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Abstract

A variety of conditioning stimuli (e.g. ischemia or hypoxia) can protect against stroke-induced 

brain injury. While most attention has focused on the effects of conditioning on parenchymal 

injury, there is considerable evidence that such stimuli also protect the cerebrovasculature, 

including the blood-brain barrier. This review summarizes the data on the cerebrovascular effects 

of ischemic/hypoxic pre-, per- and post-conditioning and the mechanisms involved in protection. It 

also addresses some important questions: Are the cerebrovascular effects of conditioning just 

secondary to reduced parenchymal injury? How central is endothelial conditioning to overall brain 

protection? For example, is endothelial conditioning sufficient or necessary for the induction of 

brain protection against stroke? Is the endothelium crucial as a sensor/transducer of conditioning 

stimuli?
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Introduction

Ischemic preconditioning was first described in heart where prior brief periods of ischemia 

were shown to protect against longer injurious durations (Murry et al., 1986). Ischemic 

preconditioning also occurs in brain (Kitagawa et al., 1991; Gidday, 2006; Li et al., 2017), 

and such brain protection can also be induced by ischemic events in distant tissues (remote 

ischemic preconditioning (Ren et al., 2008)); by other physiological stressors including 
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hypoxia, hyperbaric oxygen, hyperoxia and exercise (Ding et al., 2004; Pan et al., 2016); and 

by certain pharmacological agents (Gidday, 2010). Although the effects of brain ischemic 

preconditioning were described first, intermittent reductions in cerebral blood flow during 

(perconditioning) and after (post-conditioning) an injurious ischemic event can also induce 

brain protection (Hess et al., 2013; Hess et al., 2015). These different conditioning stimuli 

induce protective adaptations in tissues that limit the effects of later injurious events 

(Gidday, 2006, 2010). Most of the attention on the effects of different conditioning stimuli 

has focused on the impact on neural function. However, in brain (e.g. Masada et al., 2001; 

Zhang et al., 2006; Stowe et al., 2011; Wacker et al., 2012; Zhang et al., 2017), as well as in 

other tissues (Rubino & Yellon, 2000; Aggarwal et al., 2016), such conditioning stimuli can 

also impact endothelial cell function, and this may play an important role in overall tissue 

protection (see below).

The cerebrovasculature is highly specialized, including forming the blood-brain barrier 

(BBB). Brain endothelial cells are linked by tight junctions (TJs) that limit the entry of many 

hydrophobic compounds from blood to brain (Abbott et al., 2010). They also possess a wide 

array of transporters involved in transporting nutrients into brain, preventing entry of 

potentially neurotoxic compounds from blood to brain and removing waste products from 

brain (Abbott et al., 2010). There is limited (although important) transcytosis at the brain 

endothelium compared to systemic capillaries, and there is limited leukocyte trafficking 

(Abbott et al., 2010). These brain endothelial properties are important for brain homeostasis. 

Although the endothelial cell is central to the BBB, those cells are part of a wider 

neurovascular unit (NVU) that is important for regulating endothelial and barrier function as 

well as cerebral blood flow (CBF) (Iadecola, 2017). The NVU includes astrocytes, pericytes, 

neurons, smooth muscle cells and their basement membranes.

Many neurological conditions impact cerebral endothelial function, e.g. ischemic and 

hemorrhagic stroke, traumatic brain injury, Alzheimer’s disease and multiple sclerosis. For 

example, ischemic stroke causes increased BBB permeability (with the potential entry of 

neurotoxic compounds), endothelial cell death, edema, leukocyte diapedesis and CBF 

dysregulation (Jiang et al., 2018). Such changes may contribute to brain injury (Jiang et al., 

2018) and thus represent a target for conditioning-based therapies.

The aim of this review is to examine the evidence of the impact of conditioning stimuli on 

the cerebral endothelium, with a particular focus on ischemia/hypoxia-related stimuli 

protecting against stroke-induced BBB dysfunction. It also touches upon the effects of such 

stimuli on CBF, an area of disagreement in the field. This review raises several important 

issues: Are the effects of conditioning secondary to alterations in parenchymal injury? What 

is the importance of alterations in signaling within the NVU to the endothelial effects of 

conditioning stimuli? How central is endothelial conditioning to overall brain protection--

e.g., is endothelial conditioning sufficient or necessary for the induction of brain protection 

against stroke? Is the endothelium a crucial sensor/transducer of conditioning stimuli?
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Effects of conditioning stimuli on the blood-brain barrier and cerebral 

endothelial cell function (Figure 1)

Barrier permeability.

Multiple studies have shown that a variety of conditioning stimuli can protect against later 

ischemia-induced BBB disruption in vivo (Table 1). For example, ischemic preconditioning 

(Masada et al., 2001; Zhang et al., 2006; Gesuete et al., 2011), ischemic post-conditioning 

(Han et al., 2014) and remote ischemic pre- and post-conditioning (limb) (Wei et al., 2012; 

Zhang et al., 2017) have all been reported to decrease ischemia-induced BBB permeability 

to tracers. Similar effects have been reported for hypoxia-induced preconditioning (Stowe et 

al., 2011; Wacker et al., 2012), although Chi et al. recently reported that hypoxia 

preconditioning with 2 hrs of exposure to 8% O2 24 hrs prior to a permanent middle cerebral 

artery occlusion (MCAO) in rats actually increased BBB permeability via a vascular 

endothelial growth factor (VEGF)-mediated mechanism (Chi et al., 2017). The protective 

effects of conditioning stimuli on stroke-induced BBB hyperpermeability are not limited to 

ischemia; similar effects have been reported for intracerebral hemorrhage (Geng et al., 2012; 

Lu et al., 2014).

In vitro (Table 1) exposure of brain endothelial cells to a brief period of oxygen glucose 

deprivation (OGD) or repetitive periods of hypoxia have been reported to reduce barrier 

hyperpermeability and cell death induced by a later prolonged period of OGD (in vitro 
ischemia model) (Andjelkovic et al., 2003; Zhang et al., 2007; An & Xue, 2009; Lee et al., 

2009). Gesuete et al. also found that OGD preconditioning protected against OGD-induced 

BBB hyperpermeability in an in vitro BBB model involving co-culture of brain endothelial 

cells and astrocytes (Gesuete et al., 2011). However, they only found protection with co-

culture, not with endothelial cells alone. In studies on non-brain endothelial cells in 

monoculture, Lin et al. (2013) found that OGD preconditioning reduced OGD-induced 

apoptosis in human microvascular endothelial cells-1 (HMEC-1) and Zhao et al. (2012) 

found that hypoxic preconditioning reduced OGD-induced cell damage and oxidative stress 

in rat arterial endothelial cells. Together these results suggest that endothelial cells can be 

directly preconditioned by exposure to ischemia/hypoxia, but that some effects of 

preconditioning may also occur via signals from other cells within the NVU (e.g. 

astrocytes--see below).

The TJs that link brain endothelial cells are an essential part of limiting BBB permeability. 

Cerebral ischemia causes a redistribution and/or loss of TJ proteins (e.g. claudin-5, occludin 

and ZO-1) leading to BBB hyperpermeability (Jiang et al., 2018). The TJs are linked to the 

cell actin cytoskeleton, and cytoskeletal changes after ischemia (e.g. stress fiber formation) 

contribute to TJ dysfunction (Shi et al., 2016). Several studies have shown conditioning 

stimuli can preserve TJ structure during subsequent ischemic events. In vitro, An et al. found 

that OGD-preconditioning prevented ZO-1 and F-actin redistribution during subsequent 

OGD + reoxygenation (An & Xue, 2009). Similarly, Gesuette et al. found that OGD 

preconditioning reduced redistribution of claudin-5 and ZO-1 induced by subsequent OGD 

(Gesuete et al., 2011). In vivo, ischemic post-conditioning after rat transient MCAO 

increased claudin-5 and occludin expression compared to non-conditioned animals (Han et 
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al., 2014). Remote ischemic preconditioning (limb) in rat transient MCAO prevented 

claudin-5 redistribution and also increased occludin expression. It did not increase overall 

claudin-5 and ZO-1 expression (Ren et al., 2015). Wacker et al. (2012) found that a loss of 

ZO-1 and Ve-cadherin (an endothelial adherens junction protein) after transient MCAO in 

mice was prevented by hypoxic preconditioning. There was a similar trend (non-significant) 

for occludin. Preconditioning with hyperbaric oxygen protects against hypoxia- or ischemia-

induced BBB disruption in vivo (Peng et al., 2008; Soejima et al., 2012) and in vitro (Hao et 

al., 2016). In vitro, the effects of hyperbaric oxygen preconditioning were associated with a 

reduced loss of occludin and ZO-1 at the cell membrane during subsequent hypoxia (Hao et 

al., 2016).

Insight into the effects of conditioning stimuli on the BBB can also be gained by examining 

the impact of such stimuli in the absence of a subsequent injurious event. Mark and Davis 

(2002) examined the effects of hypoxia (24 hours) with and without reoxygenation (2 hours) 

on brain endothelial TJ protein expression in vitro. They found that hypoxia + reoxygenation 

caused an upregulation in the expression of occludin, ZO-1 and ZO-2 compared to cells 

exposed to normoxic conditions. The direct effects of conditioning stimuli on TJ protein 

expression and organization, and how that interacts with the subsequent changes invoked by 

an injurious event, merit further investigation.

Brain edema.

Classically, brain edema has been classified as vasogenic, associated with vascular 

disruption, and cytotoxic, linked to parenchymal cell injury (Klatzo, 1967), although many 

neurological conditions such as cerebral ischemia induce both. Evidence suggests that 

ischemic and hypoxic preconditioning reduces brain edema formation following later 

cerebral ischemia (Masada et al., 2001; Wacker et al., 2009; Shin et al., 2015), that ischemic 

post-conditioning also diminishes edema (Esmaeeli-Nadimi et al., 2015), and that remote 

(limb) ischemic pre- and post-conditioning have similar effects (Ren et al., 2015; Xia et al., 

2017). It is currently uncertain whether these effects of conditioning stimuli on edema are 

due to reduced vasogenic or cytotoxic edema (due to smaller infarcts), or both. However, the 

effects of such stimuli on BBB permeability suggest at least some of the reduction is due to 

diminished vasogenic edema formation.

Leukocyte diapedesis into brain.

Neuroinflammation has a major role in brain injury after stroke (Iadecola & Anrather, 2011). 

One component of stroke-induced neuroinflammation is an infiltration of circulating 

leukocytes (e.g. neutrophils, macrophages and lymphocytes) into brain. This infiltration is a 

multi-step process involving the production of cytokines and chemokines within brain, the 

expression of adhesion molecules on the cerebral endothelium, and the migration of 

leukocytes across the endothelium (Lopes Pinheiro et al., 2016). Evidence indicates that 

ischemic or hypoxic preconditioning alters cytokine/chemokine expression during 

subsequent injurious ischemia towards a more anti-inflammatory phenotype (Wang et al., 

2014; Kim et al., 2015; McDonough & Weinstein, 2016). Similarly, ischemic or hypoxic 

preconditioning stimuli reduce expression of brain endothelial adhesion molecules 

(VCAM-1, P- and E-selectin) during subsequent stroke in vivo (Hoyte et al., 2010; Stowe et 
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al., 2011). In vitro, brief exposure of brain endothelial cells to OGD also reduces the 

expression of ICAM-1 induced by prolonged OGD with reoxygenation (Andjelkovic et al., 

2003). Stowe et al. found that preconditioning with repetitive bouts of hypoxia reduced the 

adherence of leukocytes to the cerebral endothelium induced by transient MCAO as well as 

leukocyte diapedesis (Stowe et al., 2011). Similarly, Selvaraj et al. reported that hypoxic 

preconditioning reduced total leukocyte infiltration into brain after transient MCAO 

(Selvaraj et al., 2017), and Doeppner et al. found that ischemic postconditioning reduces the 

number of leukocytes in the brain after transient MCAO (Doeppner et al., 2017).

Blood flow regulation.

The effects of ischemic/hypoxic preconditioning on CBF in ischemic stroke are 

controversial (Table 2). While multiple studies have indicated no effect of prior 

preconditioning on CBF during and after a subsequent ischemic event (e.g. Matsushima & 

Hakim, 1995; Chen et al., 1996; Cho et al., 2005; Stowe et al., 2011), some studies have 

suggested an important effect on blood flow, particularly in the ischemic penumbra (Hoyte 

et al., 2006; Zhao & Nowak, 2006; Cui et al., 2013). In line with the latter, some evidence 

exists of an impact of ischemic/hypoxic conditioning on the brain’s collateral circulation. 

Thus, Woitzik et al. found that hypoxic preconditioning in mice increased the diameter of 

the leptomeningeal anastomoses 72 hours later (Woitzik et al., 2006). The extent of the 

collateral circulation is an important determinant of stroke-induced brain injury in 

preclinical models and patients (Ginsberg, 2016).

Experiments examining the effects of post-conditioning on CBF have been more consistent 

(Table 3) in showing reduced acute hyperemia and less delayed hypoperfusion (Zhao et al., 

2006; Gao et al., 2008; Wang et al., 2008; Esmaeeli-Nadimi et al., 2015; Wu et al., 2015). 

Similarly, a number of studies have shown a beneficial effect of remote ischemic 

preconditioning (limb) on CBF. Hoda et al. (2012) found it increased CBF during embolic 

stroke in male mice as well as during tPA-induced reperfusion. That group also found 

similar effects in ovariectomized female mice (Hoda et al., 2014). Kitagawa et al. (Kitagawa 

et al., 2018) also found that remote ischemic perconditioning increased the diameter of the 

leptomeningeal anastomoses in mice undergoing transient MCAO, indicating that it likely 

improved collateral circulation. This was associated with an increase in CBF during the 

course of the MCAO. They did not report an effect of this conditioning stimulus on CBF 

upon reperfusion.

In patients with subarachnoid hemorrhage, Gonzalez et al. (2013) reported a transient 

cerebral vasodilation with remote ischemic preconditioning. In patients with intracranial 

arterial stenosis, Meng et al. (2012) found that remote ischemic preconditioning (limb, twice 

daily/300 days) and found improved cerebral perfusion as assessed by transcranial Doppler 

and SPECT. Similarly, Wang et al. (2017) and Mi et al. (2016) examined the effect of twice 

daily remote ischemic conditioning (limb) for one year in patients with cerebral small vessel 

disease. Wang et al. found a reduction in the pulsatility index of the middle cerebral artery, 

indicating that the conditioning improved cerebral perfusion and reduced the resistance of 

downstream vessels, while Mi et al. found an increase in the mean flow velocity in the 

middle cerebral artery.
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Impact of comorbidities on conditioning

One potential impediment to the translation of pre-clinical conditioning data to the clinic is 

whether different diseases might lessen the beneficial effects of conditioning stimuli (Wang 

et al., 2013). For example, some evidence suggests that a variety of stroke comorbidities 

impact the ability of conditioning stimuli to protect against ischemic brain injury. Aging has 

been reported to diminish the efficacy of ischemic preconditioning in reducing ischemia-

induced brain injury (Schaller, 2007; Della-Morte et al., 2013). Some evidence indicates that 

the effects of ischemic preconditioning are reduced in the spontaneously hypertensive rat 

(stroke prone (SHRSP)) compared to the less hypertensive SHR strain (Purcell et al., 2003). 

In heart, most but not all preclinical studies have shown reduced effectiveness of pre-and 

post-conditioning with diabetes, hypertension and aging, and some evidence indicates that 

this is the case in patients (reviewed in McCafferty et al. (2014)).

While aging, hypertension and diabetes/hyperglycemia all are risk factors for stroke and 

worsen stroke outcome, they all also impact BBB function after stroke (Jiang et al., 2018). 

Whether they also specifically affect the ability of conditioning stimuli to protect the 

cerebral endothelium and other elements of the NVU has not been specifically examined. 

This should be a priority for future research.

Are conditioning effects on the brain endothelium due to reduced 

parenchymal injury?

One mechanism by which conditioning stimuli might reduce stroke-induced BBB 

dysfunction is an indirect effect via reducing parenchymal injury. Ischemic and hypoxic 

pre-, perand post-conditioning all have been shown to reduce infarct size/parenchymal injury 

(Hess et al., 2013; Stetler et al., 2014; Li et al., 2017). However, several pieces of evidence 

indicate that brain endothelial protection is not solely a result of reduced parenchymal 

injury. As noted above, several in vitro studies have shown that brain endothelial cells can be 

conditioned to reduce OGD-induced injury in the absence of other cell types (Andjelkovic et 

al., 2003; Zhang et al., 2007; An & Xue, 2009). In addition, Stowe et al. (2011) examined 

whether the effects of hypoxic preconditioning on reducing leukocyte adherence to 

endothelial cells after transient MCAO also occurred when mice were preconditioned prior 

to systemic administration of tumor necrosis factor (TNF)-α, an inflammatory cytokine. 

They found that hypoxic preconditioning reduced TNF-α-induced leukocyte adherence even 

though systemic TNF-α did not cause overt parenchymal injury.

Effects of conditioning stimuli on cerebral endothelial cells

There has been an extensive examination of the cellular mechanisms triggered by ischemic 

and hypoxic preconditioning in brain (Li et al., 2017). These mechanisms alter cell 

metabolism and reduce energy demand, protect against cell death and injury pathways, and 

produce responses that limit the severity of hypoxia/ischemia. The responses may occur 

early (e.g. classical preconditioning) and late (e.g. delayed preconditioning) after the 

conditioning stimulus. Examples of the former include phosphorylation of target proteins, 

while the latter often depend upon transcription and translation. Multiple cell signaling 
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pathways are involved in the effects of conditioning including ERK, Akt and protein kinase 

C signaling (Li et al., 2017).

In general, the intracellular mechanisms involved in specific cell types are more easily 

studied in culture, but there is still a paucity of studies examining the mechanisms of 

hypoxiaor OGD-induced conditioning of brain endothelial cells in vitro. Both forms of 

conditioning do reduce OGD-induced endothelial cell death (Andjelkovic et al., 2003; 

Zhang et al., 2007; An & Xue, 2009), and Zhang et al. found that hypoxic preconditioning 

increased PI3-kinase/Akt signaling and activation of anti-apoptotic pathways including 

increased phosphorylated survivin (Zhang et al., 2007). Blocking the PI3-kinase/Akt 

pathway prevented hypoxic preconditioning from reducing OGD-induced cell death (Zhang 

et al., 2007). In the heart there is evidence of a crucial role of the mitochondrial changes 

(mitochondrial ATP-sensitive K+ channels, Bcl-2 family members and the mitochondrial 

permeability transition pore) in conditioning, including in the cardiac vasculature (Rubino & 

Yellon, 2000; Murphy, 2004). There is also evidence in the cerebrovasculature for a role of 

mitochondrial changes. Preconditioning with diazoxide, an ATP-sensitive K+ channel 

opener, protected against global ischemia-induced BBB disruption (Lenzser et al., 2005). 

Pre- or post-conditioning with BMS-191095, another mitochondrial ATP-sensitive channel 

opener, also protected rat brain endothelial cells from OGD-induced cell death. More in 
vitro studies are needed to fully elucidate the mechanisms involved in the effects of ischemic 

and hypoxic conditioning on the cerebral endothelium

Effects of conditioning stimuli on signaling within the neurovascular unit

Conditioning stimuli may also impact cell-to-cell or cell-to-extracellular matrix signaling 

within the NVU, indirectly affecting brain endothelial function. Abundant evidence suggests 

that in the absence of conditioning, endothelial cells receive signals from other components 

of the NVU. For example, at the levels of the cerebral capillaries, astrocytes release factors 

that enhance barrier tightness and co-culture with astrocytes, or astrocyte-conditioned media 

increases the transendothelial electrical resistance of brain endothelial monolayers in vitro 
(Abbott et al., 2010). Similarly, pericytes (Armulik et al., 2010; Daneman et al., 2010; Ben-

Zvi et al., 2014) and endothelial-toextracellular matrix interactions (Baeten & Akassoglou, 

2011; Menezes et al., 2014) also regulate BBB function. It should also be noted the pericytes 

have been proposed to regulate CBF (Hall et al., 2014).

The effect of conditioning stimuli on intercellular signaling within the capillary NVU has 

generally been a neglected field. While individual cell types may react to a particular 

conditioning stimulus raising a protective response, those cell types may also send signals/

mediators that affect other nearby (or distant) cells. Thus, for example, ischemic neurons 

may transmit “help-me” signals to other cell types to promote survival, including the 

cerebral endothelium (Xing & Lo, 2017). Some neuronal help-me signals include the 

chemokine CX3CL1, the cytokine IL-34, fibroblast growth factor-2, lipocalin-2 and IgG 

(Xing & Lo, 2017). Stowe et al. (2012) examined the role of the chemokine CCL2 in 

hypoxic preconditioning. They found that such preconditioning upregulated CCL2 mRNA 

and protein initially in neurons and then in endothelial cells. They also found an 

upregulation of the CCL2 receptor, CCR2, on endothelial cells. CCL2-null mice and wild-
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type animals treated with a CCL2 neutralizing antibody blocked the neuroprotective effects 

of hypoxic preconditioning, indicating the importance of CCL2-mediated signaling in the 

conditioning response.

There is also evidence for the importance of astrocyte-to-endothelial signaling in 

conditioning. Gesuette et al. (2011) found that OGD-induced preconditioning on co-cultures 

of brain endothelial cells and astrocytes reduced the barrier disruption caused by a later, 

more severe OGD exposure. Interestingly, they found this effect could be mimicked by 

preconditioning the astrocytes alone, but not the endothelial cells alone, and that inhibiting 

astrocyte metabolism with fluorocitrate also blocked OGD-induced preconditioning. These 

results indicate a crucial role of astrocyte-to-endothelial signaling in barrier protection.

Sphingosine-1-phosphate (S1P) is an important signaling molecule at the neurovascular unit 

with receptors on brain endothelial cells and astrocytes (Spampinato et al., 2015; Yanagida 

et al., 2017). Loss of the S1P receptor 1 specifically on endothelial cells causes BBB 

disruption (Yanagida et al., 2017). The phosphorylation of sphingosine to produce S1P is 

catalyzed by the sphingosine kinases. In vivo, Wacker et al. (2009; 2012) found that 

microvascular sphingosine kinase-2 (SphK-2) levels were increased by hypoxic 

preconditioning, and that inhibiting SphK or genetic knockout of SphK2 reduced the 

protective effects of hypoxic preconditioning on stroke infarct volume and on BBB 

disruption. The cellular location of SphK2 is still uncertain. In addition to effects on the 

BBB, evidence has shown that S1P receptor 1 activation increases the development of 

leptomeningeal collaterals improving stroke outcome in mice (Iwasawa et al., 2018).

VEGF-A is a crucial component of the brain response to hypoxia. It is upregulated in 

neurons, astrocytes and microglia after hypoxia (Ogunshola et al., 2000), and via receptors 

(VEGFR1 (Flt-1) and VEGFR2 (Flk-1)) on the cerebral endothelium it promotes 

angiogenesis, a chronic adaptation to a low-O2 environment (LaManna et al., 2004, and 

below). Laudenbach et al. (2007) found that a reduction in excitotoxic injury by hypoxic 

preconditioning in neonatal mice was prevented by a VEGFR2 antibody, and that mice 

lacking a hypoxia-responsive element on the VEGF-A gene actually had worse injury with 

hypoxic preconditioning rather than protection. Similarly, Lee et al. (2009) found that the 

cell death induced by hypoxia in neonatal rats was reduced by ischemic preconditioning, but 

that this neuroprotection was abrogated if VEGF-A or VEGFR2 (but not VEGFR1) were 

inhibited. Similarly, the protective effects of OGD preconditioning in limiting OGD-induced 

brain endothelial cell and neuronal death were blocked by antisense oligodeoxynucleotides 

targeting VEGF-A or VEGFR2, or a VEGF-A antibody (Lee et al., 2009). It should be noted 

that VEGF-A has non-endothelial (e.g. neuronal) effects that are important in brain injury 

responses and might contribute to hypoxic/ischemic conditioning (Li et al., 2017).

In addition to VEGF-A, there is evidence of a role of VEGF-C in ischemic preconditioning 

(Bhuiyan et al., 2015). Following ischemic preconditioning in mice, VEGF-C was 

upregulated in neurons. The VEGF-C receptor, VEGFR-3, is normally present in endothelial 

cells although it is also upregulated in neurons after preconditioning, and blocking that 

receptor prevents the neuroprotection induced by ischemic preconditioning (Bhuiyan et al., 

2015).
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Another type of signaling that has yet to receive attention with regards to the effects of 

conditioning at the NVU is that mediated by extracellular vesicles (exosomes or 

microvesicles depending on size (Ramirez et al., 2018)). Such vesicles are shed by almost all 

cell types and, via their microRNA and protein cargo, are involved cell-cell communication. 

At the NVU, the endothelium is both a source of such vesicles and a target (Ramirez et al., 

2018). There is evidence in culture that endothelial cell-derived exosomes can protect 

neurons (Xiao et al., 2017). There is also evidence that circulating extracellular vesicles are 

involved in the cardioprotection induced by remote ischemic preconditioning (Barile et al., 

2017; Giricz et al., 2014; Yamaguchi et al., 2015). Investigation is warranted on the impact 

of conditioning stimuli on the number and content of extracellular vesicles derived from 

brain endothelial cells, and on other components of the NVU as well as circulating 

extracellular vesicles, along with whether they affect the response of other cell types to 

ischemia and other forms of brain injury.

Cerebral blood flow is highly regulated at the level of the NVU (e.g. neurovascular coupling 

and autoregulation). One important regulator of CBF at the NVU is nitric oxide (NO). In 

brain, NO is produced by three nitric oxide synthase isoforms, eNOS (endothelial NOS), 

nNOS (neuronal NOS) and iNOS (inducible NOS). Evidence from knockout mice and 

inhibitor studies indicates that each isoform is required for preconditioning to protect against 

ischemic brain injury (Atochin et al., 2003; Cho et al., 2005; Iadecola et al., 2011). This may 

be via the actions of NO as a vasodilator (see discussion above on the CBF effects of 

hypoxic/ischemic conditioning), but NO has multiple other actions (Iadecola et al., 2011).

Important signaling events may also be invoked by conditioning stimuli outside the NVU. 

Circulating progenitor cells (e.g. endothelial progenitor cells (EPCs)) have an important role 

in angiogenesis and BBB repair after cerebral ischemia, and there has been considerable 

interest in the use of such cells in stroke therapy (Liu et al., 2014). Akita et al. (2003) found 

that hypoxic preconditioning induces the differentiation of peripheral blood mononuclear 

cells into EPC-like attaching cells, and that these cells could enhance neovascularization in 

ischemic hindlimb. Some evidence also indicates that remote ischemic preconditioning 

increases the number of EPCs in arteries of patients with heart disease (Liang et al., 2015).

Is endothelial preconditioning sufficient to induce brain tolerance? 

Endothelium as primary sensor/transducer of hypoxic/ischemic 

conditioning stimuli

Growing evidence indicates that early BBB dysfunction plays a critical role in brain injury 

after ischemic stroke with specific manipulations to the cerebral endothelium not only 

protecting against BBB disruption but also reducing infarct size and behavioral deficits (Shi 

et al., 2016; Shi et al., 2017). Recent evidence also suggests that downregulating claudin-5 

expression at the brain endothelium via adeno-associated virus-delivered shRNA causes 

behavioral deficits in rodents (Menard et al., 2017). Such experiments raise the question of 

whether the effects of conditioning stimuli on the cerebral endothelium can be a primary site 

of action that then leads to brain protection (Figure 2, scenarios A and B). There is some 

evidence supporting this hypothesis.
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Selvaraj et al. found that repetitive hypoxic preconditioning caused a long-term increase in 

the chemokine CXCL12 at the BBB (Selvaraj et al., 2017). An antagonist of the CXCL12 

receptor, CXCR4, blocked the ability of hypoxic preconditioning to reduce transient MCAO-

induced leukocyte infiltration into brain and limit infarct size. Interestingly, that study did 

not find a reduction in MCAO-induced brain edema or BBB disruption. These results 

suggest a critical role of both inflammation and the cerebral endothelium in hypoxic 

preconditioning.

Similarly, Ozaki et al. (2016) found that brain endothelial cells express high levels of the 

purinoreceptor P2X4. Inhibiting P2X4 prevented the ability of ischemic preconditioning to 

reduce infarct size and the behavioral deficits induced by transient MCAO. Importantly, 

conditional knockout of P2X4 receptor in Ve-cadherin-positive mice also prevented the 

protective effects of ischemic preconditioning. The P2X4 receptor is sensitive to shear stress, 

and the authors presented data showing that P2XR4 activation increases expression of 

osteopontin, a neuroprotectant, in endothelial cells. These results suggest a central role of 

the cerebral endothelium in ischemic preconditioning.

Another piece of evidence that may indicate the importance of the endothelium in 

conditioning is the effect of remote ischemic conditioning. The exact mechanisms 

underlying the effects of these stimuli are still not totally clear. Research has focused on the 

roles of the release of humoral factors from the ischemic tissue (e.g. limb) and a neurogenic 

component as well as modulation of the immune system (Hess et al., 2013; Hess et al., 

2015). One proposed humoral factor is adenosine (Hu et al., 2012), which has receptors at 

the cerebral endothelium (A1/A2A receptors (Bynoe et al., 2015)) but only a low rate of 

blood-to-brain transport. Another is bradykinin (Hess et al., 2013); systemic administration 

can precondition the brain, causing reduced infarct size, brain edema and BBB permeability 

after transient MCAO in rats (Ping et al., 2005). However, bradykinin is an oligopeptide, and 

these, with some exceptions, have very low BBB permeabilities (Zlokovic, 1995). This 

suggests that the brain effects of these factors may be primarily at the level of the cerebral 

endothelium, which has abundant bradykinin receptors (primarily the kinin B2 receptor 

(Easton & Abbott, 2002; Dobrivojevic et al., 2015)).

Determining whether a pharmacological agent is acting as a conditioning stimulus at the 

level of the cerebral endothelium can be complex. Pre- and post-conditioning with systemic 

lipopolysaccharide (LPS) has been shown to reduce ischemic brain damage. While there is 

evidence that LPS has actions at the cerebral endothelium via endothelial nitric oxide 

synthase (Puisieux et al., 2000; Kunz et al., 2007; Orio et al., 2007) and that LPS does not 

cross the BBB, there is evidence that LPS can increase plasma ceramide concentrations, and 

that molecule can cross the BBB (Zimmermann et al., 2001). Ceramide can be found not 

only in brain vessels but also in perivascular cells and in the brain parenchyma after 

intravenous administration (Zimmermann et al., 2001).

Although most studies on the effects of hypoxic preconditioning have focused on acute or 

subacute scenarios, it should be realized that chronic hypoxic exposure has a profound effect 

of angiogenesis with increased capillary density (Pichiule & LaManna, 2002; LaManna et 

al., 2004; Benderro & LaManna, 2014). In addition, chronic cerebral hypoperfusion in 
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rodents causes a delayed angiogenic response (Hai et al., 2003; Jing et al., 2015). These 

chronic angiogenic effects will help maintain cerebral oxygen delivery. Some evidence 

suggests that the adaptive response to chronic cerebral hypoperfusion may protect against 

later focal cerebral ischemia (Choi et al., 2007), although the relative importance of the 

angiogenic response in that protection is uncertain.

Studies using cell-specific knockout of signaling molecules can give insight into the relative 

roles of different cells in conditioning, e.g. examining the effect of cell-specific knockout 

hypoxia-inducible factor (HIF)-1α on hypoxic or ischemic preconditioning. Baranova et al. 

examined neuronal HIF-1α knockout mice and found no effect on hypoxic preconditioning 

(Baranova et al., 2007). Similarly, Zhu et al. found no effect of retinal ganglion cell-specific 

HIF-1α knockout on the effects of hypoxic preconditioning in the eye (Zhu et al., 2013). In 

heart, endothelial HIF-1α and β are both required for ischemic preconditioning (Sarkar et 

al., 2012). This suggests that the primary hypoxia/ischemia sensing in hypoxic/ischemic 

preconditioning in brain may be at the level of the cerebral endothelium. It should be noted 

that the cerebral endothelial response to conditioning stimuli might be critical in brain 

protection in two ways. Protection against endothelial damage itself may limit parenchymal 

damage during ischemia, e.g. by limiting the entry of potential neurotoxic compounds from 

blood that might exacerbate ischemic brain injury. However, an alternative is that the 

endothelial response is important in transducing the conditioning “signal” to the brain 

parenchyma. For example, the endothelium may respond to changes in blood oxygen or 

shear stress by emitting signaling molecules that elicit protective responses in parenchymal 

cells (i.e., may act as a transducer).

Future directions

While evidence is emerging that the brain endothelium response is a critical component in 

conditioning-induced protection against ischemic brain injury (Ozaki et al., 2016; Selvaraj et 

al., 2017), further studies are required. These could involve specifically blocking endothelial 

conditioning and examining whether protection against brain injury still occurs (e.g. using 

cell-specific knockouts) or examining whether a strategy to specifically induce a 

conditioning response in the cerebral endothelium (genetically or pharmacologically) is 

sufficient to protect against ischemic brain injury. In particular, blocking brain endothelial 

sensing of changes in blood flow or O2 could be very informative. A full elucidation of the 

signaling pathways involved in the brain endothelial conditioning response(s) would greatly 

assist in those goals.

One concern over the translation of any therapy from preclinical studies to patients is 

whether species differences might exist. Recently tremendous progress has been made in 

producing brain endothelial cells and other components of the NVU (e.g. astrocytes and 

pericytes) from human-induced pluripotent stem cells (iPSCs) (Lippmann et al., 2012; 

Lippmann et al., 2014). The iPSC-derived brain endothelial cells can be used in mono- or 

co-culture with astrocytes and/or pericytes and have permeability characteristics similar to 

those in vivo (Lippmann et al., 2012; Lippmann et al., 2014). These should provide an 

excellent resource for studying the effects of conditioning stimuli on the human brain 

endothelium and for examining the effects of such stimuli on signaling within the NVU.
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A major goal of conditioning research is the identification of biomarkers that might identify 

whether a particular stimulus has been effective in inducing a conditioning response. For 

remote ischemic preconditioning, clinical studies have examined potential endothelial 

markers including serum VEGF, von Willebrand factor, nitric oxide metabolites and the 

number of endothelial progenitor cells, as well as brachial artery vasomotor function as a 

physiological marker (reviewed in Koch et al., 2014). It should be noted that the serum 

markers are produced by systemic as well as brain endothelial cells. If cerebral endothelial 

conditioning is critical for protecting the brain, examining biomarkers that are 

predominantly produced by that endothelium could be a major advance. For example, it has 

recently been suggested that extracellular vesicles specifically produced by the cerebral 

endothelium might be a marker for BBB status (Ramirez et al., 2018).

Conclusions

In stroke, cerebral endothelial/BBB dysfunction has often been considered a consequence of 

parenchymal cell injury. However, recent evidence has shown that specifically targeting the 

brain endothelium in stroke can not only ameliorate the endothelial dysfunction but also 

reduce parenchymal injury (e.g. infarct size and behavioral deficits) (Shi et al., 2016; Shi et 

al., 2017). Similarly, in the field of conditioning, some evidence indicates that conditioning 

of the cerebral endothelium is a critical component for overall brain protection. Further 

exploration of such findings may help elucidate new ways of protecting the brain and of 

identifying biomarkers that indicate whether conditioning strategies are impacting a target 

tissue.
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Figure 1. 
Effects of cerebral ischemia on the cerebral endothelium and blood-brain barrier (BBB) are 

reduced by ischemic or hypoxic conditioning stimuli (pre-, per- and post-conditioning). TJ: 

tight junction.
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Figure 2. 
Schematic showing alternate roles of the cerebral endothelium in the brain response to 

ischemic/hypoxic conditioning stimuli. The scenarios are not mutually exclusive. Scenario 

A: (1) The ischemic/hypoxic conditioning stimulus is sensed by the endothelium. This may 

involve HIF-1α. However, it may also involve response to humoral factors (e.g. adenosine or 

bradykinin) in remote ischemic conditioning, or shear stress-regulated ion channels. (2) The 

conditioning stimulus induces endothelial mechanisms that protect both the cerebral 

endothelium (e.g. anti-apoptotic, metabolic) and the brain (e.g. BBB protection, inhibition of 

leukocyte infiltration, production of nitric oxide) during subsequent ischemia. There is some 

evidence that reducing endothelial damage is sufficient to reduce parenchymal damage after 

stroke (Shi et al., 2016; Shi et al., 2017). Scenario B: The ischemic/hypoxic conditioning 

stimulus (1) is sensed by the cerebral endothelium and (2) elicits protective responses in 

those cells. In addition, (3) the stimulus causes the endothelium to release signaling 

molecules that (4) activate protective pathways in neurons and glial cells that limit 

subsequent ischemic brain damage. Scenario C: (5) The ischemic/hypoxic conditioning 

stimulus may be “sensed” by parenchymal cells. This may involve HIF-1α although there is 

evidence that neuronal HIF-1α is not critical for hypoxic preconditioning (Baranova et al., 

2007; Zhu et al., 2013). Other non-neuronal cells might be involved, or a non-HIF-1α-

dependent pathway could be important. (4) The conditioning stimulus may directly induce 

protective pathways in neurons/glia. (6) In addition, neurons can secrete “help-me” signals 

(e.g. CX3CL1, interleukin-34, lipocalin-2 and fibroblast growth factor-2) to endothelial and 
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glial cells to elicit responses that will help protect the neurons (Xing & Lo, 2017). (7) Glial-

derived factors may be particularly important in protecting neurons (e.g. by growth factor 

secretion) and BBB integrity (Gesuete et al., 2011).
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Table 1.

Effects of hypoxia- or ischemia-related conditioning on BBB permeability and endothelial cell death after 

stroke in vivo or oxygen glucose deprivation in vitro.

Species Conditioning Stimulus Injury Effect Ref

In vivo

Rat IpreC pMCAO ↓ [3H]inulin
permeability

(Masada et al., 2001)

Rat IpreC pMCAO ↓EB
permeability

(Zhang et al., 2006)

Mouse IpreC pMCAO ↓EB
permeability

(Gesuete et al., 2011)

Rat IpostC tMCAO ↓EB
permeability

(Han et al., 2014)

Rat RIpreC (repet limb) BCCAO/MCAO ↓EB
permeability

(Wei et al., 2012)

Rat RIpostC (repet limb) tMCAO ↓EB
permeability

(Zhang et al., 2017)

Rat RIpostC (repet limb) ICH ↓EB
permeability

(Geng et al., 2012)

Mouse HpreC (repet) tMCAO ↓IgG
permeability

(Stowe et al., 2011)

Mouse HpreC (repet) tMCAO ↓IgG
permeability

(Wacker et al., 2012)

Rat HpreC (single) pMCAO ↑[14C]AIB
permeability

(Chi et al., 2017)

In vitro

Rat/mouse (endo monoculture) OGD OGD + reoxygenation ↓cell death (Andjelkovic et al., 2003)

Rat (endo monoculture) OGD OGD + reoxygenation ↓cell death
↓ionic

permeability

(An & Xue, 2009)

Mouse (endo monoculture) OGD OGD ↓cell death (Lee et al., 2009)

Mouse (endo monoculture) OGD OGD ↔ionic, SF and albumin
permeability

(Gesuete et al., 2011)

Mouse (endo + astro co-culture) OGD OGD ↓ionic, SF and albumin
permeability

(Gesuete et al., 2011)

Human (endo monoculture) Hypoxia (repet) OGD + reoxygenation ↓cell death (Zhang et al., 2007)

Key: ↓ decrease compared to no conditioning; ↑ increase compared to no conditioning; ↔ no change compared to no conditioning; AIB: alpha 
aminoisobutyric acid; astro: astrocyte; BCCAO: bilateral common carotid artery occlusion; endo: brain endothelial cells; EB: Evans blue; HpreC: 
hypoxic preconditioning; ICH: intracerebral hemorrhage; IpreC: ischemic preconditioning; IperC: ischemic perconditioning; IpostC: ischemic post-
conditioning; pMCAO: permanent middle cerebral artery occlusion; tMCAO: transient middle cerebral artery occlusion OGD: oxygen glucose 
deprivation; SF: sodium fluorescein; repet: repetitive; RIpreC: remote ischemic preconditioning.
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Table 2.

Effects of hypoxia- or ischemia-related preconditioning on cerebral blood flow.

Species Conditioning Stimulus Injury Effect on ischemic CBF Effect on reperfusion CBF Ref

Rat IpreC
4VO

tMCAO ↔ ↔ (Matsushima & Hakim, 1995)

Rat IpreC
MCAO

tMCAO ↔ (Chen et al., 1996)

Rat IpreC
MCAO

tMCAO ↔ ↔ (Alkayed et al., 2002)

Mouse IpreC
BCCAO

tMCAO ↔ ↔ (Cho et al., 2005)

Mouse IpreC
MCAO

tMCAO ↑ (Hoyte et al., 2006)

Mouse HpreC tMCAO ↔core
↑ penumbra

↔ (Fan et al., 2011)

Mouse HpreC tMCAO ↔ ↔
(early and late)

(Stowe et al., 2011)

Mouse HpreC tMCAO ↑ ↑ (Cui et al., 2013)

Mouse RIpreC tMCAO ↔ ↔ (Kitagawa et al., 2018)

Rat IpreC
MCAO

pMCAO ↔ (Barone et al., 1998)

Rat IpreC
MCAO/CCAO

pMCAO ↑ penumbra (Zhao & Nowak, 2006)

Key: ↑ increase compared to no conditioning; ↔ no change compared to no conditioning; 4VO: four-vessel occlusion; BCCAO: bilateral common 
carotid artery occlusion; CCAO: unilateral common carotid artery occlusion; HpreC: hypoxic preconditioning; IpreC: ischemic preconditioning; 
pMCAO: permanent middle cerebral artery occlusion; RIpreC: remote ischemic preconditioning; tMCAO: transient middle cerebral artery 
occlusion.
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Table 3.

Effects of hypoxia- or ischemia-related per- or post-conditioning on cerebral blood flow.

Species Injury Conditioning Stimulus Effect ischemic CBF Effect reperfusion CBF Ref

Rat pMCAO/tBCCAO IpostC
tBCCAO

↓hyperemia (Zhao et al., 2006)

Rat 4VO (pVAO/tBCCAO) IpostC
tBCCAO

↓hyperemia
↓hypoperfusion

(Wang et al., 2008)

Rat pMCAO/tBCCAO IpostC
tBCCAO

↓hyperemia
↓hypoperfusion

(Gao et al., 2008)

Rat Embolic + tPA IpostC
tBCCAO

↓hyperemia (Esmaeeli-Nadimi et 
al., 2015)

Rat tMCAO IpostC
tCCAO

↓hyperemia
↓hypoperfusion

(Wu et al., 2015)

Mouse Embolic +/− tPA RIperC ↑ ↑ (Hoda et al., 2012)

Mouse Embolic +/− tPA RIperC ↑ ↑ (Hoda et al., 2014)

Mouse tMCAO RIperC ↑ ↔ (Kitagawa et al., 2018)

Key: ↓ decrease compared to no conditioning; ↑ increase compared to no conditioning; ↔ no change compared to no conditioning; tBCCAO: 
bilateral common carotid artery occlusion; tCCAO: unilateral common carotid artery occlusion; IpostC: ischemic post-conditioning; pMCAO: 
permanent middle cerebral artery occlusion; pVAO: permanent vertebral artery occlusion; RIperC: remote ischemic perconditioning; tMCAO: 
transient middle cerebral artery occlusion; tPA: tissue plasminogen activator.
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