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Abstract

The biological importance of changes in RNA expression is reflected by the
wide variety of tools available to characterise these changes from RNA-seq
data. Several tools exist for detecting differential transcript isoform usage
(DTU) from aligned or assembled RNA-seq data, but few exist for DTU
detection from alignment-free RNA-seq quantifications. We present the RATs,
an R package that identifies DTU transcriptome-wide directly from transcript
abundance estimates. RATs is unique in applying bootstrapping to estimate the
reliability of detected DTU events and shows good performance at all
replication levels (median false positive fraction < 0.05). We compare RATSs to
two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available
simulated RNA-seq datasets and a published human RNA-seq dataset, in
which 248 genes have been previously identified as displaying significant DTU.
RATs with default threshold values on the simulated Human data has a
sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false
discovery rate (FDR) of 0.04, outperforming both other tools. Applying the
same thresholds for SUPPAZ results in a higher sensitivity (0.61) but poorer
FDR performance (0.33). RATs and DRIM-seq use different methods for
measuring DTU effect-sizes complicating the comparison of results between
these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has
similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These
differences persist for the simulated drosophila dataset. On the published
human RNA-seq dataset the greatest agreement between the tools tested is
53%, observed between RATs and SUPPAZ2. The bootstrapping quality filter in
RATSs is responsible for removing the majority of DTU events called by SUPPA2
that are not reported by RATs. All methods, including the previously published
qRT-PCR of three of the 248 detected DTU events, were found to be sensitive
to annotation differences between Ensembl v60 and v87.
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Introduction

High-throughput gene regulation studies have focused primarily
on quantifying gene expression and calculating differential
gene expression (DGE) between samples in different groups,
conditions, treatments, or time-points. However, in higher
eukaryotes, alternative splicing of multi-exon genes and/or
alternative transcript start and end sites leads to multiple tran-
script isoforms originating from each gene. Since transcripts
represent the executive form of genetic information, analysis of
differential transcript expression (DTE) is preferable to DGE.
Unfortunately, isoform-level transcriptome analysis is more
complex and expensive since, in order to achieve similar
statistical power in a DTE study, higher sequencing depth is
required to compensate for the expression of each gene being
split among its component isoforms. In addition, isoforms
of a gene share high sequence similarity and this compli-
cates the attribution of reads among them. Despite these chal-
lenges, several studies have shown that isoforms have distinct
functions'™ and that shifts in individual isoform expression
represent a real level of gene regulation’”’, suggesting there is
little justification for choosing DGE over DTE in the study of
complex transcriptomes.

It is possible to find significant DTE among the isoforms of a gene,
even when the gene shows no significant DGE. This introduces the
concept of differential transcript usage (DTU), where the abun-
dances of individual isoforms of a gene can change relative to one
another, with the most pronounced examples resulting in a change
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of the dominant isoform (isoform switching). The definitions of
DGE, DTE and DTU are illustrated in Figure 1.

To quantify the isoforms and assess changes in their abundance,
most existing tools for DTE and DTU analysis (e.g. Cufflinks®,
DEXSeq’, LeafCutter'’) rely on reads that either span splice-
junctions or align to unique exons. However, with the newest
generation of transcript quantification tools (Kallisto'"'"*, Sailfish",
Salmon'), reads are aligned to neither the transcriptome nor
the genome. Instead, these tools combine a pseudo-mapping of
the k-mers present within each read to the k-mer distributions
from the transcriptome annotation with an expectation maximi-
zation algorithm, to infer the expression of each transcript model
directly. Such alignment-free methods are much faster than
the traditional alignment-based methods (RSEM", TopHar2',
STAR'") or assembly-based methods (Cufflinks®, Trinity'*), making
it feasible to repeat the process many times on iterative subsets of
the read data and, thus, quantify the technical variance in the tran-
script abundance estimates. However, the lack of alignments pre-
vents these new methods from being compatible with differential
expression methods such as Cufflinks, DEXSeq and Leafcutter.
Instead, Sleuth' is a tool that handles DTE analysis from align-
ment-free transcript quantifications. DTU analysis is currently
less straight-forward. SwitchSeq” focuses on a particular subset of
DTU analysis from alignment-free data, namely isoform switch-
ing, whereas iso-kTSP° identifies both DTU and isoform switching,
but focuses on the highest-ranking pair of change-exhibiting
isoforms per gene. SUPPA”’, on the other hand, primarily
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Figure 1. lllustrative definitions of the three types of differential expression analysis (DGE, DTE and DTU). The expression of two
genes (Gene A and Gene B), with 3 and 2 isoforms respectively, is compared across two conditions (Condition 1 and Condition 2). The
horizontal width of each coloured box represents the abundance of the relevant gene or transcript. A negative differential expression result
(red cross-mark) for a given entity in any one of the three analysis types does not exclude that same entity from having a positive result
(green tick-mark) in one of the other two analysis types. The relative isoform abundances in [iii] are scaled to the absolute isoform
abundances in [ii], which in turn are scaled to the gene expressions in [i]. Gene A is differentially expressed, but only two of its three isoforms
are differentially expressed (A.2 and A.3). Proportionally, Gene A's primary isoform (A.3) remains the same, but the ratios of the two less
abundant isoforms change. Gene B is not differentially expressed, but both its isoforms are differentially expressed, and demonstrate an
example of isoform switching. DGE: Differential gene expression, DTE: Differential transcript expression, DTU: Differential transcript usage.
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identifies differential splicing events at the junction level, with
recent developmental versions having added isoform-level
capability. Finally, DRIM-Seq” identifies DTU directly from
quantification data, but defines the effect size as a fold change
which may not be the most appropriate way to compare
proportions.

In this paper, we present RATs (Relative Abundance of
Transcripts), an R package for identifying DTU directly from
isoform quantifications. It is designed to use alignment-free
abundance data and is the only tool that exploits bootstrap-
ping to assess the robustness of the DTU calls. RATs provides
raw, summary and graphical results, allowing for ease of use
as well as for advanced custom queries, and the R language
is the environment of choice for many widely-used DGE and
DTE tools, allowing for easy integration of RATs in existing
workflows. We assess the accuracy of RATs in comparison to
SUPPA2 and DRIM-Seq and find RATs to perform at as well as
or better than its competitors. Finally, we demonstrate that the
results of both RNA-seq based and qRT-PCR based analyses are
sensitive to the annotation used for transcript quantification and
primer design, respectively.

Methods

DTU calling

RATs identifies DTU independently at both the gene and
transcript levels using an efficient implementation of the G-test
of independence”, without continuity corrections. The criteria
RATSs uses to identify DTU are described in detail below.

Pre-filtering

Prior to statistical testing by either method, RATs first filters the
input isoform abundance data to reduce both the number of low
quality calls and the number of tests carried out. Specifically:
(i) isoform ratio changes can only be defined for genes that
are expressed in both conditions, with at least two isoforms
detected, and (ii) transcript abundances must exceed an optional
minimum abundance threshold. Transcripts with abundances
below the threshold are considered as not detected.

Statistical significance

Significant changes in relative transcript abundance are detected
using two separate approaches: one at the gene level and the
other at the transcript level. At the gene level, RATs compares
the set of each gene’s isoform abundances between the two
conditions to identify if the abundance ratios have changed. At the
transcript level, RATs compares the abundance of each individual
transcript against the pooled abundance of its sibling isoforms
to identify changes in the proportion of the gene’s expression
attributable to that specific transcript. Both methods include
the Benjamini-Hochberg false discovery rate correction for
multiple testing”. These tests are performed on the summed
abundance of each isoform across the replicates.

Effect size

Transcripts whose absolute difference in isoform proportion
is below a set threshold are rejected, even if the difference is
statistically significant.
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Reproducibility

RATs provides the option to use the bootstrapped abundance
estimates obtainable from alignment-free quantification tools to
apply a reproducibility constraint on the DTU calls, by randomly
selecting individual quantification iterations from each replicate
and measuring the fraction of these iterations that result in a
positive DTU classification. Typically, each sample is represented
by the mean abundance of each transcript, calculated across
the quantification iterations. However, this loses the variance
information of the quantification. By referring back to the quan-
tification iterations, RATs highlights cases where the quantifi-
cation was unreliable due to high variability and therefore the
DTU result should also be considered unreliable. Similarly,
RATs optionally also measures the reproducibility of the DTU
results relative to the inter-replicate variation by iteratively
sub-setting the samples pool.

Implementation

RATs is implemented in R’ and has been freely distributed
through Github as an R source package since August 2016.
RATs accepts as input either a set of R tables with abundances
(with or without bootstrap information), or a set of Salmon' or
Kallisto'' output files. An annotation table mapping the corre-
spondence between transcript and gene identifiers is also required,
either provided directly or inferred from a GTF file. Results are
returned in the form of R data.table objects’’. Along with the
DTU calls per transcript and gene, the tables record the full
provenance of the results. Convenience functions are provided
for summary tallies of DTU and isoform-switching results,
for ID retrieval, and for visualization of the results via ggplot2
(v2.2.1)*®. Details on these are available through the user
manual of the package. Once created, all plots produced by
RAT's remain customisable via standard ggplot2 operations.

Performance

The performance was assessed in two ways. Firstly, the false
positives (FP) performance of RATs (v0.6.2) for detection of
DTU between two groups relative to the level of experimental
replication was measured on groups generated by random
selection without replacement from a pool of 16 high-quality
wild-type Colombia-0 Arabidopsis thaliana replicates® '. This
was iterated 100 times for each replication level in the range
3 < n < 8. As the two groups are drawn from the same
condition, any positive DTU calls must be considered to be false
positives. For each iteration, we recorded the fraction of genes
and transcripts that were reported as DTU, relative to the total
number of genes or transcripts tested in that iteration. The
commands and scripts used are from the RATs Github repository.

Secondly, two simulated datasets’’ were used to benchmark
the sensitivity (s, the fraction of the 1000 DTU events actually
detected), false discovery rate (FDR, the fraction of reported
DTU events that is not part of the 1000 “real” events) and
Matthews correlation coefficient (MCC) of RATs, SUPPA2 and
DRIM-Seq. The datasets were made of simulated RNA-seq

'https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5446/

Page 4 of 20


https://r-project.org/
https://github.com/bartongroup/RATs
https://cran.r-project.org/web/packages/ggplot2/index.html
https://github.com/bartongroup/RATS/tree/master/extras/F1000_manuscript
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5446/

reads based on the transcriptome annotation and to match
realistic RNA-seq transcript expression values. To create the sec-
ond condition, the abundance values of the two most abundant
transcript isoforms originating from a gene locus were swapped
for 1000 well-expressed coding gene loci. The transcriptome
annotation used for both Human and fly comprised only
annotated protein coding genes (13937 in the Drosophila,
20410 in the human) leaving a number of other classifications
of gene unaccounted for (1745 in the Drosophila, 41483 in the
human). These genes constitute a convenient negative set for
simulation and should have no expression, save for any reads
misallocated to them by the quantification tools. The simulated
datasets were obtained from ArrayExpress’ and quantified with
both Kallisto (v0.44;'"" and Salmon (v0.9.1;"* using the respec-
tive complete annotations that match the simulation of the
datasets (Ensembl v70 for the Drosophila and Ensembl v71 for
the human;”’). The sensitivity, FDR and MCC were measured
for a range of comparable parameters between RATs (v0.6.4),
SUPPA2 (v2.3) and DRIM-Seq (v1.6, Bioconductor v3.6, R v3.4).
No transcript abundance pre-filter was imposed on any of the
three DTU tools, and the significance level was set to 0.05
for all runs. For RATs and SUPPA2, three thresholds for the
effect size (difference in proportion) were tested; the RATS’
current default of 0.2, and more permissive values 0.1 & 0.05.
For DRIM-Seq, threshold values of the likelihood ratio were
explored from 0-30. Finally, RATs reproducibility thresholds
were explored in the range of 0.8-0.95 for the quantification
reproducibility and 0.55-0.85 for the inter-replicate reproduc-
ibility. The tool performance was measured using annota-
tions comprised of all annotated genes and only protein coding
genes.

Comparison on a real 2-condition dataset

To test the ability of RATs to identify known instances of
DTU, we compared it against validated instances of DTU from
publicly available RNA-seq data. We took read data from Deng
et al. (2013, 31), who identified non-DGE changes in the isoform
levels of genes between three human patients with idiopathic
pulmonary fibrosis (IPF) and three lung cancer patients used as
controls. The dataset contains 25 million 54-base long single-
end Illumina reads per lung tissue sample. As in the original
at study, we used Ensembl v60** as the source of the reference
human genome and its annotation, in which each of the three
discussed genes features two isoforms. Unlike the original
study, we used Salmon (v0.7.1, with sequence bias correction
enabled, 100 bootstrap iterations and default values for the
remaining parameters, using k=21 for the index) to quantify the
isoform abundances. DTU was identified by RATs v0.6.2. For
comparison, we repeated the quantification and DTU analysis of
the data with the same tool versions and parameters, but using
the annotation and assembly from Ensembl v87, the current
version at the time of this study.

We also submitted the quantification data to SUPPA2, in its
psiPerlsoform mode, and to DRIM-Seq. For a fair comparison,

*https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3766/
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we tried to minimize variability in the parameters and data type
used by the three tools. As SUPPA2 offered no abundance
pre-filtering, RATs and DRIM-Seq were run with abundance
threshold values of 0. The p-value cut-off was set at 0.05 for all
three tools, using the corrected p-values where available. For
the difference in isoform proportion (SUPPA2 and RATs) the
threshold was set at 0.20. No threshold was set for the
fold-changes in DRIM-Seq. SUPPA2 required and was provided
with TPM abundances. For consistency in the use of abundances
normalised for transcript length, RATs and DRIM-Seq were
also provided with TPM, but the values were scaled up to the
average library size of 25M reads, as their testing methods
expect counts and would be under-powered if used directly with
TPMs. Again, the commands and scripts used are available from
the RATs Github repository.

Results

False positives performance

Both the gene-level and transcript-level approaches to identifying
DTU implemented in RATs achieved a median FP fraction
<0.05 on our A. thaliana dataset, even with only three replicates
per condition (Figure 2A). Higher replication results in both
a reduction in the number of false positives and restricts the
false positives to smaller effect sizes (Figure 2B). The gene-
level and transcript-level approaches, however, have different
strengths and weaknesses. Simultaneously utilizing the expres-
sion information across all the isoforms in a gene makes the
gene-level test sensitive to smaller changes in relative expres-
sion, compared to testing transcripts individually, but it also
makes the gene-level test more prone to false positives. Figure 2
shows that the gene-level test has a higher FP fraction than the
transcript-level test, irrespective of replication level or effect
size, although the two methods converge for highly replicated
experiments or large effect sizes. Furthermore, the gene-level
test only identifies the presence of a shift in the ratios of the
isoforms belonging to the gene, without identifying which
specific isoforms are affected. The transcript-level test, in con-
trast, directly identifies the specific isoforms whose proportions
are changing and has fewer false positives than the gene-level
test. However, considering each isoform independently requires
a larger number of tests to be performed, thus resulting in a
greater multiple testing penalty.

Comparative performance on simulated DTU

The sensitivity, FDR and MCC performance of RATs, SUPPA2
and DRIM-Seq wusing Salmon transcript quantifications of
annotated protein coding gene isoforms are summarised in
Figure 3. Tested with the simulated Human dataset, the parame-
ter defaults for RATs (quantification reproducibility >95%, inter-
replicate reproducibility >85% & effect-size >0.2) result in a
sensitivity of s = 0.55, MCC = 0.71 and FDR = 0.04, outper-
forming both other tools. With the same thresholds, SUPPA2
has a higher sensitivity (s = 0.61) but poorer FDR perform-
ance (FDR = 0.33). Direct comparison with DRIM-Seq is
complicated by different methods for measuring DTU effect-
sizes between the tools, however for a likelihood-ratio thresh-
old of 30, DRIM-Seq has similar FDR performance to RATs
(FDR = 0.06), but worse sensitivity (s = 0.47). These differences
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Figure 2. False positives (FP) performance of RATs as a function of replication level. False positive fraction measured over
100 permutation iterations of randomly selected (without replacement) replicates from a pool of 16 high-quality wild-type Colombia-0
Arabidopsis thaliana replicates from Froussios et al. (2017,%). [A] FP fraction of each bootstrap iteration, for default values of all RATs
parameters (v0.6.2), across a range of replication levels, separately for the gene-level test (red) and transcript level test (blue). [B] Mean FP
fraction by replication level, as a function of the effect size threshold (effect size = difference between conditions of an isoform’s proportion).
For a gene, the effect size is defined as the largest proportion difference observed among that gene’s isoforms. In every iteration, the FP
fraction was calculated against the number of genes or transcripts that were eligible for testing each time (a number which remains very
stable across iterations and replication levels — see Extended data 1%).
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Figure 3. Performance comparison between RATs, SUPPA2 and DRIM-Seq. The performance was assessed on the human [A] and
Drosophila [B] simulated datasets from ArrayExpress E-MTAB-3766, over a range of threshold values for the effect size (RATs - Dprop,
SUPPAZ - dPSI, DRIM-Seq likelihood ratio - Ir) and confidence in the result (RATs quantification reproducibility — Qrep, RATs inter-replicate
reproducibility - Rrep). The statistical significance cut-off was at 0.05 for all cases. The measures of performance are the sensitivity, false
discovery rate (FDR) and Matthews correlation coefficient (MCC). The datasets were quantified using Salmon 0.9.2 and the metrics were
calculated accounting only for the genes strictly listed in the “truth” sets. The results using Kallisto for the quantification are practically

identical (see Extended data 2).

persist for the simulated drosophila dataset. DRIM-Seq consist-
ently shows the lowest sensitivity (<0.65), while maintaining a
FDR <0.2 in any of the tried parameter sets. SUPPA2 is the most
sensitive of the three tools (0.6 < s < 0.9), but also has the highest
FDR (0.35 < FDR < 0.65 in human, 0.10 < FDR < 0.25 in

Drosophila). RATs can match the sensitivity of SUPPA2 while
maintaining a lower FDR than SUPPA2 by relaxing its quan-
tification reproducibility (Qrep) and inter-replicate reproduc-
ibility (Rrep) thresholds. At the highest effect-size thresholds
(Dprop,,,, = 0.2 and Ir = 0.3) DRIM-Seq has a comparable

DRIM-Seq
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FDR to that of RATs. Surprisingly, the sensitivity, MCC and
FDR of DRIM-Seq is not strongly sensitive to variations in the
likelihood ratio effect-size threshold. Consequentially, RATs has
worse FDR performance, but better sensitivity than DRIM-Seq
at lower effect-size thresholds. Across all the simulated dataset
and parameter combinations the gene-level test implemented in
RATs shows higher sensitivity and higher FDR compared with
the results from the transcript-level test. Extending the test to
isoforms from the full set of annotated genes, rather than only
those from protein coding genes, adds a considerable number of
additional true negatives (Drosophila: 1745, human: 4148, see
Section: Performance) resulting in a small increase of FDR
and slight reduction of MCC for all tools in both datasets
(Extended data 2%). Similarly, using Kallisto isoform expres-
sion quantifications in place of the quantifications from Salmon
does not strongly affect the results (Extended data 2°°). The
performance results of RATs on these simulated datasets are
in good agreement with those presented in Love er al. (2018,*),
which also demonstrates that the performance of RATS is similar
to, or exceeds, the performace of other DTU tools, including
DRIM-seq, SUPPA2 or DEX-Seq.

Recapitulating published validated examples of DTU

After pre-filtering, Deng e al. (2013, 31) tested 3098 Ensembl
v60 genes for DTU by quantifying their isoform propor-
tions with RAEM™* and using Pearsons Chi-squared test of
independence with a FDR threshold of 5%. They identified
248 genes that were not differentially expressed but displayed
significant DTU. Subsequently, they confirmed three of them
with gRT-PCR: TOMILI (ENSG00000141198), CMTM4
(ENSG00000183723), and PEXI11B (ENSGO00000131779).
Table 1 shows the fraction of the 248 DTU genes identified in
this study that were also called by RATs, SUPPA2 and DRIM-
Seq, as well as each tool’s verdict on each of the three validated
genes. The genes reported as DTU by RATs are listed in
Extended data 3 & 4% respectively, based on the Ensembl v60
and v87 human annotations.

None of the three tools recapitulated the reported 248 genes
well, with the highest fraction of 26% achieved by DRIM-Seq
possibly due to a tendency to over-predict (see next section).

Table 1. comparison of the results by Deng et al. (2013, 31)
against the results of RATs, SUPPA2 and DRIM-Seq, using

the same data and annotation (Ensembl v60). The first column
shows the fraction of the 248 genes that was recaptured by each
method. For methods reporting at the transcript level, results were
aggregated to the respective genes. The last three columns show
whether the verdicts for each of the validated genes (DTU Yes/No).
DTU: Differential transcript usage.

De'zgo‘:g‘;'s’; TOMIL1 CMTM4 PEX11B
RATs (genes) 0.11 N Y N
RATSs (tr. aggreg.) 0.11 N Y N
SUPPAZ (tr. aggreg.) 0.17 Y Y Y
DRIM-Seq 0.26 N Y N

F1000Research 2019, 8:213 Last updated: 18 MAR 2019

Of the three validated genes, only CMTM4 is reported by all
methods, and only SUPPA2 reports all three genes. Although
the rejection of TOMI1L1 and PEX11B by DRIM-Seq was due
to poor statistical significance, RATs reported that the changes
found were both statistically significant and of sufficient effect
size. Instead, RATs rejected the genes on the grounds of poor
reproducibility (see Section: DTU Calling).

There have been extensive changes in the human transcrip-
tome annotation since Ensembl v60. We hypothesized that these
changes could have a significant impact on the set of genes
identified in Deng et al. (2013, 31). Table 2 shows that in addi-
tion to the new genome assembly, the human transcriptome
complexity has increased significantly from Ensembl v60 to the
more recent v87. Changing the version of the human annotation
from Ensembl v60 to v87 removes 10,253 gene IDs and adds
15,839 new ones. Re-quantifying the RNA-seq data with the
updated annotation and re-calling DTU resulted in similarly
poor overlap between the tools’ results and the original report
(see Extended data 5%). Of the three validated genes, TOMILI
was unanimously rejected by all methods, CMTM4 remained
unanimously reported as DTU, and PEX11B was reported as
DTU by RATs and SUPPA2, but not by DRIM-Seq.

The isoform abundances in Figure 4 reveal that all three genes
showed plausible shifts in relative isoform abundance with the
Ensembl v60 quantifications, but only PEX11B showed the
same shift with Ensembl v87. Instead, TOMIL1 showed no
significant changes in any of its 23 isoforms and the primary
isoform in the Control samples changed from isoform
2 (ENST00000445275) to isoform 1 (ENST00000348161).
CMTM4 shows a similar abundance shift with v87 as it did
with v60, but the isoforms implicated changed from isoforms
1 (ENST00000330687) and 2 (ENST00000394106) to iso-
forms 1 and 5 (ENST00000581487). These changes of context
raised questions about the qRT-PCR validation performed in the
original analysis of the data’. Indeed, when the reported
qRT-PCR primers were aligned to the Ensembl v87 sequence
and annotation (see Extended data 6), only the primers for
PEX11B yielded the same conclusion as with Ensembl v60. For
TOMILI, the primers intended for ENST00000445275 no longer
matched that isoform, but matched two other isoforms instead
(ENST00000570371 and ENST00000575882). Additionally, the
primers intended to quantify the gene as a whole failed to match
half of the gene’s new isoforms, and the two sets of captured

Table 2. Expansion of the human annotation between Ensembl
v60 and v87. In total, the later annotation contains 25% more
transcript models. The three genes identified by Deng et al.
(2013, 31), TOM1L1, CMTM4 and PEX11B, have all acquired
additional isoform models.

Number of transcripts
Human Annotation

Total TOM1L1 CMTM4 PEX11B
Ensembl v60 / GRCh37 157,480 2 2 2
Ensembl v87 / GRCh38 198,002 23 5 3
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Figure 4. Relative abundance of isoforms for the three validated genes from 31, as re-quantified with Salmon 0.7.1'* using two versions
of the Ensembl annotation. Isoform |Ds on the x axis were replaced with simple numbers to minimize clutter, but the mapping of number to
ID is maintained between the two annotations. The y axis represents the relative abundance of each isoform. In red are the quantifications
from the three replicates of the Control condition, and in blue are those from the IPF condition. The full version of the plots by RATs, including

the full isoform IDs, is available in Extended data 5.

isoforms did not overlap completely and were thus incompa-
rable in any meaningful way. As a consequence, the qRT-PCR
intensities measured in the original study are actually impossi-
ble to interpret in the context of the updated annotation and the
originally reported conclusion is likely wrong. For CMTM4 the
primers reported matched multiple but not all isoforms, casting
doubt on the interpretation of the qRT-PCR measurements for
this gene as well. Only for PEX11B did the primers target the
isoforms in a way that would give interpretable results and
indeed lead to the same conclusion as originally reported’’.

Comparison of DTU methods against Deng et al. (2013, 31)
Table 3 summarises the results obtained by RATs, SUPPA2 and
DRIM-Seq for the Deng et al. (2013, 31) dataset using Ensembl
v60 (same as the original study) and Ensembl v87 (current version
at time of the present work). With either annotation, DRIM-Seq
reported the most DTU genes — almost 1000 with v60 and
almost 1700 with v87. The RATs gene-level method reported
fewer genes by a factor of 1.5 and 2 respectively compared to
DRIM-Seq with each annotation. SUPPA2 reported several
hundred transcripts more than RATs, but at the gene level the
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numbers were comparable. RATs and DRIM-Seq reported more
genes and transcripts with v87 of the annotation than with v60,
whereas SUPPA2 reported slightly fewer with v87. Despite
overall similar volume of results between the two versions of
the annotation, it is evident from Table 3 that the overlap of the
results between annotations is poor for all methods. For RATs
and SUPPA2, only 30-40% of the genes reported with Ensembl
v60 were also reported with v87. For DRIM-Seq this overlap was
55% of its Ensembl v60 results.

The overlap of results between different methods is similar
to the overlap of results between annotations, as shown in
Table 4. 97% of the genes reported by gene-level method in
RATs are also identified as DTU by the transcript-level method.
Among all the pairwise comparisons of RATs, SUPPA2 and
DRIM-Seq, however, the highest level of agreement at both
transcript and gene level is between SUPPA2 and RATs. SUPPA2
identifies DTU in 53% of the transcripts that are called as
DTU by the transcript-level method in RATs, however RATs
calls DTU for only 35% of the transcripts identified as DTU
by SUPPA2. DRIM-Seq consistently reports a higher number

F1000Research 2019, 8:213 Last updated: 18 MAR 2019

of DTU identifications than either RATs or SUPPA2, but still
only manages at most 43% agreement with the other two
tools.

RATs and SUPPA2 are more similar than implied by the level
of agreement presented in Table 4. Figure 5 shows that the
novel reproducibility testing feature in RATs, which discounts
DTU identification from highly variable quantifications (see
Section: DTU Calling), is responsible for rejecting 43% of
the SUPPA2 DTU transcripts and 28% of the DRIM-Seq
DTU genes that pass the significance and effect size filtering
criteria. 53% of the DRIM-Seq results and, perplexingly, 18% of
the SUPPA?2 results are rejected due to the effect size filter (after
passing the significance testing, but prior to the reproducibility
filter), despite all the tools operating on the same input isoform
quantifications.

Hardware requirements and run times

RATs’ runtime and memory consumption depend on the size of
the annotation and the number of bootstraps iterations. Where
multiple processing cores are available, RATs can be instructed

Table 3. Summary of DTU features (genes or transcripts) detected by each
method. DRIM-Seq reports DTU only at the gene level. SUPPA2 reports DTU only

at the individual transcript level. RATs reports at both the transcript and the gene
levels, using its respective test implementations. For SUPPA2 and the transcript-level
approach in RATs, gene-level results can be inferred from the reported transcripts;
these are included in the table, enclosed in parentheses. The last two columns

show the reproducibility of the results between annotation versions. DTU: Differential

transcript usage.

RATs RATs RATs SUPPA2 SUPPA2 DRIM-Seq
(genes) (transc) (ir.aggr.) (tr. aggr.)

RATs (genes) - 97% - 46% 19%
RATs (transc.) - - 35% - -
RATSs (tr. aggr.) 78% - - 42% 17%
SUPPA2 - 53% - - -
SUPPA2 (tr. aggr.) 42% - 49% - 17%
DRIM-Seq 39% - 43% - 38%

Table 4. Overlap between the DTU results from RATs, SUPPA2
and DRIM-Seq, for quantification of the Deng et al. (2013, 31)
dataset based on Ensembl v87. The overlaps are shown as

the proportion of the results from the methods on the columns
captured by the methods on the rows.

Ensembl v60

genes transc
RATs (genes) 673 -
RATs (transc.) (553) 772
SUPPA2 (780) 1391
DRIM-Seq 987 -

Ensembl v87 Overlap

(v60 & v87)
genes transc genes transc
817 - 272 -
(652) 833  (213) 223
(753) 1252 (257) 374
1680 - 541 -
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Figure 5. Causes of rejection by RATs of results reported by SUPPA2 or DRIM-Seq, expressed as proportion of the total DTU
identifications reported by SUPPA2 (1252 transcripts) or DRIM-Seq (1680 genes). The colours represent the different criteria imposed by
RATs. Since no abundance pre-filtering was enabled for any of the tools, there are no rejections caused by the transcript abundance and the
effective number of expressed isoforms. DTU: Differential transcript usage.

to take advantage of them. The runtime and maximum memory
usage for the two simulated datasets from our benchmarks,
running on a high-specification laptop, are shown in Table 5.

Discussion

Reliable identification of differential isoform usage depends
critically on i) the accuracy of the upstream isoform expression
quantifications, and ii) on the accuracy of the annotation they
use. RATs is the first differential isoform usage tool to include the
reproducibility of the upstream isoform expression quantifica-
tions to refine its DTU identifications, directly addressing the
accuracy of the upstream isoform expression quantifications.
Leveraging the bootstrapped isoform expression quantifications
from fast modern alignment-free isoform expression quantifi-
cation tools (such as Kallisto and Salmon) allows RATs to reject
those cases of DTU that are based on highly uncertain isoform
quantifications. Existing tools rely on the mean isoform abun-
dances, which can hide a large degree of variability, and are
thus insensitive to this reproducibility criterion. We recommend
running RATs, and the underlying alignment-free isoform
expression quantification tools that generate the data it operates on,
with at least 100 bootstrap iterations.

We evaluated RATs on both simulated data and on a high-quality
experimental dataset from Deng er al. (2013, 31) and show that
it outperforms both DRIM-Seq and SUPPA2. On the simulated
data with stringent effect-size, reproducibility and statistical
significance threshold, both the gene-level and transcript-level
methods in RATs have a lower FDR than the other two tools, for
a comparable sensitivity and comparable or superior Matthews
correlation coefficient. This makes RATs particularly useful for
data from organisms with large transcriptomes where the risk
of false positives is higher. Relaxing these stringent thresholds
increases the FDR for all the tools and for the lowest tested
effect-size thresholds all the tools struggle to control their
FDR adequately leaving little room for optimism regarding the
identification of DTU with small effect sizes, particularly in
low expression genes. The choice of alignment-free transcript
quantification tool did not strongly affect the performance of the
DTU tools within the examined parameter space, although in the

Table 5. Runtime and maximum RAM usage for the Drosophila
and human simulated datasets, running on a hyper-threaded
quad-core 15”2015 Macbook Pro with SSD and 16GB RAM.
Measured via the peakRAM package™®. For the bootstrapped runs,
100 iterations were used for the quantification reproducibility and 9
for the cross-replicate reproducibility, representing all the pairwise
combinations of the 3 replicates per condition.

Dataset # of # of Wallclock Time Max RAM
Bootstraps Threads (hh:mm:ss) (GB)
0 1 00:00:16 0.36
8 00:00:08 0.86
Drosophila
1 00:20:20 1.01
100 + 9
00:07:56 0.87
0 1 00:01:39 3.05
8 00:00:47 3.21
Human
100 + 9 1 02:11:13 4.25
8 00:47:47 4.15

simulated datasets Kallisto appears more prone to overestimat-
ing the expression of non-protein-coding genes that in the design
of the simulation are not expressed (see Extended data 2%).
Comparing the DTU classifications of the three tools against the
instances of DTU identified in the Deng ef al. (2013, 31) data-
set, we found pairwise overlaps between the tools of at most
53%. The low level of agreement between the three tools reflects
their different methodological choices, such as the very differ-
ent definitions of effect size. Both SUPPA2 and RATs use the
difference in relative isoform abundance as their measure of the
DTU effect size, however RATs tests this difference directly
whereas SUPPA2 extrapolates it from the differential inclusion
of splice sites. This comparison also highlights the dependence
of DTU identification methods on the accuracy of the under-
lying transcriptome annotation, (a limitation common to all
biological tools that use an annotation as guide’). Running
RATs, SUPPA2, and DRIM-Seq on the Deng et al. (2013, 31)
datasets with two different versions of the ensembl H. sapiens
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transcriptome annotation separated by six years produces
dramatic differences in the DTU identification results. All
three validated DTU genes from the original Deng et al. study
contained additional isoforms in the newer annotation and only
one of these genes displayed the same isoform abundance shifts
using both annotations. With the newer annotation, the DTU
of one validated gene was attributable to different isoforms
depending on the annotation version, while another showed no
significant DTU with the newer annotation. qRT-PCR has long
considered the de facto standard for orthogonal confirmation
of high-throughput transcriptomic results however it too is sub-
ject to the same limitation, illustrated by multiple matches of the
specific primer sequences used for validation in the Deng et al.
(2013, 31) study in the newer annotation. Annotation of the
transcriptomes remains a work in progress even for model
organisms and the extensive sequence overlap between isoforms
together with the ongoing discovery of additional isoforms
suggests that qRT-PCR may not be a suitable method for the
validation of transcript abundance changes. For hybridization-
based methods like qRT-PCR to serve as a reliable validation
method for RNA quantification, the suitability of the primers
should first be validated by sequencing the captured amplicons.
Soneson et al. (2016,) show that pre-filtering annotations can
improve quantification performance and this approach may
also be helpful in gRT-PCR primer design.

In the future, experiment-specific transcriptome annotations
could be obtained by including a parallel set of full-length
isoform RNA-seq data in the experimental design, such as via
PacBio sequencing or Oxford Nanopore Direct RNA-seq. An
advantage of this approach is that it would better define the
transcriptome for the specific experiment™'. This may be
of importance for experiments focusing on specific tissues or
developmental stages of an organism, where the active tran-
scriptome is likely to be only a subset of the global reference
transcriptome of the organism.
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? Michael I. Love
Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA

The authors present a new method for detection of DTU from RNA-seq data, which uniquely leverages
quantification uncertainty in the form of inferential replicates. | am not aware of other methods specifically
designed to detect DTU as opposed to change in total expression level of the gene, which take into
account quantification uncertainty. It is therefore a useful contribution to the methods literature. The
authors have taken some length to assess their method against other popular methods on real and
simulated datasets, and investigating individual genes with gRT-PCR validation in detail.

| have some concerns about the conclusions from the evidence provided in the article, and additionally
have requests for further details about the methods, which should be presented in the article itself.

Major comments:

1) The methods are not sufficiently described, | have the following questions:
® What is the input to RATs? Is it TPM or counts or scaledTPM? Should the library size differences
be removed prior to providing to RATs or does RATSs take care of library size differences internally?

® Can the methods described all analyze the same type of experiment, are they all restricted to
two-group analyses? Can any of them control for batch effects?

®  What are the default pre-filtering and post-filtering settings? What is the default minimum
abundance threshold or proportion threshold for an isoform to be considered expressed? What is
the default effect size cutoff, and how is it implemented per isoform, per gene? What is the default
fraction for determining that evidence of DTU is not substantiated across inferential replicates?
Likewise, what default fraction for biological replicate variation?

2) | didn't understand why abundance thresholds were not used, as described here, "No transcript
abundance pre-filter was imposed on any of the three DTU tools," and also "As SUPPAZ offered no
abundance pre-filtering, RATs and DRIM-Seq were run with abundance threshold values of 0."

As shown in Soneson et al. (2016") and Love et al. (20187), performance of a number of DTU methods is
greatly improved by filtering out lowly expressed transcripts. It can be inferred from the title of the former
paper: "Isoform prefiltering improves performance of count-based methods for analysis of differential
transcript usage".
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SUPPA2 does have an abundance pre-filtering option, which was used in Love et al. (20182):

"We enabled a filter to remove transcripts with less than 1 TPM. TPM filtering is a command-line option
available during the diffSplice step of SUPPAZ2 and this greatly improved the running time without loss of
sensitivity".

From the SUPPA2 manual: "-th | --tom-threshold: Minimum expression (calculated as average TPM value
within-replicates and between-conditions) to be included in the analysis. (Default: 0)."

Given that all the methods have abundance and/or proportion filters available, that filters are
recommended by at least two of the three methods in their documentation (DRIMSeq and RATSs), and at
least two independent review papers (not introducing methods) have shown that abundance and/or
proportion filtering improves performance of methods, | can't see why the choice was made to not use
filters.

3) It is mentioned in the false positive analysis that the median FP fraction was less than 0.05 and a
horizontal line is drawn on Fig 2A and B. This is misleading, as the adjusted p-values are being
thresholded at 0.05 (I assume), and in a null comparison the rate of false positives from an adjusted
p-values should be 0, not 0.05. Drawing or mentioning a 0.05 cutoff would be relevant for the p-values
(uncorrected), but has no bearing on the adjusted p-values. This may confuse readers.

4) The authors repeatedly refer to the reported effect size in DRIMSeq being an issue for comparison
across methods, e.g. "Direct comparison with DRIM-Seq is complicated by different methods for
measuring DTU effect-sizes between the tools", but this is only an issue to the extent that the authors wish
to perform post-hoc filtering on effect size. It is not an issue for null hypothesis testing without post-hoc
filtering, because all methods are testing against the null that the underlying proportion of expression
across isoforms has the same distribution for control samples and treated samples. However, | agree that
for post-hoc filtering, one may want to filter the methods in a similar manner. It should be easy to filter the
DRIMSeq results directly on absolute difference in isoform proportion, for example in Love et al. (20182)
we performed post-hoc filtering for DRIMSeq on the SD of proportions across all samples using a 6-line R
function.

As the likelihood ratio statistic should be 1-1 and monotonic with the p-value for DRIMSeq (if the degrees
of freedom is constant across genes or transcripts), then | would not compare effect size filtering with
likelihood ratio filtering, as the latter is simply filtering the p-value at a lower threshold.

Minor comments:

® |n the Introduction, the authors state "there is little justification for choosing DGE over DTE in the
study of complex transcriptomes". The authors imply that gene-level and transcript-level analysis
are mutually exclusive analyses, when they are not, and so | would suggest to reword or reconsider
this statement. | and others have encouraged assessment of total changes in gene expression
(DGE) as well as changes in isoform proportion (DTU), as both may be present in an experiment
and both may be of biological importance to the system being studied. DGE has the property that
the majority of inferential uncertainty which exists in an RNA-seq sample is removed (because it
occurs across isoforms within genes), leaving inferential uncertainty from reads mapping across
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gene loci, but this property of reduced uncertainty does not preclude a transcript-level analysis.
While DTE has advantages, the above sentence claiming that DGE has none overstates a more
complex situation in my opinion.

® Throughout the paper, the authors refer to "DRIMSeq" as "DRIM-Seq" which is minor but different
than the software and publication.

® For what it's worth, the transcript-level test is similar conceptually to the current implementation of
testForDEU() in DEXSeq which compares the expression of each feature to the sum of expression
from all other features of the gene (this is also different from the test described in the original
DEXSeq publication). Running DEXSeq on transcript estimated counts with testForDEU() was
tested on simulated data in Soneson et al. (2016') and Love et al. (20182), and so such an
approach has some evidence of working well for detection of isoform changes within a gene.

® | didn't understand what was meant by the following: "the tables record the full provenance of the
results".

® |tis stated that, "The performance results of RATs on these simulated datasets are in good
agreement with those presented in Love et al (2018)". However, this seems to be not clearly the
case, which may be due to differences in the simulated data in the two articles, or some other
reason. In the present article, DRIMSeq is reported as having lower sensitivity with lower achieved
FDR than other methods, SUPPA2 has higher sensitivity and higher FDR, and RATs with various
filter thresholds falls in between. In Love et al. (20187), DRIMSeq had the opposite performance:
higher sensitivity but higher FDR relative to SUPPA2 and RATSs run with default filters. However
interpretation is made difficult by all the filtering options in Figure 3. It would be easier to compare
perhaps if an additional supplementary plot to Figure 3 was made with only the default filter
thresholds instead of the filter threshold ranges for all methods. The main commonality across the
two benchmarks seems to be that RATs can achieve higher sensitivity than SUPPA2 while
maintaining the same precision, for the 5% nominal FDR threshold.

® This sentence needs to be made more specific, or else it could be misleading: "As a consequence,
the gRT-PCR intensities measured in the original study are actually impossible to interpret in the
context of the updated annotation and the originally reported conclusion is likely wrong."
Specifically which conclusion is likely wrong? From the analysis, it seemed like there is not a
problem with the original gRT-PCR intensities and interpretation for at least one of the three genes.

® Why is it perplexing that "18% of the SUPPA2 results are rejected due to the effect size filter". |
didn't follow the authors in that statement.

® |tis stated, "Existing tools rely on the mean isoform abundances...". This implies that the mean of
inferential replicates is used for statistical testing. It's perhaps subtly different, other methods are
typically using the maximum likelihood estimate, which may be different than the mean of the
bootstrap distribution, and different than the mean of the Gibbs sampling distribution. | would just
say that other tools do not make use of inferential replication.

References
1. Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD: Isoform prefiltering improves
performance of count-based methods for analysis of differential transcript usage.Genome Biol. 2016; 17:
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Statistical methods development for RNA-seq and other genomic assays

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Referee Report 04 March 2019

https://doi.org/10.5256/f1000research.19594.r44977

v

James P. B. Lloyd
ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA, Australia

‘RATSs’ is addressing an important problem: how to quantify changes in transcript isoform usage. Other
tools, like ‘Sleuth’, address a related problem, which is differential transcript expression. Both RATs and
Sleuth take advantage of the bootstrapping data that tools like ‘kallisto’ and ‘Salmon’ generate when
quantifying transcript isoform abundance. By taking advantage of bootstrapping, such tools can estimate
the technical variation within the data, to better look for differential changes. Transcript isoform usage is
often linked to changes in alternative splicing or isoform specific decay rates (e.g. from NMD). Therefore,
having a tool to accurately find changes in isoform usage is vital to our ability to address a range of
biological problems.

| have tried a version of RATSs. | found that it was easy to install and easy to use. Being able to install
bioinformatics software is no guarantee (Mangul et al., 2018"). A bonus of RATSs is that several figures
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can be generated from the data within the tool. This was simple to do, but allowed for you to visualize your
data in a straightforward but powerful way. This is one of the rare tools that just works and was relatively
intuitive and well-documented.

The paper uses sensible approaches to compare RATSs to other tools, including ‘SUPPA’ and ‘DRIMSeq’
and the authors found that RATs performed at a similar or better level than the other tools.

One minor point that could be better explained is how RATs uses the bootstrapping data. Does it use it to
simply throw out highly variable genes (decreasing FP rate) or does it help get closer to the true rate of
biological variation, thus increasing the true positive rate?

In the methods, it would be good to see more explanation on how RATSs does its pre-filtering. For
example, if a transcript has zero expression in one treatment but a modest to high expression in the other
treatment, would RATSs keep this transcript or discard it? This would be of interest to people working on
RNA decay pathways, such as NMD.

One thing that | would love to see is a comparison of RATs to the DEXSeq/DRIMSeq approach used to
address differentiation transcript isoform usage (Love et al., 20182). This tool appeared to also perform

well in the publication of this approach, where they used sim data. Therefore | think a comparison to RATs
here, using sim and real data (human) would be appropriate.
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Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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Reviewer Expertise: | have research experience in wet lab biology and dry lab (computational analysis).
| have used many computational tools like RATS for analyses with real data.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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? Sophie Shaw
Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK

Froussios et al. have presented here a new tool, RATS, for the identification of differential transcript usage
from transcript abundance estimates. RATs was benchmarked and compared to the existing tools
DRIM-Seq and SUPPA2 across four different datasets. False positive rate, false negative rate, sensitivity
and Matthews correlation coefficient were all measured. When considered as a whole, RATs was found
to outperform the other tools. Differing results due to the version of the reference genome used are also
discussed. This is a nicely presented manuscript, with well thought out comparisons. The tool will make a
good addition to existing RNA sequencing analysis pipelines, especially as the field moves towards
alignment free methods.

The rationale for the development of this tool is clearly stated, as there are only a few tools which carry out
DTU detection from alignment-free RNA-seq quantifications. The majority of existing tools for DTE and
DTU are designed for use with alignment- and assembly-based methods. Of the existing tools described,
each has specific uses, and RATSs has been presented as a broad "differential transcript usage"
identification tool.

The methods of the analysis have been described well, and overall are technically sound. | would like to
see an expansion on the description of the statistical method underpinning RATs. Although G-test of
independence is cited, a brief description of what this entails and how it differs from existing tools would
aid in the understanding of how the tool functions.

However, | have some suggestions concerning the comparison of tools and the datasets selected. With
regards to the selection of tools for comparison, SwitchSeq and iso-KTSP are mentioned within the
introduction as being able to use transcript abundance estimates, however are not compared to. | assume
that this is because they are too specialist in their identification of differential transcript usage and/or
isoform switching, but | think the decision to not compare to these tools should be more explicit. The
authors have not mentioned the recent pre-print from Cmero et al. (2019) ' which discusses the
development of methods for DTU detection from alignment-free datasets using equivalence classes. The
paper uses the same simulated datasets for benchmarking of the tool, and should be considered as
another tool to compare to RATSs. If this is not deemed as an equivalent method, it should at least be
discussed in this manuscript.

With regards to the datasets tested, the published human data set which is shown here is not directly
confirming the accuracy of RATS, as the authors show that the gPCR validation within the original study
may be inaccurate, and underlying issues are present due to the reference genome version. Although the
dataset is being used to compare RATs to SUPPA and DRIM-Seq, it is not validating the tool. | think that
this manuscript would benefit from comparison of the three tools using another "real-life" dataset, which
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has been validated in some way, to support that RATs is detecting known DTU.

Methods for tool development and testing are clearly described, apart from with false positive testing with
A. thaliana dataset. The authors should include details on how the transcript abundances were produced
for this (using Kallisto or Salmon? Any other pre-processing?). All datasets used are publicly available
with accession numbers given. Additional data is provided within published links; however, these would
benefit from a simple readme file, which explains the contents of each extended data file so the reader
doesn't need to search through them.

Within the results, it would be nice to see more discussion on the impact of the bootstrapping information
used by RATSs. | think that this is a really beneficial part of this tool and this has not been demonstrated
enough. It should also be made clearer if this bootstrapping information is obtained solely from
Salmon/Kallisto or if RATs implements it's own bootstrapping.

Although the testing of the simulated datasets does show that RATs outperforms DRIM-Seq and
SUPPAZ2, | don't feel that as it stands you can conclude that the analysis of the published dataset shows
this. When comparing to the published findings, SUPPA2 shows better results with confirmation of the
gPCR results. As I've mentioned above, | would find another "real-life" dataset for comparison, or simply
re-word the conclusion so that this isn't overstated.
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