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Abstract

High throughput phenotyping technologies are lagging behind modern marker technology

impairing the use of secondary traits to increase genetic gains in plant breeding. We aimed

to assess whether the combined use of hyperspectral data with modern marker technology

could be used to improve across location pre-harvest yield predictions using different statis-

tical models. A maize bi-parental doubled haploid (DH) population derived from F1, which

consisted of 97 lines was evaluated in testcross combination under heat stress as well as

combined heat and drought stress during the 2014 and 2016 summer season in Ciudad

Obregon, Sonora, Mexico (27˚20” N, 109˚54” W, 38 m asl). Full hyperspectral data, indica-

tive of crop physiological processes at the canopy level, was repeatedly measured through-

out the grain filling period and related to grain yield. Partial least squares regression (PLSR),

random forest (RF), ridge regression (RR) and Bayesian ridge regression (BayesB) were

used to assess prediction accuracies on grain yield within (two-fold cross-validation) and

across environments (leave-one-environment-out-cross-validation) using molecular mark-

ers (M), hyperspectral data (H) and the combination of both (HM). Highest prediction accu-

racy for grain yield averaged across within and across location predictions (rGP) were

obtained for BayesB followed by RR, RF and PLSR. The combined use of hyperspectral

and molecular marker data as input factor on average had higher predictions for grain yield

than hyperspectral data or molecular marker data alone. The highest prediction accuracy for

grain yield across environments was measured for BayesB when molecular marker data

and hyperspectral data were used as input factors, while the highest within environment pre-

diction was obtained when BayesB was used in combination with hyperspectral data. It is

discussed how the combined use of hyperspectral data with molecular marker technology
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could be used to introduce physiological genomic estimated breeding values (PGEBV) as a

pre-harvest decision support tool to select genetically superior lines.

Introduction

To meet the future demand of food, feed, fiber, and fuel, crop production must double by 2050

[1]. Crop yields are limited inherently by biotic and abiotic stresses, whereas plant researchers

try to protect yield from plant stress losses by incorporating alleles that confer resistance to dis-

eases and improving resistance to abiotic stresses resulting from changes in climate [2].

It was shown [1, 3] that each accumulated degree-day above 30˚C reduced harvestable

grain yield by 1% under optimal rain-fed conditions. It is therefore crucial to develop germ-

plasm able to cope with anticipated climate change scenarios to provide sufficient food in the

future and to increase genetic gain towards that goal [1]. Modern breeding tools and methods

in genomics and genetics (e.g. next generation sequencing) have tremendously helped to

reduce experiment cost and make the genomic technologies available for routine use in most

corporate crop improvement programs. Modern plant breeding tools such as marker-assisted

selection (MAS) and genomic selection (GS) have been shown to improve genetic efficiency

for selection of both qualitative and quantitative traits as compared to phenotypic selection

alone [4, 5, 6]. By simultaneously estimating all marker effects as done with GS, variation can

be captured that may otherwise not be detectable using traditional statistical approaches [7].

With GS, a training set that has been phenotyped and genotyped, should be used to calibrate a

prediction model, which is then used to predict the genomic estimated breeding values

(GEBV) of a ‘test set’ of genotyped selection candidates [8]. To successfully make use of GS, it

is critical that the training populations be phenotyped with high accuracy to establish reliable

marker phenotype relationships in order to predict non-tested genotypes. Unfortunately, cur-

rent phenotyping technologies are still lagging behind and limiting the use of modern marker

technology.

In addition to grain yield secondary traits could be used to increase selection intensity.

Selection on secondary traits is beneficial when the secondary trait is highly heritable, highly

genetically correlated with the target trait, also if this secondary trait is cheaper or easier to

measure than the target trait [9]. Utility of secondary traits is typically environment dependent

[10], which makes indirect selection challenging. Multivariate models overcome this problem

because genetic covariances among traits are estimated using a model training set that is repre-

sentative of the selection candidates and evaluated in the target environment(s). Multivariate

models including secondary traits have been shown to increase prediction accuracy and reduce

bias as compared to univariate models, when secondary traits are measured in both the model

training and testing population [11,12]. Variation in foliar reflectance at different wavelengths

in the spectrum is specific to variation in different, chemical and structural components of

leaves (e.g. chlorophyll, anthocyanins and water content [13,14]). Therefore, analysis of foliar

reflectance spectra has the potential to rapidly assess multiple physiological and biochemical

traits from a single measurement [15]. Many of the physiological and agronomic traits of a

crop that influence grain yield also lead to differences in the reflectance of electromagnetic

radiation at different wavelengths (e.g. chlorophyll content, leaf greenness, canopy water mass

content [16, 17]). The evolution of remote sensing over the past two decades (1998–2018) has

allowed for the quantification of differences in leaf area (measured as NDVI) or leaf chloro-

phyll content (measured as GRE) among genotypes and different agronomic management
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(e.g. irrigation or nitrogen fertilization treatments) using spectral data, providing insights on

different aspects of crop physiology. Remote sensing (Aircraft, UAV or Satellite based systems)

has been used in plot management, while blimps [18], aircraft [19, 20] or UAV based multi-

spectral and hyperspectral cameras have been used to measure multiple crop indices at the plot

level in plant breeding (e.g. CWMI [17], NDVI [17, 18, 19, 20]; canopy temperature [18, 19]).

Basic agronomic traits such as stand counts and lodging are routinely measured in breeding/

testing programs using small UAVs provided by multiple commercial providers (e.g. Delair,

Labege, France, http://delair.aero, last visited January 2019; Precisionhawk, Raleigh, NC, USA,

http://www.precisionhawk.com; last visited January 2019). A promising technology to facili-

tate data-driven breeding by capturing relevant (physiological) crop information are UAV

mounted hyperspectral cameras. Full spectral information acquired with hyperspectral cam-

eras used in combination with Bayesian mathematics outperformed currently used composite

indices for grain yield prediction under abiotic stress [17]. It was furthermore shown [17], that

the closer the measurement was to harvest the higher the prediction accuracy was for grain

yield, reaching a maximum (~0.5) when data from five measurements taken after flowering

were combined. In computational biology, the analysis of data sets containing tens of thou-

sands of features (“large p”), but only a few hundred samples (“small n”), is nowadays routine,

and several regression and machine learning approaches such as partial least squares (PLSR),

random forest (RF), ridge-regression (RR) and Bayesian ridge regression (BayesB) are popular

choices in recent literature.

Partial least square regression is one of the least restrictive extensions of the multiple linear

regression model allowing it to be used in situations where the use of traditional multivariate

methods is severely limited, such as when there are fewer observations than predictor vari-

ables. Random Forest is a highly data adaptive supervised classification algorithm, that is able

to account for multicollinearity and interactions among features making random forest

appealing for high-dimensional (genomic) data analysis [21]. However, random forest(s) tend

to overfit models, they are computationally intensive, and are difficult to interpret since one

can neither see nor understand the relationship between the response and independent vari-

ables. Ridge regression regularizes coefficients allowing the use of complex models while

avoiding over-fitting. It accounts for multicollinearity among predictor variables by adding a

degree of bias to regression variables. It is one of the most popular algorithm used for genomic

selection in plant breeding literature [20, 22, 23]. Like ridge regression, Bayesian regression

techniques use regularization parameters in the estimation procedure. In contrast to ridge

regression, the regularization parameter is not set in a hard sense but adapted to the structure

of parameters and genotypic values. These priors induce a type of shrinkage of estimates that is

conditional on the effect size of a marker/input parameter [22]. Unlike ridge regression, Bayes-

ian methods can set markers with little/no effects to zero. Depending on marker type used and

architecture of the trait evaluated BayesB is expected to perform similarly to ridge regression

[23, 24]. However, it is typically more computationally intensive than ridge regression.

Depending on individual breeding programs, intrinsic cut off dates throughout the growing

season (or off season) may include the selection of parents for new population starts, prioriti-

zation of families to be sent for doubled-haploid induction or lines to be used for hybrid make

up without the availability of complete information on lines involved. Accurate pre-harvest

yield estimates would therefore be useful for breeders for various purposes when making criti-

cal decisions when only limited (yield) data is available. In the present study it is hypothesized

that combining high density marker information with reflectance data using machine learning

algorithms would further improve prediction accuracies and GEBVs of grain yield estimates

pre-harvest across environments.
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The main objectives of this study were to assess i) whether pre-harvest predictions of grain

yield could be improved across environments when molecular markers are combined with

hyperspectral data and ii) to identify the most suitable statistical method to maximize predic-

tion accuracy.

Materials and methods

All trials of this study were carried out in agreement with landowners (CIMMYT) owning the

land used for these trials. Crop management (agronomy) and phenotyping did not have any

adverse effects on the natural environment. Crop management treatment (well-watered vs

drought stressed) and phenotyping did not have any adverse effect on land outside the trial area.

Germplasm

A maize bi-parental DH population, consisting of 97 F1 derived lines, was evaluated under

heat stress as well as combined heat and drought stress. The maize DH population used, was

developed from the F1 of the cross between two yellow lines: CML451 and DTPYC9F46. The

parental inbred line DTPYC9F46 was specifically selected for tolerance to drought [25] and

has been used as source germplasm for drought and heat tolerance. Whereas the other parental

line CML451 was an elite inbred line selected for yield potential and disease tolerance. Dou-

bled haploid lines were further crossed to CL02450 to form testcross hybrids for evaluation in

this study.

Trial management

Trials were carried out under heat (maximum day temperatures > 35˚C around flowering and

during grain filling) and combined heat and drought stress at CIMMYT’s experiment station

in Ciudad Obregon, Sonora, Mexico (27˚20” N, 109˚54” W, 38 m asl), during the summer sea-

son in 2014 and 2016. Trials were planted on June 20 in 2014 and May 31 in 2016 and har-

vested October 7 2014 and September 29 2016, respectively. The experiments were planted in

single row plots 4.5 m long at a population density of 6.9 plants m-2, with 80 cm between rows.

Trials were laid out in an α-lattice incomplete block design replicated twice. All trials received

two fertilizations: 100 kg ha-1 of (NH4)H2PO4 and 500 kg ha-1 (NH4)2SO4 at sowing and 250

kg ha-1 of (NH4)2SO4 at V5 [25]. The treatment combining heat and drought stress was fully

irrigated up to ~750 GDD after planting (12–15 d before anticipated flowering). Thereafter,

irrigation was reduced to 50% of relative potential evapotranspiration. Irrigation was applied

twice weekly using drip irrigation at a rate of 5 mm h-1 for 6 to 14 h depending on potential

evapotranspiration. Irrigations were corrected when water was more readily available from

rainfall. Weeds, insects, and diseases were controlled as needed.

Acquisition and processing of hyperspectral images

Image data were collected using a hyperspectral camera (VNIR Headwall Photonics Micro-

Hyperspec ARS3, Headwall Photonics) mounted on a single-engine aircraft Piper PA-16 Clip-

per. Flights started 55 d after sowing (when most plots had 50% of plants flowering; R1 stage

[26]) and were repeated at 62, 69, 75, and 83 d after sowing (hereinafter labeled as F1, F2, . . .,

and F5, respectively). To achieve a resolution of 30 cm pixel-1, flights were performed at an alti-

tude of 300 m and a ground speed of ~34 m s-1. The hyperspectral camera had a radiometric

resolution of 10 bits. It acquired images from 392 to 850 nm, subdivided into 62 evenly spaced

bands at a spectral resolution of 1.9 nm, covering the visible spectrum and part of the near

infrared (NIR) spectrum. A filter was applied to the images to exclude pixels corresponding to
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a mixture of crop and soil, and to calibrate reflectance intensity. The atmospheric correction

was performed with the SMARTS simulation model developed by the National Renewable

Energy Laboratory of the USDOE [27]. This was done using aerosol optical depth measured at

550 nm with a Micro-Tops II sun photometer (Solar LIGHT Company). The hyperspectral

camera was radiometrically calibrated with a uniform light source system (integrating sphere,

CSTM-USS-2000C Uniform Source System, LabSphere) at four different levels of illumination

and six different integration times. Plot images were trimmed by excluding borders of two to

three pixels per plot. The plot coordinates were defined based on a grid of polygons represent-

ing the trial plots. This grid was adjusted on the map based on the actual location of certain

plots in the field, measured with a Trimble R4 GPS receiver. Each of the 62 reflectance bands

was measured using a mean value obtained from the central plot pixels.

In addition to spectral data, plant height, anthesis, silking and grain yield were measured.

During flowering, the number of days from the planting date by which 50% of plants within a

plot were shedding pollen and growing silks were recorded as anthesis (AD) and silking (SD)

dates, respectively. The anthesis silking interval (ASI) was calculated as the difference between

silking and anthesis. Plant height was measured two weeks before harvest as the distance from

ground level to the flag leaf. Plants were hand harvested when all plots had <15% grain mois-

ture. Ears harvested from each plot were shelled, weighed, and subsampled for measuring

grain moisture. The trait analyzed in this study was grain yield adjusted to 12.5% moisture and

converted to metric tons per hectare.

Linkage map

Genomic DNA was isolated from young leave tissue using a CTAB procedure (CIMMYT

Applied Molecular Genetics Laboratory 2003). DNA of all the samples was sent to Cornell Uni-

versity Biotechnology Resource Center (Ithaca, NY, USA). Genomic DNA from each sample

were digested with ApeKI enzyme (New England Bio-labs, Ipswich, MA), constructed 96-plex

GBS libraries and sequenced by Illumina HiSeq2000 (Illumina Inc., San Diego, CA, USA). TAS-

SEL GBS Pipeline was used for high-quality single nucleotide polymorphisms (SNPs) calling.

GBS 2.7 TOPM (tags on physical map) file was downloaded from Panzea (www.panzea.org),

and it was used to anchor reads to the reference genome Maize B73 RefGen_v2 [28]. Un-

imputed GBS dataset were used for further analyses in the bi-parental populations.

A bin map was constructed using high quality un-imputed SNPs with customized R scripts

[28]. In order to reduce genotyping error and eliminate the low quality SNPs from the bin

map, the following steps were performed: (1) un-imputed SNP datasets were filtered with the

parameters of minor allele frequency greater than 0.05 and missing rate less than 20%; (2) DH

lines with heterozygosity rate greater than 5% and/or missing rate greater than 20% were elim-

inated from the further analysis; (3) unlinked SNPs were removed from further analysis, where

the window size was 8, similarity rates of all the SNPs within each window were calculated to

remove the unlinked SNPs, threshold of similarity rate was 95%; (4) the consecutive SNPs with

high similarity rate, i.e., 95%, were merged into one bin; and (5) bins were treated as genetic

markers to construct a genetic map. 27818 SNPs were clustered into 494 bins and the genetic

map length was 1150.16 cM. Genetic map for each population was built with software QTL Ici-

Mapping Version 4.0 (www.isbreeding.net) as described earlier [29].

Phenotypic data analysis

Phenotypic data were analyzed using the following linear mixed model [30]:

Ymhlk ¼ uþ ah þ Eml þ ahEml þ rðEmlÞ þ rðEmlÞdk þ εmhlk ð1Þ
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where Ymhlk is the trait value of the hth genotype (h = 97) for the 1th environment (1 = 4),

defined as treatment-by-year combination and the mth replication (m = 2); u: the overall

mean, ah: the main effect of the genotype, Eml: the effect of the environment, ahEml: the geno-

type-by-environment interaction, r(Eml): the replication within environment effect; r(Eml)δk:
the effect of blocks within replicates within environments and εmhlk: the error term. All factors

were set as random factors for the estimation of variance components, while the factor geno-

type was set as fixed effect to estimate best linear unbiased estimators (BLUEs) within each

environment.

Best linear unbiased estimators (BLUEs) within environment and broad-sense heritability

were calculated using META-R Version 5.0 [30]. The repeatability (h2) was estimated with a

method described previously [31]. Variance components were estimated by restricted maxi-

mum likelihood (REML) and repeatability as the relationship between genetic and phenotypic

variance, per the formula:

h2 ¼
sG

2

sG
2 þ

sGxE
2

l

� �
þ e

r�lÞ
ð2Þ

where σG2 is the genotypic variance, σGxE2 the genotype-by-environment interaction variance,

l the number of environments and r the number. An environment was defined as unique sea-

son-by-irrigation treatment combination.

Inclusion of markers and hyperspectral values into the statistical model. Input para-

meters used were molecular markers, (hyperspectral) reflectance data from 62 bandwidths

measured at five points in time after flowering and the combination of both marker and

(hyperspectral) reflectance data. All models were fit in a two-step process: first calculating

BLUEs for each genotype and trait based on measured phenotypic data (as described above),

and second fitting the prediction model with the calculated BLUEs for individual bandwidths

and/or genomic markers as input variables and grain yield as target variable.

Different univariate models were used to predict grain yield. The models included the

BLUE for grain yield (GY) as target variable, the overall mean, effects for molecular markers

and/or individual bandwidths measured with the hyperspectral camera as input variables

used as random matrix and the random error term e. The matrix used, contained marker

information only (marker model), BLUEs for unique genotype-by-bandwidths-by-time point

combinations measured with the hyperspectral camera (Hyperspectral model only) or the

combination of both the marker and the hyperspectral information (H+M model).

Within and across environment predictions. In order to predict germplasm within envi-

ronment datasets were equally and randomly split in a training and a test set. The training set

was used to parametrize the statistical model, while the test set was predicted. Regressions coef-

ficients were estimated using either partial least square regression (PLSR), random forest (RF),

ridge regression (RR) or BayesB. A Bayesian shrinkage-variable selection procedure using a

prior with a point of mass at zero and a t-slab was used for BayesB. Due to differential compu-

tation time/requirement among statistical procedures 2-fold cross validation was performed

with a different number of replications: 1000 times for PLSR, 2000 times for RF, 3000 times for

RR and 1000 times for BayesB.

For across environment predictions all entries within three environments were used to pre-

dict entries in the fourth environment using a leave-one-environment-out cross-validation.

The standard errors of correlation estimates were estimated using a bootstrap procedure with

10,000 replicates. All within and across environment prediction for all leave-one-out-combina-

tions were used to get an average for the reported prediction accuracy. For cross-validation

Physiological GEBV: Combining hyperspectral and marker data to estimate grain yield
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schemes, the Pearson correlation between the predicted values of the model and the observed

BLUE value for GY were used as a measure of prediction accuracy (rGP).

Estimation methods and Software. All analyses were performed using R software (R ver-

sion 3.4.4; [32]). Partial least square regression, random forest, ridge regression and Bayesian

ridge regression were implemented using the pls [33], random forest [34], rrBLUP [35] and

BGLR [36] packages, respectively. The average value of the Pearson correlation coefficients

[32] between the phenotype and the predicted values was defined as prediction accuracy (rGP).

It was calculated using the cor.test function in R [32].

Results

Genetic map

The initial un-imputed GBS data included 955690 SNPs for all the DH lines; 955120 of them

were evenly distributed on chromosomes 1 to 10, and the number of SNPs on each chromo-

some ranged from 148752 on chromosome 1 to 67126 on chromosome 10. After filtering with

minor allele frequency (MAF) greater than 0.05 and missing rates less than 20%, the total num-

ber of SNPs decreased to 47203. After filtering, the missing rate decreased from 42.32% to

7.90% while the heterozygosity rate increased from 0.47% to 2.55%. After filtering, the average

MAF was 0.42 and 79.74% of the SNPs concentrated to the MAF ranging from 0.40 to 0.50.

Environmental variables

Temperatures were comparable across cropping season in both years reaching an average of

29.1˚C in 2014 and 28.9˚C in 2016 (Fig 1). Average temperatures during emergence/pre-flow-

ering were 1.6˚C higher in 2014 (32.0˚C) relative to 2016 (30.4˚C), while daily mean

Fig 1. Average daily distribution of temperature and precipitation for trials carried out in the summer of 2014

(temperature: solid red line; precipitation: black bars) and 2016 (temperature: dashed blue line; precipitation:

green bars) under well-watered and drought stressed conditions in Ciudad Obregon (Sonora, Mexico) relative to

the planting date. Arrows indicate date of five flights starting at flowering (F1 to F5). Flights took place 55 (F1), 62

(F2), 69 (F3), 75 (F4) and 83 (F5) days after planting.

https://doi.org/10.1371/journal.pone.0212200.g001
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temperatures around flowering were similar in 2014 (31.4˚C) and 2016 (31.5˚C), respectively.

Multiple strong rains around flowering in 2014 (80 mm relative to 28 mm in 2016) resulted in

lower stress levels around flowering and slower dry down.

Phenotyping of yield and agronomic traits

The analysis of variance showed that genotype, environment, and genotype-by-environment

interaction were highly significant (P<0.01) for grain yield, the anthesis silking interval, plant

height, and AD. Most spectral bandwidths were equally affected by factors genotype, environ-

ment and the interaction between both (P< 0.05; Fig 2). Grain yield under well-watered con-

ditions was comparable in 2014 (WW: 5.7 Mg ha-1; DS: 3.6 Mg ha-1) and 2016 (WW: 5.9 Mg

ha-1; DS: 1.9 Mg ha-1). The fact that reductions under drought stress relative to the well-

Fig 2. Distribution of trait values and repeatability for trials carried out under well-watered (blue boxplots) and

drought stressed (red boxplots) conditions for trials carried out in 2014 and 2016. Phenotypic traits shown are

grain yield (A), days to anthesis (B), plant height (C) and the anthesis silking interval (ASI; D).

https://doi.org/10.1371/journal.pone.0212200.g002
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watered treatment were less accentuated in 2014 (-2.1 Mg ha-1 in 2014 vs -4 Mg ha-1 in 2016)

can potentially be attributed to differences in precipitation in the 10 day (+-5 days) period

bracketing flowering (80 mm in 2014 relative to 28 mm in 2016). This difference in precipita-

tion might also explain the larger anthesis silking interval under drought stress in 2016 (3.1 d)

relative to 2014 (1.6 d) indicative of greater stress levels around flowering in 2016. Higher tem-

peratures pre-flowering could potentially explain why plants flowered earlier in 2014 (55 d)

relative to 2016 (58 d). Trait repeatability ranged from 0.06 (anthesis silking interval in

14WW) to 0.92 (plant height in 14DS), indicative of high data quality for the trials.

Hyperspectral data

Very little differentiation among genotypes or treatments was observed in the range of visible

light between 400 and 700 nm. Above 700 nm (in the red and infrared range) clear differences

among treatments and genotypes could be ascertained (Fig 3).

Repeatability for individual wavelengths measured with the hyperspectral camera varied

across environments (14WW, 16WW, 14DS, 16DS) and spectral range (392–850 nm). Aver-

aged across treatments repeatability was moderately higher for 2014 trials (h2 = 0.45) relative

to trials carried out in 2016 (h2 = 0.41). Averaged across years the WW treatment (h2 = 0.52)

had a higher repeatability relative to the drought stressed treatment (h2 = 0.34). Interestingly

Fig 3. Reflectance (left column) and repeatability for individual bandwidths (right column) across the spectral range

from 392 nm to 850 nm for individual flights in the well-watered (blue line) and drought stressed (red line) treatment

in 2014 (solid line) and 2016 (dotted line).

https://doi.org/10.1371/journal.pone.0212200.g003
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repeatability was higher in the bandwidths in the visual range in 2014 (h2 = 0.45) relative to

2016 (h2 = 0.36), while repeatability for bandwidths in the red/ infrared (IR) range was higher

in 2016 (h2 = 0.48) relative to 2014 (h2 = 0.36) indicative of greater stress levels in 2016 which

allowed for better differentiation among treatments and genotypes in the red/IR range (Fig 3).

Prediction accuracy

The current manuscript evaluated the effects of different statistical models (PLSR, RF, RR and

BayesB) and input factors (molecular markers, hyperspectral data, combination of molecular

markers and hyperspectral data) on prediction accuracies within and across environments for

grain yield. Overall, rGP ranged from 0.14 (across environments using random forest; Fig 4) to

0.49 (within environments using BayesB). The highest prediction accuracy across environ-

ments (rGP = 0.47) was measured for BayesB when molecular marker data and hyperspectral

data were used as input factor, while the highest within environment prediction (rGP = 0.49)

was obtained when BayesB was used in combination with hyperspectral data. In agreement

with lower within environment variance, the rGP was generally higher within (rGP = 0.36) than

across environments (rGP = 0.31).

Among the statistical models used BayesB (rGP = 0.39), averaged across within and across

location predictions, had highest rGP followed by ridge regression (rGP = 0.35), random forest

(rGP = 0.34) and partial least square regression (rGP = 0.27), confirming the utility of general

parameter shrinkage (as used in ridge regression) or Gaussian parameter shrinkage (as used in

BayesB) for model calibration and prediction. Using the combination of hyperspectral and

marker data (rGP = 0.39) as input factor on average yielded better predictions than using

Fig 4. Prediction accuracy for within and across environment predictions using different statistical methods and input

parameters. Statistical methods used were partial least square regression (PLSR), random forest (RF), ridge regression (RR) and

Bayesian ridge regression (BayesB). Input factors used for model parametrization were molecular markers (M), hyperspectral

reflectance data (H) and the combination of both (HM).

https://doi.org/10.1371/journal.pone.0212200.g004

Physiological GEBV: Combining hyperspectral and marker data to estimate grain yield

PLOS ONE | https://doi.org/10.1371/journal.pone.0212200 March 20, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0212200.g004
https://doi.org/10.1371/journal.pone.0212200


marker data (rGP = 0.28) or hyperspectral data (rGP = 0.34) only. Depending on input factors

and model combinations deviations from this general pattern were observed.

For within location predictions, combining marker and hyperspectral data did not yield

higher rGP when using partial least square regression (rGP = 0.37) and ridge regression (rGP =

0.43) and even resulted in lower prediction accuracy relative to using hyperspectral data only

with BayesB (H: rGP = 0.49 vs HM: rGP = 0.47), It did neither add any benefit for across envi-

ronment predictions (H: rGP = 0.35, HM: rGP = 0.35) when ridge regression was used. Low rGP

across environments using random forest for hyperspectral data or the combination of mark-

ers and hyperspectral data is related to low rGP for random forest when predicting the 2014

environments.

Discussion

High quality trials with reasonable heat and drought stress across years and irrigations treat-

ments as indicated by yield reductions relative to non-stressed trials, average daily tempera-

tures above 32º C and high data repeatability, were established. Reductions in grain yield in

response to drought stress, were in the range of what is typically measured in such trials [19,

37]. Unexpected rains (80 mm in 2014 relative to 28 mm in 2016) around flowering resulted in

lower stress levels in 2014 drought trials and a significant genotype-by-environment

interaction.

Wavelengths of 400 nm to 700 nm allowed little genotypic differentiation among treat-

ments and years as reported previously for similar studies [20, 38]. Wavelengths in the red/IR

range clearly differentiated among genotypes and induced environmental conditions re-

emphasizing the importance of this range for stress detection as suggested previously [38, 39].

In addition to data (partially) presented earlier [17], molecular marker data and an additional

season of data was added to the analysis in this study. Since it was shown [17] that prediction

accuracy for grain yield was highest when data from multiple timepoints was used, the current

study does not focus on data from individual measurements for grain yield predictions. The

combined use of marker and hyperspectral information (rGP = 0.39 averaged for across and

within environments) predicted better than markers (rGP = 0.28) or hyperspectral (rGP = 0.34)

data alone for within and across environments averaged across statistical methods. The differ-

ence was most accentuated for ridge regression (M: rGP = 0.3 vs HM: rGP = 0.35) and BayesB

(M: rGP = 0.33 vs HM: rGP = 0.46). Both ridge regression and BayesB allow to regularize (esti-

mate) coefficients for robust (complex) models. While ridge regression sets the regularization

parameter in a hard sense, BayesB adapts the regularization parameter to the data at hand

using a priori assumptions conditional on the marker-by-phenotype relationship resulting in a

shrinkage of estimates [23]. Adaptive to data, while not overfitting makes them superior to

random forest and partial least square regression. As a result of their robustness and versatility

they were successfully used for predictions using genomic [6] or spectral information (BayesB

[18]) or the combination of both [40, 41, 42] in the past. Simulation studies [43] furthermore

confirmed that BayesB outperformed ridge regression if there are only few QTL, as was indeed

the case here (unpublished data) as expected for a highly quantitative trait like grain yield

under abiotic stress.

Prediction accuracy (rGP) for the combination of marker and hyperspectral data as well as

for hyperspectral data alone dropped when using partial least squares and for hyperspectral

data when using random forest for across environment predictions. The 2014 environments

predicted poorly (rGP: -0.1 to 0.1,) because of the observed genotype-by-environment interac-

tion, the intrinsic characteristic of overfitting of random forest models and to some extent for

partial least square regression as observed previously [33, 44]. Although irrigation treatments
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applied (well-watered or drought stressed) were similar across years, resulting environmental

conditions were completely different, i.e. none of the environments included for model train-

ing resembled the environmental conditions encountered in 2014 under combined heat and

drought stress. Potentially overfitted random forest or partial least square models did therefore

not have any factual foundation to predict these completely different data, as observed in ear-

lier studies [33, 34, 43, 45]. At the same time using markers or markers in combination with

hyperspectral data allowed random forest to establish sufficient “genetic common ground”

across environments to be able to provide decent prediction accuracy (M: rGP = 0.36; HM: rGP

= 0.38). Evaluation of additional populations of different structure will be needed to determine

how the small number of lines and the genetic structure of the evaluated double haploid popu-

lation affected prediction accuracy.

Genomic estimated breeding values typically include information of multiple environments

(years, locations, treatments) and multiple generations of trait values for specific genotypes.

Hyperspectral information presented here could be used to improve the quality and accuracy

of GEBVs by adding an additional layer of information on crop physiology.

While subjective information approximating physiological process have been used in the

past (e.g. visual senescence scores [10]) the use of hyperspectral cameras in combination with

an UAV would tremendously increase the throughput and increase objectivity of measure-

ment. Wavelengths measured with a hyperspectral camera provide information on different

physiological and biochemical processes [46] such as canopy water content, photosynthetic

activity, leaf greenness, soil cover, leaf area index, canopy architecture and general plant status

[20, 39]. Wavelengths measured with the hyperspectral camera therefore provide direct infor-

mation on the biochemical and physiological status with direct effects on harvestable grain

yield. Combining marker information with spectral data should therefore give a more accurate

physiological GEBV (PGEBV) containing additional information determining yield formation

before harvest.

Full genotypic information on germplasm in a breeding program is often only available for

line and hybrid advancements after harvest. However, breeders need to make well founded

(data based) decisions for various purposes throughout the year when only limited data is

available. Depending on individual breeding programs, intrinsic cut off dates throughout the

growing season (or off season) may include the selection of parents for new population starts,

prioritization of families to be sent for doubled-haploid induction or lines to be used for

hybrid make up without the availability of complete information on lines involved. Upon vali-

dation of this concept combining hyperspectral information with molecular information in a

broader set of germplasm it will facilitate the breeding workflow as a pre-harvest decision sup-

port tool to select genetically superior lines.
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