biased slope estimate results across all conditions. In addition to yielding the most

biased estimates, FEM also had the largest empirical standard errors of the methods

studied here, along with the lowest coverage rates, and the most inflated Type I error

rates. In terms of standard errors for the other methods, REML and KR generally had

the lowest values, particularly for smaller slope magnitudes. The coverage and Type I

error rates for the non-FEM estimators were all comparable to one another, and gener-

ally at or near the nominal rates that would be expected (i.e., 0.95 for coverage and

0.05 for Type I error). Finally, the noninformative MCMC estimator yielded lower

power than did the other methods, particularly for smaller numbers of clusters.

Coefficient Variance Component Estimate

As with the coefficient parameter estimate itself, ANOVA was also used to identify

manipulated study factors that were associated with the estimate of the slope

Figure 8. Power for the slope parameter by estimation method, number of clusters, and
sample size per cluster.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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variance. Results of the ANOVA revealed that the interaction of the estimation

method, number of clusters, and sample size per cluster (F18, 378 = 18:59,

p\:001, h2 = 0:47), estimation method by number of clusters and population slope

variance (F12, 378 = 34:55, p\:001, h2 = 0:52), and estimation method by underlying

model (F2, 188 = 340:59, p\:001, h2 = 0:78) were significantly related to bias in the

slope variance component estimate. Table 3 includes the bias associated with the

slope variance component estimate by the estimation method, number of clusters,

and sample size per cluster. The REML and KR methods had virtually identical lev-

els of bias, which were lower than those of either MCMC estimator. The noninfor-

mative MCMC variance estimate yielded larger bias than did the other methods

(noninformative MCMC variance ranging from 0.09 to 1.07 compared to \.02 for

all other methods). In general, bias in the slope variance estimate declined with an

increasing number of clusters. In addition, for the 15 and 20 clusters condition, bias

Figure 9. Power for the slope parameter by estimation method, slope variance, and slope
magnitude.
Note. FEM = fixed effects modeling; REML = multilevel modeling using restricted maximum likelihood

estimation; KR = Kenward–Rogers correction for multilevel modeling; MCMC = Markov chain Monte

Carlo with informative or noninformative priors.
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for the REML, KR, and informative MCMC estimators declined in value as the sam-

ple size per cluster increased. However, for 5 and 10 clusters this inverse relationship

between bias and sample size per cluster was not evidenced.

Table 4 contains the slope variance component bias results by the number of clus-

ters, the population slope variance value, and the estimation method. From these

results, it can be seen that bias for the noninformative MCMC estimator was uni-

formly the highest (ranging from 0.05 to 1.30), whereas slope variance estimate bias

for the REML and KR was consistently the lowest (all bias \.01). Across all estima-

tors, the amount of bias was smaller for a larger number of clusters and increased

with increasing values of the population slope variance for REML, KR, and nonin-

formative MCMC. Table 5 includes the slope variance component estimate bias by

method and underlying model. For all four estimators, the bias was greater for the

model containing the Level 2 covariate (Model 2) as opposed to the simpler model

without the Level 2 covariate (Model 1).

Slope Variance Component Standard Error

ANOVA identified the interactions of estimation method by underlying model by

number of clusters (F6, 378 = 49:04, p\:001, h2 = 0:44) and estimation method by

Table 3. Slope Variance Estimate Bias by Estimation Method, Number of Clusters, and
Sample Size per Cluster.

MCMC

Number of clusters Sample size per cluster REML KR Noninformative Informative

5 10 .00445 .00445 1.07610 2.02252
20 .00615 .00615 .87950 2.02167
30 2.00900 2.00900 .84912 2.02185
40 2.00309 2.00309 .81296 2.02239

10 10 .00121 .00121 .29588 2.01134
20 2.00342 2.00342 .21292 2.01577
30 2.00037 2.00037 .21050 2.01891
40 2.00115 2.00115 .24034 2.01865

15 10 2.00026 2.00026 .12119 2.01668
20 2.00010 2.00010 .10756 2.01554
30 .00167 .00167 .13098 2.00667
40 .00034 .00034 .12706 2.00663

20 10 .00074 .00074 .08858 2.01608
20 .00099 .00099 .09136 2.00149
30 2.00066 2.00066 .08680 2.00083
40 .00054 .00054 .08760 2.00021

Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors.

238 Educational and Psychological Measurement 79(2)



number of clusters by sample size per cluster (F18, 378 = 18:59, p\:001, h2 = 0:47) as

the highest order statistically significant terms with respect to the magnitude of the

standard error for the slope variance. Figure 10 includes the empirical standard error

of the slope variance component estimate by estimation method, number of clusters,

and sample size per cluster. Across conditions, the standard error of the noninforma-

tive MCMC estimator was the largest, whereas that of the informative MCMC esti-

mator was the smallest. For all methods, the standard error declined with a larger

number of clusters, and to a much smaller degree, with a larger sample size per clus-

ter. Figure 11 displays the empirical standard error by the estimation method, the

number of clusters, and the underlying model. The primary result on display in this

Table 4. Slope Variance Estimate Bias by Estimation Method, Number of Clusters, and
Population Slope Variance.

MCMC

Number of clusters Pop slope variance REML KR Noninformative Informative

5 .25 .00129 .00129 .50004 2.02523
.50 2.00611 2.00611 .90889 2.02166
.75 .00370 .00370 1.30433 2.01942

10 .25 2.00011 2.00011 .13153 2.01939
.50 .00109 .00109 .24336 2.01598
.75 2.00379 2.00379 .34483 2.01313

15 .25 .00097 .00097 .06809 2.01485
.50 2.00195 2.00195 .11878 2.01119
.75 .00221 .00221 .17822 2.00809

20 .25 2.00031 2.00031 .04781 2.01404
.50 .00047 .00047 .08876 2.01222
.75 .00106 .00106 .12918 .01231

Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors.

Table 5. Slope Variance Estimate Bias by Estimation Method and Underlying Model.

MCMC

Model REML KR Noninformative Informative

1 .00043 .00043 .31325 2.00992
2 2.00068 2.00068 .36405 2.01723

Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors. Model 1 = random coefficients multilevel model with one Level 1 predictor.

Model 2 = random coefficients multilevel model with two Level 1 predictors and one Level 2 predictor.
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graph is that the empirical standard error for the noninformative MCMC estimator

was larger when the underlying model included a Level 2 predictor (Model 2),

whereas for the other estimators there was no effect of underlying model on this out-

come. As was demonstrated in Figure 10, the presence of more clusters was associ-

ated with lower standard errors for all methods, except for the informative MCMC,

for which the standard error was essentially unchanged regardless of the number of

clusters.

Slope Variance Component Coverage

The ANOVA results identified the interaction of estimation method by Underlying

Model and Number of Clusters as the highest order statistically significant term

with respect to the coverage rates of the random slope variance estimate

Figure 10. Empirical standard error of random slope variance by estimation method,
number of clusters, and sample size per cluster.
Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors.
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(F6, 378 = 27:06, p\:001, h2 = 0:30). Figure 12 displays the coverage rates for this

combination of conditions, with a reference line placed at the nominal 0.95 level.

The only estimator that consistently had coverage rates at or above the nominal level

was informative MCMC. Conversely, both REML and KR had coverage rates below

the nominal level across conditions, with lower rates being associated with fewer

clusters. Coverage rates for REML and KR were somewhat lower when the model

included a Level 2 predictor (Model 2). Finally, the noninformative MCMC estima-

tor yielded higher coverage rates than did either REML or KR, but lower than the

informative MCMC approach.

Slope Variance Power Rates

The ANOVA results revealed that the interactions of estimation method by slope

variance magnitude in the population (F2, 189 = 8932:30, p\:001, h2 = 0:99), and

Figure 11. Empirical standard error of random slope variance by estimation method,
number of clusters, and underlying model.
Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors. Model 1 = random coefficients multilevel model with one Level 1 predictor. Model

2 = random coefficients multilevel model with two Level 1 predictors and one Level 2 predictor.
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estimation method by number of clusters by sample size per cluster

(F9, 189 = 6921:57, p\:001, h2 = 0:10) were statistically significantly related to the

power rates for the test of the null hypothesis that the slope variance is equal to 0.

Figure 13 contains the power rates by the estimation method and population slope

variance component magnitude. As depicted in Figure 13, both MCMC methods had

higher power rates than did either REML or KR, with values for the former being

1.0 in all cases. In addition, power for REML and KR increased concomitantly with

higher values of the population slope variance values.

Figure 14 includes power by estimation method, number of clusters, and sample

size per cluster. For five clusters, power rates for REML and KR were below 0.10,

whereas those for the two MCMC estimators were 1.0. Power for REML and KR

was higher for more clusters. In addition, with the exception of the 5 clusters

Figure 12. Coverage rates of random slope variance by estimation method, underlying
model, and number of clusters.
Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors. Model 1 = random coefficients multilevel model with one Level 1 predictor. Model

2 = random coefficients multilevel model with two Level 1 predictors and one Level 2 predictor. A

reference line has been placed the nominal 0.95 level.
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condition, power increased for REML and KR with increased in the sample size per

cluster. Finally, power rates for REML and KR were comparable to those for the two

MCMC estimators in the 15 and 20 clusters conditions with 20 or more individuals

per cluster.

Summary of Slope Variance Estimate Results

Taken together, the results presented above demonstrated that the REML and KR

estimators provide the least biased estimates of the slope variance value across condi-

tions, whereas the largest amount of bias was associated with the noninformative

MCMC estimator. In addition, all of the methods studied here yielded less biased esti-

mates in the presence of more clusters and when the underlying model did not include

a Level 2 predictor. The standard errors of the estimates were lowest for the informa-

tive MCMC estimator and highest for the noninformative MCMC. Coverage and

Figure 13. Power by estimation method and population slope variance magnitude.
Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors.
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power rates were superior for both MCMC estimators when compared with either

REML or KR. Indeed, the power rates of the two MCMC methods were 1.0 across

conditions.

Discussion

Several important results emerge from this set of simulations. First and foremost,

results indicate that correct modeling of Level 2 slope variance is indeed important

when Level 2 slope variation does exist in the population. Thus, although FEM does

allow for the explanation of Level 2 variance in the dependent variable, the inability

to specifically model random slope variation appears to introduce bias into the slope

parameter estimates, while also increasing the empirical standard error, drastically

increasing the Type I error rate, and reducing the confidence interval coverage. This

result builds on the findings of McNeish and Stapleton (2016) who found that FEM

Figure 14. Power by estimation method, number of clusters, and sample size per cluster.
Note. REML = multilevel modeling using restricted maximum likelihood estimation; KR = Kenward–

Rogers correction for multilevel modeling; MCMC = Markov chain Monte Carlo with informative or

noninformative priors.
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used with small numbers of clusters tended to produce downward biased variance

estimates and that use of REML should alleviate this issue. Taken together, these

results demonstrate the importance of modeling Level 2 variation in multilevel mod-

els, particularly when samples and numbers of clusters are small. McNeish and

Stapleton (2016) suggested the use of the Kenward–Rogers correction or Bayesian

estimation as other potential options for small numbers of clusters. Building on this

suggestion, the present study found traditional MLM using REML estimation, the

Kenward–Rogers correction, and MCMC methods all to provide more favorable

results than FEM, with the MCMC methods providing the least biased Level 1 coef-

ficient estimates. It is also interesting to note that the only time model complexity

arises as a statistically significant factor is when looking at slope parameter bias. For

all estimation methods, slope parameter bias was larger for the more complex model

(Model 2). In all other outcomes measured, however, model complexity did not fac-

tor in.

Second, when looking specifically at estimation of slope variance, MCMC with

informative priors was superior to the REML and KR methods in terms of power,

confidence interval coverage, and standard error. However, the MLM methods pro-

duced the least biased estimates of slope variance estimation. It is also important to

note that MCMC with noninformative priors yielded the most biased results across

all conditions for estimation of slope variance. This is important to consider from a

practical standpoint. If a researcher is capable of using informative priors, this is

obviously a very useful method for a variety of outcomes. Many fields, however

(social and behavioral sciences, in particular) are likely not going to have informa-

tion to generate informative priors. In these circumstances, when estimation of slope

variation is desired, it appears to be more harmful to use MCMC with noninforma-

tive priors than to use a traditional MLM technique.

Third, the importance of having informative or noninformative priors for MCMC

seems to depend on the outcome of interest. In terms of overall slope estimation, it

did not seem to matter whether the priors were informative or not, as both methods

produced similar results. However, as discussed above, with regard to estimating

slope variation, noninformative priors produced the most biased results. Thus, when

choosing an estimation method it is important to carefully consider your desired

outcome.

Last, and not surprisingly, larger cluster size and more clusters were associated

with more favorable results across conditions. Although the Kenward–Rogers correc-

tion for MLM using REML is designed to allow for smaller numbers of clusters to

be used for model estimation, particularly with respect to standard errors, no differ-

ences were found for either slope parameter or slope variation estimation. Any differ-

ences in study outcomes were only apparent at the third or fourth decimal point.

Considering these results together suggests that choice of multilevel analysis tech-

nique should not be a decision based on convention or ‘‘industry standard’’ but rather

a choice based on the following considerations:
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1. The design of the model. Does the model focus on Level 1, Level 2, or a

combination of both? Will the researcher be modeling random slope varia-

tion? If the focus is on Level 1 information and slopes are known (or strongly

believed) not to vary among Level 2 units, then FEM may be a viable tech-

nique. However, when Level 1 coefficients do vary at Level 2 FEM is not a

viable option, and MLM (i.e., REML, KR) or MCMC methods should be

considered instead.

2. The purpose for the analysis. Is the researcher interested in slope parameter

estimation or slope variance estimation? Is bias or power for detecting non-0

effects more important? Results of this study indicate that MLM methods tend

to produce the least biased estimates for slope and slope variance parameters,

but MCMC tends to yield higher power for the variance parameter estimates.

3. Information available. Does the researcher have the information necessary in

order to provide accurate informative priors for Bayesian analysis? If so, then

this would be the estimator of choice. If not, however, then it is important to

remember that the use of noninformative priors may be detrimental to analy-

sis, particularly for slope variance parameter estimation.

Directions for Future Research

The results of the current study suggest a number of directions that future research in

the area of MLM estimation in the context of a small number of Level 2 units could

take. For example, future research should continue this line of questioning to look

further into the performance of FEM and MLM when the Level 2 coefficient var-

iance value is very small, but not 0 (e.g., 0.05, 0.1). This study also set the intraclass

correlation to 0.2. Although a plausible value that is representative of what is seen in

practice, other values will certainly appear in applied settings. Therefore, future

research should consider the impact on performance of multilevel techniques of other

intraclass correlation values, both larger and smaller than 0.2. In addition, future

work should examine the performance of the REML and KR methods when Level 2

coefficient variance is not 0, but the models are fit assuming it is. With regard to the

MCMC estimator, future work needs to examine the impact of using incorrect infor-

mative priors on parameter estimation. In other words, if informative priors are used,

and the mean is not equal to the actual parameter value, what is the impact on para-

meter estimation, standard errors, coverage rates, and hypothesis test results? How

incorrect do the priors need to be in order to see a degradation in these outcomes?

Finally, given the flexibility of FEM for modeling when researchers may not know,

or have access to important Level 2 covariates, it would seem worthwhile to examine

alternative methods for fitting these models that might account for the random coeffi-

cient variation that caused this approach such problems in the current study. Looking

further into these methods as well as continuing to develop and promote new meth-

ods will hopefully lead to some very promising methods and recommendations for

future use.
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