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Abstract

Infant birth weight and gestational age are two important variables in obstetric research. The 

primary measure of gestational age used in US birth data is based on a mother’s recall of her last 

menstrual period, which has been shown to introduce random or systematic errors. To mitigate 

some of those errors, Oja et al., Platt et al., and Tentoni et al. estimated the probabilities of 

gestational ages being misreported under the assumption that the distribution of infant birth 

weights for a true gestational age is approximately Gaussian. From this assumption, Oja et al. 
fitted a three-component mixture model, and Tentoni et al. and Platt et al. fitted two-component 

mixture models. We build on their methods and develop a Bayesian mixture model. We then 

extend our methods using reversible jump Markov chain Monte Carlo to incorporate the 

uncertainty in the number of components in the model. We conduct simulation studies and apply 

our methods to singleton births with reported gestational ages of 23–32 weeks using 2001–2008 

US birth data. Results show that a three-component mixture model fits the birth data better for 

gestational ages reported as 25 weeks or less; and a two-component mixture model fits better for 

the higher gestational ages. Under the assumption that our Bayesian mixture models are 

appropriate for US birth data, our research provides useful statistical tools to identify records with 

implausible gestational ages, and the techniques can be used in part of a multiple-imputation 

procedure for missing and implausible gestational ages.
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1. Introduction

Gestational age and infant birth weight are two important variables in obstetric and perinatal 

research and clinical practice [1–6]; consequently, this information is routinely collected and 

reported for births in the USA [7, 8]. Infant birth weight can be measured accurately; 

however, the accuracy of reported gestational ages has been questioned. In national reports 

and research using US birth certificate data, gestational ages are primarily calculated on the 
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basis of a mother’s recall of her last menstrual period (LMP) [9]. The use of LMP can 

introduce random or systematic errors because of, for example, early or delayed ovulation, 

bleeding in early pregnancy, and inaccurate recall of the first day of the LMP [10–14]. 

Although obstetric (year 2003 and onward) or clinical estimates (year 1989 to year 2002) are 

provided for most births, the sources of these estimates are not consistent [15, 16].

Inaccurate reported gestational ages can have serious impacts on obstetric and perinatal 

research, especially for the very early preterm deliveries (infants delivered at less than 28 

weeks of gestation). Preterm delivery rates can be overestimated and preterm infant 

mortality rates underestimated when inaccurate gestational ages exist [17]. Many researchers 

have attempted to address the problem of incorrect gestational ages [18–27]. Combined 

information on gestational age and birth weight can be used to identify birth records with 

implausible gestational age values. Under the assumption that infant birth weights are 

normally distributed, conditional on their true gestational ages, records for infants with birth 

weights inconsistent with the primary gestation-specific birth weight distribution can be 

identified as having implausible gestational ages.

A simple method to deal with implausible gestational ages is based on cut-off values [10, 

22]. All birth records with birth weights beyond the cut-off values, that is, birth weights too 

big or too small for a reported gestational age, would be considered as having misreported 

gestational ages. Using cut-points is simple to implement and explain to data users and 

clinicians. However, deleting birth records with birth weights beyond the reported 

gestational age-specific cut-off values leads to truncated birth weight distributions, and 

information beyond the cut-off values is lost.

Mixture models are an alternative approach to address issues of inaccurate reported 

gestational ages [20, 24–26]. Under the assumption of normality, one indication that a 

mixture model may be appropriate is that at early reported gestational ages, instead of a 

symmetric, bell-shaped curve, the birth weight distribution is often skewed to the right 

(unimodal, with a long tail) or even bimodal, appearing as a combination of two normal 

curves. Oja et al. [20] used a three-component mixture model to model the distribution of 

infant birth weight within each observed gestational age category. They assumed all the 

errors are one menstrual cycle, that is, the only possible errors are −4 weeks 

(underestimation) or +4 weeks (overestimation). Platt et al. [24] also used a mixture model 

to study the birth records with misreported gestational ages. They assumed that the records 

with accurate gestational ages could be separated from those with inaccurate gestational 

ages by fitting a mixture of two normal distributions, and the true gestational age for all 

births with misreported gestational ages was 40 weeks, or full term. Consequently, Platt et 
al. assumed that only true full term births were wrongly specified as preterm births. Tentoni 

et al. [25] proposed to use a mixture model to identify two groups, with one group 

containing records with birth weights for the correctly reported gestational ages and the 

other group containing records with birth weights corresponding to the misreported 

gestational ages. In the work by Tentoni et al., no assumptions were made about the true 

gestational age(s) to which the second group belonged. Parker et al. [28] further extended 

the method of Tentoni et al. by including covariates in the mean function of each mixture 

component. All of the methods just described based on mixture models used the 
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expectation–maximization (EM) algorithm to fit the models via maximum likelihood 

estimation.

We extend the mixture model approach using Bayesian methods. Similar to Tentoni et al. 
[25], we do not specify the true gestational ages to which the misreported records belong. In 

addition, we develop both two-component and three-component mixture models as well as 

mixture models with varying dimensions. Bayesian mixture models can be used to estimate 

probabilities of misreporting gestational ages. They can also be used to create posterior 

predictive draws of the status—correct or incorrect—for each reported gestational age in a 

data set. The latter use can serve as part of a multiple-imputation approach to dealing with 

misreporting of gestational ages, as we now describe briefly.

Multiple imputation is a technique that fills in the missing values with multiple reasonable 

replacements based on statistical methods. Parker and Schenker [26] discussed the 

application of multiple imputation for missing or implausible gestational ages in US birth 

data using basically a two-step process. The first step would be to use a Bayesian mixture 

model to impute a status of correct or incorrect for each reported gestational age. The second 

step would be to impute gestational ages, using a prediction model, for the cases that were 

imputed as incorrect in the first step as well as cases with no reported gestational ages. 

Multiple imputation would be created by independently repeating the two steps. Different 

analysts can use the resulting imputed data sets for different research purposes, without 

dealing with the issues of missing and misreported gestational ages. The use of the two-step 

multiple-imputation procedure of Parker and Schenker would reflect both the uncertainty 

about whether each reported gestational age is correct (first step) as well as the uncertainty 

in predicting gestational ages for cases with misreported or missing gestational ages (second 

step). The work in this paper applies to the first step, whereas future research will develop 

prediction models for gestational age to be used in the second step.

We organize the paper as follows. We describe the methods of Oja et al. [20], Platt et al. 
[24], and Tentoni et al. [25] in detail in Section 2. In Section 3, we develop both two-

component and three-component Bayesian mixture models; then we relax the model 

assumptions by including the uncertainty in the number of components in the model using 

reversible jump Markov chain Monte Carlo method (RJMCMC) [29–31]. We conduct 

simulations in Section 4 and apply our methods to US birth data from the years 2001 to 2008 

in Section 5. Section 6 contains concluding remarks.

2. Mixture models proposed by Oja et al., Platt et al., and Tentoni et al.

2.1. The method of Oja et al.

Oja et al. [20] assumed two types of errors for the misreported gestational ages, 

corresponding to a menstrual cycle: −4 weeks or +4 weeks. Let X be the reported gestational 

age, Y be the birth weight, and X * be the true gestational age (an unobserved, latent 

variable). At X = x, where x is a specific gestational age (e.g., 25 weeks), let Z1 be an 

indicator variable such that Z1 = 1 if X * = x+4 (the true gestational age is 4 weeks greater 

than the reported gestational age) and Z1 = 0 otherwise. Similarly, let Z2 be an indicator 

variable such that Z2 = 1 if X * = x − 4 (the true gestational age is 4 weeks less than the 
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reported gestational age) and Z2 = 0 otherwise. The true gestational age is equal to the 

reported gestational age when both Z1 and Z2 are equal to 0. Let p1 and p2 be the 

probabilities of making errors of −4 weeks and +4 weeks at observed gestational age X = x; 

p1 and p2 are assumed to be independent of birth weight and the true gestational age X *. 

Let qx* = Prob X* = x  be the unknown proportion at a true gestational age. Then the joint 

density function of X and Y is given by the following:

f (x, y) = p1qx + 4* f (y | X* = x + 4; μx + 4, σx + 4
2 ) + p2qx − 4* f (y | X* = x − 4; μx − 4, σx − 4

2 )

+ 1 − p1 − p2 qx* f (y | X* = x; μx, σx
2),

where f (y | X* = x; μx, σx
2) is the pdf of birth weight Y at the true gestational age X * = x with 

mean μx and variance σx
2. The posterior probabilities of error variables Z1 and Z2 are 

P Z1 =1| X = x, Y = y = p1qx + 4* f (y | X* = x + 4)/ f (x, y) and 

P Z2 = 1| X = x, Y = y = p2qx − 4* f (y | X* = x − 4)/ f (x, y). The maximum likelihood estimates 

of the parameters were derived using the EM algorithm.

2.2. The method of Platt et al.

Platt et al. [24] considered one type of misreporting: the true gestational age is either the 

observed gestational age or is 40 weeks. Let X, Y, X *, and qx* have the same definitions as 

in Section 2.1, and let Z be an indicator variable such that Z = 1 if X * = 40 and Z = 0 

otherwise. Let p be the probability that a term birth is misclassified as a specific observed 

gestational age x (p = Prob (X = x|X * = 40)). Platt et al. assumed that p is the same for all 

the observed gestational ages. On the basis of the assumptions that only term births are 

misspecified as preterm births, the joint density function of X and Y is given by

f (x, y) = pq40* f (y | X* = 40; μ40, σ40
2 ) + qx* f (y | X* = x; μx, σx

2) .

The first term corresponds to misreported records and the second term to correctly reported 

records. The proportion of misreported records within the observed gestational age. x is 

pq40* / pq40* + qx* , and the proportion of correctly reported records is qx*/ pq40* + qx* . The 

posterior probability of error is P(Z = 1| X = x, Y = y) = pq40* f (y | X* = 40; μ40, σ40
2 )/ f (x, y). 

Platt et al.combined data from different observed gestational ages to have a better estimate 

of p. The maximum likelihood estimates of the parameters were derived using the EM 

algorithm.

2.3. The method of Tentoni et al.

Tentoni et al. [25] assumed that within each reported gestational age stratum, the observed 

birth weights arise from a mixture of two normal distributions. Continuing with the notation 

of Sections 2.1 and 2.2, let f 1 = f (y | X* = x; μx, σx
2) be the density of the primary distribution 

of birth weights, where the true gestational age is equal to the observed gestational age, with 
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mean birth weight of μx and variance of σx
2; and let f 0 = f (y | X* ≠ x; μx0, σx0

2 ) be the density 

of the secondary distribution consisting of births with birth weights corresponding to 

misreported gestational ages, with mean birth weight of μx0 and variance of σx0
2 . Let θx (0< 

θx <1) be the stochastic weight or the proportion of births in the primary distribution and 1 – 

θx be the stochastic weight for the secondary distribution. Then the mixture model is defined 

as

f (y | X = x) = θx f 1 + 1 − θx f 0 .

The model was applied to each observed gestational age, and the maximum likelihood 

estimates of the parameters θx, μx, σx
2, μx0, and σx0

2  were derived using the EM algorithm.

2.4. Comparison of the aforementioned three methods and their relation with our 
methods

All three methods described previously assumed that within each observed gestational age, 

birth weight follows a mixture of normal distributions. Oja et al. assumed all the errors are a 

menstrual cycle and ignored other types of errors. The method of Tentoni et al. does not 

specify to which gestational ages the second group belongs; thus, the second group could 

consist of records from multiple gestational ages (although the assumption of normality 

would then be questionable). The work of Platt et al. assumed that all the misreported cases 

are from term births.

The assumptions underlying these three approaches may raise some questions. For example, 

for the 2008 US birth data, at reported gestational age of 26 weeks, the largest birth weight 

is 2999 g, which is much lower than the mean birth weight of the term births (around 3400 g 

at 39 weeks and around 3500 g at 40 weeks). Thus, it is not realistic to assume that all the 

misreported records correspond to term births. On the other hand, putting all the misreported 

cases from a wide range of gestational ages into one group, as in the work of Tentoni et al., 
may oversimplify the problem. Although Oja et al. specified a mixture of three components, 

they restricted one group to be 4 weeks lower and the other group to be 4 weeks higher than 

the observed gestational age. This limits flexibility for other types of errors.

In our Bayesian approach, we do not specify the gestational ages to which the misreported 

records belong. Furthermore, we test whether a three-component mixture model can yield a 

better fit than a two-component model, without any restrictions on the different groups of the 

three-component model. We use the Bayesian information criterion (BIC) [32] to select the 

better fitting model. As an additional generalization, to incorporate the uncertainty in the 

number of components in the mixture model, we include that number as an unknown 

parameter and let it vary by using RJMCMC [29–31]. Results of RJMCMC can be directly 

incorporated into our future research project on multiple imputation of misreported 

gestational ages, thus allowing the multiple imputations to reflect uncertainty in the number 

of components in the mixture model.
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3. Bayesian mixture model and reversible jump Markov chain Monte Carlo

We fit both two-component and three-component mixture models in this paper. For the lower 

reported gestational ages (e.g., 25 weeks or less), the implausible gestational ages could 

arise from a wide range of true gestational ages. The two-component model groups all the 

implausible gestational ages in one component, and the normality assumption for this 

component may be questionable. The three-component model, on the other hand, groups the 

implausible gestational ages in different components, which could yield a better fit than the 

two-component mixture model. In Section 3.1, we discuss the Bayesian mixture model with 

three components. The treatments for two components or more than three components are 

straightforward analogs and are not discussed here. In Section 3.2, we discuss the use of 

RJMCMC to allow the number of components to vary within the model.

3.1. Bayesian mixture model with three components

Let X be the observed gestational age and Y be the birth weight. Let Z, Z = 1, …, 3, be an 

unobserved indicator variable for group membership and θ = (θ1, θ2, θ3), with θ1 + θ2 + θ3 

= 1, be the stochastic weight for each group. Within each value x of the observed gestational 

age, the probability density function of a mixture model with three components is written as

f (y) = ∑ j = 1
3 θ j f (y | μ j, σ j

2),

where f (y|μ, σ2) denotes the normal density function of Y with mean μ and variance σ2. We 

can rewrite the mixture model by including the latent variable Z as follows:

f (y, z) = f (z) f (y | z) = ∏ j = 1
3 θ j f (y | μ j, σ j

2) I(z = j),

where I(Z = j) is an indicator function such that I(Z = j) = 1 if Z = j and I(Z = j) = 0 

otherwise. Z follows a multinomial distribution with P(Z = j) = θj. Let f(θ) and f(η) be the 

prior densities specified for θ and η, respectively, where η = μ1, σ1
2, μ2, σ2

2, μ3, σ3
2 . For a 

sample of size n, with i = 1, …, n indexing the sample units, the full conditional distributions 

of η, θ, and Z for MCMC sampling are as follows:

1.
f (θ |η, yi, zi: i = 1, …, n) ∝ f (θ)∏i = 1

n θ1
I zi = 1

θ2
I zi = 2

1 − θ1 − θ2
I zi = 3

;

2.
f (η |θ, yi, zi: i = 1, …, n) ∝ f (η)∏i = 1

n ∏ j = 1
3 f yi | μ j, σ j

2 I zi = j
;

3. Pr Zi = j |θ, η, yi: i = 1, …, n ∝ θ j f yi | μj, σ j
2 , i = 1, …, n .

Fitting of Bayesian mixture models can be implemented using the Gibbs sampler. With 

conjugate priors
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σ j
2 inverse gamma IG α j, β j ,

μ j|σ j
2 N λ j, σ j

2/τ j ,

f (θ) Dirichlet γ1, γ2, γ3 ,

and initial values θ0 and μ j
0, (σ j

2)0, the Gibbs sampling is as follows

•
Generate Zi with P Zi = j ∝ θ jexp −

yi − μ j
2

2σ j
2 /σ j

• Generate θ from Dirichlet (γ1 + n1, γ2 + n2, γ3 + n3), where n j = ∑i = 1
n I Zi = j

• Generate μj from N( λ jτ j + ysum, j / τ j + n j , σ j
2/ τ j + n j ), where 

ysum, j = ∑i = 1
n I Zi = j yi

• Generate σ j
2 from 

IG α j + n j + 1 /2, β j + 0.5τ j μ j − λj
2 + 0.5∑i = 1

n I Zi = j yi − μ j
2

To let the data dominate the posterior estimates, we can use non-informative priors for μj and 

σ j
2, f (μ j, σ j

2) ∝ 1/σ j
2, which is the equivalent to using the conjugate priors with αj, βj, λj, and 

τj all set to 0; we can use a Dirichlet(1;1;1) prior for θ. Then, the Gibbs sampling steps for μj 

and σ j
2 are simplified as follows:

• Generate μj from N ysum, j/n j, σ j
2/n j ,

• Generate σ j
2 from IG n j/2, ∑i = 1

n I Zi = j yi − μ j
2/2

To select the number of components for a Bayesian mixture model, we can calculate 

Akaike’s information criterion (AIC) [33] and BIC [32]. Both criteria are based on 

information theory, with penalty terms to discourage overfitting. Mixture models with 

different numbers of components can be fitted, and the model with the smallest AIC or BIC 

suggests the best fit to the data. Compared with AIC, BIC has a larger penalty term for a 

more complicated model. In this paper, we calculate BIC to compare Bayesian mixture 

models with two components to those with three components.

In the approach to develop a Bayesian mixture model described previously, the number of 

components in the model is assumed to be fixed, and statistical criteria are used to select the 

number most parsimonious with the data. To accommodate the uncertainty in the model 

structure and to avoid the uncertainty of statistical testing in model selection, we can include 

the number of components as an extra, unknown parameter using RJMCMC [29–31]. The 

RJMCMC method allows simulation of the posterior distribution on varying dimensions. As 

mentioned earlier, results of RJMCMC can be incorporated into the multiple-imputation 

procedure for missing and misreported gestational ages directly.
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3.2. Reversible jump Markov chain Monte Carlo

RJMCMC [29–31] is a method for ‘trans-dimensional’ problems, where the dimension of 

the model is not fixed and is treated as an unknown parameter. It is an extension to standard 

MCMC methodology. The posterior distribution of the unknown dimension is generated 

from a Markov chain, which allows the dimension to change from one step to the next, and 

the probability of each dimension can be estimated on the basis of the posterior draws.

Let K be the dimension parameter, the number of unknown components of a mixture model. 

Let Z be a categorical variable indicating to which group the observation belongs under K 
and assume Z follows a multinomial distribution with P(Z = j) = θj, j = 1;2, …,K. Let η and 

θ be the vector of unknown parameters under K, with η = μ1, σ1
2, …, μK, σK

2  and θ = {θ1, 

…, θK}. For different values of K, η and θ have different dimensions and different 

component values. Let X be the observed gestational age and Y be the birth weight; then, the 

joint probability density function of K, Z, and Y within each value x of the observed 

gestational age is

f k, z, y = f k f z |k f y | z, k ,

where f(k) is the density function of the number of unknown components and follows a 

multinomial distribution; the latter two components are the same as the mixture model in 

Section 3.1 under a fixed value for K. We used initial values k0;θ0, and η0 and a uniform 

prior for K, a Dirichlet.(1, …, 1) prior for θ, and non-informative priors for μj and σ j
2, j = 1, 

…, K, with the latter two priors being analogous to those used in our mixture model with a 

fixed number of components (Section 3.1). These priors will allow the data to dominate the 

parameter estimates.

The basic procedure for RJMCMC is as follows:

1. Update the variable Z with P Zi = j |k, y, η, θ ∝ θ j f yi | μ j, σ j
2 .

2. Update θ from the posterior distribution Dirichlet (1 + n1, …, 1 + nK), where 

n j = ∑i = 1
n I Zi = j , j = 1, …, K.

3. Update μj from N ysum, j/n j, σ j
2/n j  and σ j

2 from 

IG n j/2, ∑i = 1
n I Zi = j yi − μ j

2/2 , j = 1, …, K. Steps 1–3 are analogous to those 

carried out for a model with a fixed number of components, as described in 

Section 3.1. The next step contains the reversible jump procedure.

4. Split one mixture component into two or combine two components into one. We 

describe the splitting move in detail; the combining move is a reverse process of 

the splitting move. Let ω = (k, η, θ, z) denote a generic symbol that represents 

the values of all unknown parameters at state ω, and let ωˊ = (kˊ, ηˊ, θˊ, zˊ) 
represent the values of all unknown parameters at a higher state ωˊ. To move 

from state ω to state ωˊ, draw a vector a of continuous random variables and set 

ωˊ using an invertible deterministic function g, such that ωˊ = g(ω, a). In this 
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paper, we draw a a = (a1, a2, a3) from beta(2,2), beta(2,2), and beta(1,1) 

independently. To split a group, for example, the j th group with parameters θj*, 

μj*, and σj*, into two groups j1 and j2, we derive the parameters θj1, θj2, μj1, μj2, 

σj1, and σj2 for the new groups as follows

θ j1 = θ j * × a1
θ j2 = θ j * × 1 − a1 ,

μ j1 = μ j * − a2 × σ j * × sqrt θ j2/θ j1 ,

μ j2 = μ j * + a2 × σ j * × sqrt θ j1/θ j2 ,

σ j1
2 = a3 × 1 − a2 × a2 × σ j *

2 × θ j */θ j1,

σ j2
2 = 1 − a3 × 1 − a2 × a2 × σ j *

2 × θ j */θ j2 .

Re-assign subjects from the j th group to these two new groups with 

P Zi = j1 ∝ θ j1 f yi | μ j1, σ j1
2  and P Zi = j2 ∝ θ j2 f yi | μ j2, σ j2

2 . The acceptance probability of 

the splitting move is A = min 1, f ω′ | y ρ ω′
f (ω | y)ρ(ω)q(a)

d ω′
d(ω, a) , where f (ω|y) is the posterior density 

of ω; ρ(ω) is the probability of choosing the current move type at state ω—in this paper, ρ 
(ω) = 1 because we have only one type of move (splitting move when K = 2 and combining 

move when K = 3); q(a) is the density function of a; and d ω′
d(ω, a)  is the Jacobian derived from 

changing variables (ω, a) to ωˊ. For the corresponding combining move, the acceptance 

probability is min(1, A−1). More details on the splitting and combining moves are available 

in [30].

4. Simulation studies

We conducted five simulation studies. Simulated birth weight data for simulations 1–3 were 

generated using a three-component normal mixture distribution, whereas data for 

simulations 4 and 5 were generated using a mixture of two normal components. For all the 

simulations, we assumed that the first component includes simulated birth weight values 

from birth records with correctly reported gestational ages and the rest of the groups contain 

values from birth records with misreported gestational ages.

Table I summarizes the means (μ), standard deviations (SDs; σ), and proportions (θ) of the 

simulated birth weight distributions in the components. The mean values of the first group 

range from 600 to 2200 g to mimic the means of actual birth weight at different true 

gestational ages. The means of the second group and the third group (if it exists) are higher 

than those for the first group, consistent with the assumption that only higher gestational 

ages are misreported as lower gestational ages; and the mean values of these groups range 

from 1300 to 3400 g, with the latter corresponding to the mean birth weight of term births. 

The three groups in simulation 1 are well separated, whereas for simulation 2, the last two 

components are close to each other; and simulation 3 is in between, with the last two groups 

more separated than in simulation 2, but less separated than in simulation 1. For simulations 

4 and 5, all of the misreported gestational ages are grouped into one component, a condition 
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commonly assumed in the previous studies [24–26]. For each simulation, we have two 

sample sizes (10,000 and 50,000) and 50 replicates. Figure 1(a–e) shows the histograms for 

the simulated birth weight data for the sample size of 10,000 based on one replicate.

We fitted Bayesian mixture models with two components and three components separately, 

and we also applied the RJMCMC procedure to the simulated data sets. We implemented the 

models using SAS (SAS Institute Inc., Cary, NC, USA) interactive matrix language (iml) 

and derived trace plots of the parameters over the iteration index to assess convergence. We 

used non-informative priors in the Bayesian procedures. Specifically, we chose a uniform 

prior for K and Dirichlet(1, …, 1) for θ and non-informative priors f (μ j, σ j
2) ∝ 1/σ j

2 for μj and 

σ j
2. For fitting Bayesian mixture models with two or three components separately, we used 

1000 iterations to burn in the MCMC procedure and then calculated the means of the 

subsequent 1000 iterations. We calculated BIC values for each simulated data set and then 

averaged these values over the 50 simulated data sets. For RJMCMC, we used 8000 

iterations for the burn-in and then calculated the means based on the subsequent 2000 

iterations. We calculated means and SDs of parameter estimates over the 50 simulated data 

sets. Table II shows the results.

When the simulated birth weight data contain three well-separated components (simulation 

1), a mixture model with three components yields means, SDs, and proportions very close to 

the true values for both sample sizes. The mixture model with two components can still 

identify the first component, with the average estimate of θ1 a little lower than the truth 

(68% vs. 70%), while the second and third components are combined into one group. The 

average BICs for the three-component model are smaller than those of the two-component 

model, suggesting that the three-component model fits the data better. RJMCMC jumps 

between the two models when the sample size is small, with the three-component model 

chosen in 90% of the iterations and the two-component model chosen in 10% of the 

iterations on average. When sample size increases to 50,000, RJMCMC remains at the three-

component model in more than 99.99% of the iterations and yields average estimates close 

to the truth. (Results of RJMCMC are not shown for a value of K when RJMCMC chooses 

that value in less than 0.01% of the iterations.)

In the second simulation, we defined three groups, but we set up the last two groups to be 

very close to each other (Figure 1(b)). At the smaller sample size, the three-component 

mixture model cannot separate the last two groups. The Gibbs sampling does not converge 

when the probability of a third group is too small, and no observations can be assigned to 

that group. At the large sample size, a mixture model with three components can identify 

three groups; however, the estimates for groups 2 and 3 are not close to the truth on average. 

A significant number of observations from the second group are assigned to the third group, 

so that the average estimated proportion is higher than the truth for the third group and is 

lower than the truth for the second group. The average mean for the second group is greater 

than the true value, and the average mean for the third group is smaller than the true value, 

because of this misassignment. On the other hand, the two-component model identifies the 

first group well, with means, SDs, and proportions close to the truth on average at both 

sample sizes. The average BIC for the two-component model is smaller than that for the 
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three-component model at sample size of 50,000, suggesting the two-component model fits 

the data better. RJMCMC stays at the two-component model in more than 99.99% of the 

iterations, with the second and third groups combined and the average estimates for the first 

group very close to the truth. Increasing the sample size to 50,000 does not change the 

results. This simulation suggests that if the misreported gestational ages are from groups too 

close to each other, then the mixture model will treat them as one group. The result is 

acceptable, particularly for our future multiple-imputation project, as long as the combined 

group can be separated from the group consisting of correctly reported gestational ages.

In the third simulation, we defined the three groups to be better separated than in simulation 

2, although the histogram does not show these groups clearly (Figure 1(c)). At both sample 

sizes, the three-component mixture model identifies the three groups with average estimated 

means, SDs, and proportions close to the truth. The two-component model assigns some 

misreported cases into the first component; thus, the average estimated mean for the first 

group is higher than the truth, and the average estimate of θ1 is higher than the true 

proportion (73% vs. 70%). The average BICs for the three-component model are smaller 

than those for the two-component model, suggesting the three-component model fits better. 

RJMCMC stays at the two-mode model for less than 1% of the iterations at the sample size 

of 10,000. When the sample size increases to 50,000, RJMCMC stays at the three-

component model for more than 99.99% of the iterations, with average parameter estimates 

close to the truth.

We set up the last two simulations to contain data from mixtures of two normal distributions. 

Use of a mixture model with two components yields results very close to the truth on 

average. With non-informative priors, a mixture model with three components cannot 

identify three groups, as expected. RJMCMC stays at the two-component model more than 

99.99% of the time, with average estimates close to the true values.

Variability of the parameter estimates over the 50 replicates was relatively small, except in 

the case the three-component mixture model of simulation 2. The last two components in 

simulation 2 were close to each other, and the three-component mixture model could not 

separate those two groups properly, which leads to much larger SDs of the parameter 

estimates compared with the other simulation studies. The results of the simulation studies 

suggest that the Bayesian mixture model can identify different components well if they are 

well separated. However, for data generated from a three-component model with the last two 

groups close to each other (simulation 2), the mixture model cannot distinguish the last two 

groups and will treat them as one group. Our goal for the multiple-imputation project is to 

identity the first component, which contains the correctly reported gestational ages. The 

implausible cases, whether classified into one group or separate groups, will not change the 

results as long as the first group is identified well. On the other hand, correctly modeling 

different groups still affects identification of the first group. As shown in simulations 1 and 

3, when a two-component model is fitted to a mixture of three components, the proportion 

and the mean for the primary group tend to be slightly further away from the truth, 

compared with the estimates from the three-component mixture model.
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The RJMCMC procedure yields similar results as does fitting two-component and three-

component mixture models separately and then using BIC as a model selection tool. When 

the sample size is small, the RJMCMC procedure jumps between different components, the 

majority of times selecting models consistent with BIC. When the sample size is large, 

RJMCMC selects the same models as the BIC procedure. The advantage of RJMCMC is 

that it reflects uncertainty in the selection of the model; this uncertainty can be integrated 

into the multiple imputation of the misreported gestational ages in our future research 

project.

In our simulation studies, we generated data to mimic the real world; however, because of 

the complexity of the problem, we could not cover all possible scenarios. The next section 

contains results of applying our procedures to actual US birth data.

5. Analysis of US birth data

We use US singleton birth data from 2001 through 2008, available from the National Center 

for Health Statistics [34, 35]. These data contain parental and infant information collected on 

birth certificates. Table III contains the mean, SD, minimum and maximum values, and the 

number of observations within each reported gestational age from 23 to 32 weeks. The 

minima and maxima reflect crude edits during processing of the data before dissemination. 

Figure 2(a–d) shows the histograms of birth weight by reported gestational age for four 

selected gestational ages. Table IV contains results of fitting Bayesian mixture models with 

two or three components separately as well as results of the RJMCMC procedure. As in the 

simulation studies, we used non-informative priors for these analyses.

For reported gestational age of 23 weeks, the fitted two-component mixture model estimates 

86% of gestational ages as correctly reported. The mixture model with three components 

identifies three well-separated groups. The first group contains newborns with correct 

gestational ages, which constitute an estimated 82% of cases; the second and third groups 

are cases with misreported gestational ages. The third group has an estimated mean value of 

1691 g, which is far from that for term births, suggesting the third group does not come from 

term births. The BIC value for the three-component model is smaller than that for the two-

component model, suggesting the three-component model is a better fit. RJMCMC stays at 

the three-component model more than 99.99% of the time with results close to the separately 

fitted three-component model.

The data for 24 weeks are similar to those for 23 weeks, with three well-separated groups. 

The fitted two-component and three-component mixture models estimate, respectively, 85% 

and 83% of the observations as having correctly reported gestational ages. RJMCMC stays 

at the three-component model for more than 99.99% of the iterations with results close to 

the three-component mixture model.

Behavior of estimates for 25 weeks shows some differences from that for the lower 

gestational ages. The fitted two-component model estimates 85% observations as correctly 

reported cases, and the fitted three-component model estimates 83% as correctly reported. 

The BIC value for the three-component model is smaller than that for the two-component 
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model. The behavior of RJMCMC is more like that in simulation 1 at the small sample size: 

RJMCMC stays at the three-component model 79% of the time and at the two-component 

model 21% of the time. The results of the three-component model within RJMCMC are 

close to those of the three-component model fitted separately, whereas the results of the two-

component model within RJMCMC are not close to the two-component model fitted 

separately.

At 26 weeks, RJMCMC jumps between the two-component and three-component models as 

well. Unlike at 25 weeks, however, it stays at the two-component model most of the time 

(99% of iterations). RJMCMC yields estimated means, SDs, and proportions for the first 

component that are close to those for the Bayesian mixture models when fitting separately. 

Starting from 26 weeks, the two-component mixture model is more likely to be selected than 

the three-component model.

Data for 27–31 weeks are more like simulation 2, with the implausible gestational ages close 

to each other and not easily separated into different groups. When fitting the two-component 

and three-component models separately, the first groups have similar estimated means, SDs, 

and proportions. The estimated percentages of the misreported records increase dramatically 

at the higher gestational ages, with more than 35% of records estimated to be misreported 

starting at 30 weeks. BIC selects the two-component model for 27–29 weeks and selects the 

three-component model for 30 and 31 weeks. RJMCMC, on the other hand, stays at the two-

component model more than 99.99% of the time for all these reported gestational ages. One 

possible reason for this discrepancy is that the data structure for the higher reported 

gestational ages (30 and 31 weeks) is complicated, with large sample sizes and birth weights 

from different groups close to each other. As a result, the variations of different groups at the 

splitting move have a larger impact over the likelihood function, and RJMCMC does not 

select the same model as BIC. This discrepancy deserves further research and is not within 

the scope of this paper.

When we apply our methods to gestational ages of 32 weeks and above, a mixture model, 

especially the three-component model, is no longer appropriate. The birth weight 

distributions for the components are too close, so the models cannot separate different 

groups properly. As an example, Table IV shows the results for 32 weeks. The mixture 

model with three modes identifies the last two groups as being very close to each other. Even 

though the BIC for the three-component model is smaller, the model does not fit the data 

well. Parker et al. [28] observed similar issues when applying mixture models to gestational 

ages of week 32 and above. Hence, we do not include results for the higher gestational ages 

in this paper.

To show the variability of the posterior distribution, we derived quantiles of the parameter 

estimates (see Web-based Supporting Information). In general, the range of the posterior 

distribution (maximal value ‒ minimal value) for the primary component, which consists of 

the correctly reported gestational ages, is smaller compared with the other components for 

both two-component and three-component mixture models. Week 25, where the transition of 

the better fitting models from three components to two components starts, shows the largest 
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variability for the parameter estimates. However, once the transition stabilizes (week 27 and 

above), the variability of the posterior draws remains stable and small.

In summary, the results for the US birth data suggest that the three-component model is 

appropriate for lower gestational ages and the two-component model fits better for the 

higher gestational ages. The transition from the three-component model to the two-

component model is around 25 to 26 weeks. Using our models, we found that the estimated 

percentages of misreported gestational ages vary, with values less than 20% for the lower 

gestational ages (23–27 weeks) and values around 30% to 35% for the higher gestational 

ages (28–31 weeks).

6. Discussion

We develop Bayesian mixture models inspired by the previous work of Oja et al., Tentoni et 
al., and Platt et al. Unlike the mixture models with a fixed number of distributions, we allow 

the number of components to change. We also allow different proportions of misreporting 

within each reported gestational age. With non-informative prior information, our methods 

yield average estimated means, SDs, and proportions close to the true values based on the 

simulation studies. We have tested the impact of using conjugate priors and found that the 

prior information on the mean and proportion has more effect on the parameter estimates for 

the Bayesian mixture models than does prior information on the variance (results not 

shown). However, because we do not have prior information available for this study, we 

combined the data from year 2001 to year 2008 so that we have relatively large sample sizes 

to allow the data to dominate the model fit with non-informative priors. Our method only 

includes birth weight and gestational age in the model. The US birth data have rich 

information on maternal demographic characteristics, maternal medical characteristics, 

medical care utilization, and infants’ characteristics. The clinical estimate of gestational ages 

based on ultrasound also contains important information on gestation [36]. Parker et al. [28] 

included covariates to model the mean function of each mixture component but did not find 

that covariates significantly improved the model fitting for a mixture model with two 

components, except for stratifying on gender. Whether covariates will improve model fitting 

in Bayesian mixture models and RJMCMC deserves further investigation, especially if they 

are used to model the proportions in the components rather than just the mean functions.

The ultimate goal of this research is to use multiple imputation to address the problem of 

missing and implausible gestational age data in US Natality public use data sets. Parker and 

Schenker [26] discussed general approaches to dealing with this problem. By using a 

Bayesian mixture model with a prespecified number of components (K) as one step in our 

multiple-imputation procedure, we will have the advantage of retaining the approximate 

normality of the birth weights, in contrast to truncating at specific birth weight—gestational 

age combinations; our multiple imputations will reflect both the uncertainty in identifying 

the misreported gestational ages under the given value for K and the uncertainty in 

prediction for the implausible and missing gestational ages. Moreover, if we allow K to vary 

by using the RJMCMC procedure, we will incorporate the uncertainty about K into the 

multiple imputations as well. On the basis of our research, the results of RJMCMC are 

consistent with the results when fitting two-component and three-component models 
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separately and then using an information criterion to choose one of the models. For the next 

step of our research, we will develop a prediction model to impute the implausible and 

missing gestational ages. As is true for any procedure to adjust for misreporting and/or 

missing data, multiple imputation depends on the accuracy of the models used, and 

misspecification of the models will lead to biased results. Therefore, the use of model 

diagnostics and sensitivity analyses will be important steps in the model building process.

Although we use a mixture of two or three components to identify the implausible 

gestational ages, a model with more than three modes could be formulated similarly. We 

assume that birth weight within each reported gestational age follows a mixture of normal 

distributions. However, the misreported cases are from a wide range of gestational ages, and 

the normality assumption for the misreported cases may be questionable, especially for the 

lower gestational ages. An alternative to the normal mixture model approach is to use 

semiparametric models, which allow a more flexible distribution for the misreported 

group(s). Wilcox and Russell [37] proposed a two-component mixture distribution for birth 

weight. One component consists of a ‘predominant distribution’ that has a normal density 

function and represents normal births. The second component is a ‘residual distribution’ 

with an unspecified form, representing low weight births. Similar approaches could be 

applied within each reported gestational age to identify the plausible and implausible 

reported gestational ages.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the simulated birth weight (grams) at a sample size of 10,000.
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Figure 2. 
Histograms of birth weight (grams) by reported gestational age for US birth data from the 

years 2001 to 2008: (a) 24, (b) 26, (c) 28, and (d) 30 weeks.
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Table I.

Simulated mean birth weight (grams), standard deviation (SD), and mixing proportion (θ) within each 

component, by simulation number.

Component

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

Mean SD θ Mean SD θ Mean SD θ Mean SD θ Mean SD θ

1 600 200 0.70 1600 400 0.70 600 200 0.70 600 200 0.80 2200 400 0.80

2 1900 400 0.15 2900 400 0.15 1300 400 0.15 1900 400 0.20 3400 400 0.20

3 3400 400 0.15 3400 400 0.15 2800 400 0.15
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Table III.

Summary statistics of birth weight (grams) by reported gestational age (weeks) (US birth data 2001–2008).

Statistics Week 23 Week 24 Week 25 Week 26 Week 27 Week 28 Week 29 Week 30 Week 31 Week 32

N 18,295 25,903 29,913 34,820 38,616 53,183 64,443 88,517 113,902 160,440

Min 227 227 227 227 227 227 227 227 227 507

Max 1995 2999 2999 2999 2999 3998 3999 3999 3999 8165

Mean 636 840 950 1070 1188 1624 1817 2022 2164 2348

SD 246 556 577 592 589 918 908 882 815 765
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