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Abstract

A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and 

database searching techniques were used to characterize the proteomes of four biological 

replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. 

Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An 

estimate of the abundance of each protein, based on the three most intense peptide ions, shows that 

the quantified species vary in concentration over a factor of ~103. Compared to initial studies in 

the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein 

coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in 

the abundance of different proteins, including: an increase in abundance of proteins involved in 

oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as 

well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For 

younger flies, proteomes are relatively similar within their age group. For older flies, proteome 

similarity decreases within their age group. These combined results illustrate a correlation between 

increasing age and decreasing proteostasis.
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1. Introduction

The fruit fly, Drosophila melanogaster (D. melanogaster), is a well-studied model organism 

because of its short lifespan, high-reproductive rate, and the availability of an extensive 

variety of genotypes [1,2]. Nearly 75% of genes associated with human neurological 

diseases are found in D. melanogaster [3]. Transgenic animals expressing human proteins 

can be used in models of neurodegenerative diseases [4]. Expression of the human amyloid 

precursor protein (APP) in D. melanogaster leads to animals that display neurodegeneration 

and a shortened lifespan; [5] such models are relevant to understanding Alzheimer’s 

Disease. In the case of many neurodegenerative diseases, pathological progression is 

associated with the accumulation of aberrant proteins, as seen with APP cleavage products 

that oligomerize to form amyloid fibrils [5,6] or with the protein huntingtin in Huntingtin’s 

disease that leads to inclusion bodies [7]. The accumulation of specific proteins, as well as 

the loss of functional proteins, is a hallmark of aging and is associated with numerous 

diseases [8,9].

In order to understand the overall effect of disease, it is necessary to characterize the protein 

expression in wild-type organisms. In 2007, Sowell et al. [10] reported an in depth proteome 

study using multiple techniques including liquid chromatography (LC), ion mobility 

spectrometry (IMS), mass spectrometry (MS), and database searching. This study 

determined which proteins were present by identifying peptides that were produced from 

tryptic digestion of proteins extracted from the heads of 25 animals. The results were a first 

attempt to comprehensively map what proteins were present and how the abundances of 

species changed with aging. However, the methodologies involved were first generation 

prototypes, therefore providing only a limited view of age-induced changes. Overall, this 

and other work [11–14] has suggested that protein abundance varies throughout an 

organism’s life.

Since Sowell’s early investigation, many technological advances have been made. In the 

work presented below, we reexamine the wild-type aging studies, using a more robust 

commercially available LC-IMS–MS instrument to characterize the proteomes of four 

biological replicates of adult animals at seven time points across their lifespan. Using the 

new methods, we have identified and quantified 1281 proteins extracted from the heads of 

three animals per sample. This study appears to be sensitive to concentrations which vary by 

over a factor of ~103. Trends in abundances of different proteins across the organism’s 

lifespan are reported. For example, proteins involved in oxidative phosphorylation and the 

tricarboxylic acid cycle appear to increase in abundance with age, while proteasomal 

proteins, as well as ribosomal proteins decrease. Finally, many types of proteins, e.g., heat 

shock proteins, remain relatively unchanged. In general, we find stronger protein 

correlations in younger flies compared with older animals. It therefore appears that 
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proteostasis is more difficult to maintain with increasing age. Here we present the results of 

our current studies, compare these results to prior work in the field, and discuss possible 

interpretations for the observed changes.

2. Methods

2.1. Sample preparation, protein extraction and digestion

Populations of D. melanogaster female adult virgins were grown at 24 °C in 12 h light and 

dark cycles. Flies were transferred to fresh media every four days. Flies were collected at 

five day intervals over 30 days.

Flies at individual time points were dissected to isolate the heads [10]. Populations of fly 

heads were then homogenized in 8 M urea (Sigma Aldrich, St. Louis, MO) with 100 mM 

ammonium bicarbonate (Sigma Aldrich, St. Louis, MO, pH 7.8) using a glass mortar and 

pestle. SDS-Page gel with Coomassie blue staining was initially used to estimate a protein 

yield of approximately 10 μg per fly head. Denatured proteins were then reduced using 5 

mM tris(2-carboxyethyl)phosphine (TCEP, Sigma Aldrich, St. Louis, MO) for 1 h at 56 °C. 

Reduced proteins were then alkylated using 5 mM iodoacetamide (Sigma Aldrich, St. Louis, 

MO) for 1 h at 23° C in the dark. Fly head homogenate was buffer exchanged with 100 mM 

ammonium bicarbonate to a final concentration of 1 M urea using a 30 kDa molecular 

weight cut off filter (Millipore, Billerica, MA). Proteins were digested with trypsin 

(Promega, Madison, WI) for 12 h at 37° C, using a 5% w/w enzyme to protein ratio. 

Peptides were desalted using C18 Zip-Tips (Agilent Technologies, Santa Clara, CA) and 

lyophilized to dryness.

2.2. LC-IMS–MS/MS analysis

Peptides where reconstituted in LC buffer A (0.1% formic acid, water, Fisher Scientific, 

Hanover, NH) with an internal standard spike of digested equine alcohol dehydrogenase 

(500 fmol/uL, Sigma Aldrich, St. Louis, MO). Peptides were separated on a nanoAcquity 

ultra high pressure liquid chromatography system (UPLC) (Waters, Milford, MA) by first 

loading onto a trap column (Symmetry C18, 180 μm × 20 mm, Waters, Milford, MA) at a 

flow rate of 10 μL/min at 97% buffer A for 5 min. Peptides were then separated on a UPLC 

column (1.8 μm HSS T3, 75 μm × 250 mm, Waters, Milford, MA). A linear gradient of 3%–

34% buffer B (0.1% formic acid, acetonitrile, Fisher Scientific, Hanover, NH) was applied 

over 180 min. Peptides eluting from the column were electrosprayed in positive mode into a 

Synapt G2S HDMS (Waters, Milford, MA) instrument using a universal nanospray source. 

Data were acquired in an ion mobility supplemented MSe manner (HDMSe). Drift specific 

collision energies were optimized using a digest of mouse synaptic proteins and is described 

further in the results section.

MS datasets were processed and database searched using ProteinLynx Global Server 2.5.3 

(PLGS, Waters, Milford, MA). The intensity thresholds for low energy and high energy were 

optimized individually using PLGS threshold inspector. Databank searches were completed 

using the D. melanogaster proteome (downloaded from Uniprot on 10/2016) with the default 

false discovery rate (FDR) of 4% [15]. Using this FDR setting, our data was searched 
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against a randomized concatenated database and returned an empirical protein FDR equal to 

1.7%. For the purposes of label free quantification, exact mass retention time tables were 

aligned and analyzed using IsoQuant [16]. This allowed for relative quantification based 

upon the three most intense peptides ions per protein (Top3 quantification). The complete 

quantitative data for all time points and replicates is provided in Supplementary Table S1 in 

the online version at DOI: 10.1016/j.ijms.2018.01.003. Listed in this table are the 

information regarding protein name, gene name and accession number as well as its 

quantitation results in that sample. Using the internal standard, equine alcohol 

dehydrogenase, allowed for determination of absolute protein levels.

Further analysis was completed using Microsoft Office Excel. The David Bioinformatics 

[17] server was used to determine gene ontology terms. When we selected a group of 

proteins belonging to a given KEGG pathway, we did not require that individual members 

were exclusive to a single pathway/process. Heat shock proteins were used as annotated in 

Uniprot. Cluster 3.0 [18] was used to group proteins with similar temporal patterns.

3. Results

3.1. Systematic optimization of drift time-specific collision energy

Mass spectrometry (MS) based quantitative proteomics has emerged as the central 

technology for the characterization of peptides generated from proteins originating in 

complex mixtures/cells/tissues. In addition to mass spectrometry, ion mobility spectrometry 

(IMS) is another gas phase separation which discriminates based on an ion’s shape and 

charge. Because these techniques are largely orthogonal to each other, combining IMS with 

MS yields a higher peak capacity, thereby allowing for an increase in the number of 

identified peptides [13,19,20].

Developments in data independent acquisition modes (DIA), such as SWATH [21] or MSe 

[22,23], have also resulted in increased peptide sequencing capabilities. During each one 

second cycle of an MSe acquisition, sequential low and high collision energy scan events are 

collected across the full mass range. This sequential acquisition mode results in peaklists of 

precursor ions and their corresponding product ions. High energy scans occurring after an 

ion mobility separation generate product ions that can be drift time aligned with their 

precursors. This provides an additional increase in peak capacity [24,25]. Data acquired 

using IMS-MS in a MSe acquisition mode has been termed HDMSe [22].

In our experimental workflow, precursor peptides elute from the IMS cell into the transfer 

cell at specific drift times prior to mass analysis by a time-of-flight mass spectrometer (TOF, 

Fig. 1A). During each acquisition cycle, as mentioned above, the transfer cell alternates 

between low and high collision energies (Fig. 1A). When in the low-energy state, precursor 

ions pass through the transfer cell without fragmenting. When in the high-energy state, 

precursor ions are fragmented to generate product ions. The optimal collision energy to 

fragment a peptide increases with that compound’s mass (Fig. 1B). Because there is a 

relationship between mass and drift time, there is also a correlation between drift time and 

optimal collision energy (Fig. 1C). Previous work has shown that drift time specific collision 
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energy ramps can increase peptide IDs substantially, although only a subset of possible 

collision energy ramps were investigated [16].

We sought to systematically evaluate the entire drift time –collision energy landscape with 

the goal of determining the most efficient collision energy setting for each drift time. This 

was carried out with a standard proteome digest. During this optimization, a series of runs 

were acquired where the collision energy in the transfer cell was held constant for a given 

run during the elevated energy portion of the scan cycle. A series of individual runs were 

acquired at fixed high energy collision voltages, with varied between 20 and 55 V, in 2 V 

increments. All acquisitions were then searched against a database. The entire set of peptide 

IDs along with their collision energies and drift times were extracted. A series of drift bin 

ranges were constructed, and the distribution of collision energies leading to positive peptide 

identifications were determined (Fig. 1C–D, black bars, average value black line). For all 

peptides identified within a given drift bin, the average collision energy was calculated (Fig. 

1F). While we expect an additional dependence of optimal collision energy on charge state, 

there is currently no way to select specific charge states within the drift time distribution 

using this instrument. Using this data, a drift time specific look up table was determined and 

used in further analyses.

3.2. Top3 protein quantification

We employed a label free protein quantification approach to characterize the D. 
melanogaster proteome, by averaging the three most abundant peptides signals (Top3 

peptides) from a given protein (Fig. 2A) to infer a protein’s abundance (Fig. 2B). Previous 

research has demonstrated a linear relationship between the Top3 value for a given protein 

and the amount of protein present [22,26]. An internal standard of known concentration was 

used to convert Top3 values to absolute amounts of each protein per condition (Fig. 2C).

Using PLGS in combination with Isoquant allowed for both identification and quantification 

of the temporal D. melanogaster proteome. In our collected dataset, 11,085 peptides were 

identified belonging to 1281 different proteins (1269 proteins were identified with three or 

more peptides). On average, nine peptides were reported per protein, and the average protein 

sequence coverage was 36%. Across adult D. melanogaster lifespan, the fold change per 

protein was determined to have a median of 2.1 and an average of 4.1. Overall biological 

percent relative standard deviation showed a median of 23%, lower relative standard 

deviations were observed on days 0, 5 and 20. Approximately 80% of total proteins were 

identified in each individual analysis by PLGS. For those peptides not identified in every 

run, the analysis software, Isoquant, is nevertheless able to quantify them. When PLGS 

identifies a high-confidence peptide in any run, Isoquant uses that ion’s retention time, drift 

time and accurate mass to quantify the species in other runs where it may not have been 

identified by PLGS [16].

For each protein, we calculated its median abundance across the fly’s lifespan, and these 

values varied over three orders of magnitude (Fig. 2D). For comparison, the dynamic range 

of tissue-specific proteomes is reported to be three to four orders of magnitude [27,28]. We 

were particularly interested in the abundance of proteins associated with specific 
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biochemical pathways (i.e. ribosome, TCA cycle, and oxidative phosphorylation; Fig. 2E, G, 

H, respectively).

3.3. Comparison with our previous temporal proteome map

Sowell et al. [10] measured the temporal proteome of D. melanogaster at 9 time points over 

its lifespan, from day 0 to day 60. This work combined several forms of analysis, including 

liquid chromatography-tandem mass spectrometry (LC–MS), strong cation exchange 

fractionation followed by LC–MS, and also ion mobility spectrometry mass spectrometry 

(IMS-MS), allowing for evidence of 5902 unique peptides and 1699 proteins. The identified 

proteins were quantified using spectral counting [28].

In some instances, protein temporal abundance patterns were similar between these two 

studies. One example, arginine kinase isoform E shows a similar age-dependent increase in 

abundance between the two datasets (Fig. 3A and B). To gain a broader understanding of 

how these datasets compared, we ranked co-identified proteins in the current study using 

their summed intensity (Top3) and in Sowell’s data using summed spectral counts. The 

proteins’ rank positions in both experiments were then be plotted as scatterplots (Fig. 3C, 

D). The top 50 most abundant proteins in Sowell’s dataset at day zero showed a roughly 

linear relationship when compared to their abundances the present work (Fig. 3C). However, 

this correlation is lost when the full dataset is compared (Fig. 3D). We repeated this analysis 

at each individual day (data not shown), and in all cases, the relative abundances of the full 

datasets showed poor correlation.

Sample handling practices, instrumentation and methods of data analysis have improved 

greatly since the original acquisition of the D. melanogaster temporal proteome. In the 

original work by Sowell et al. ~60% of the time, an individual protein was not quantified on 

a given day. For the current dataset, only ~7% of this data is missing. The difference in data 

coverage can be visualized using a heat map representation (Fig. 3E and F) and likely results 

from methodological advances mentioned previously. We then sought to determine which 

method allowed for a more accurate quantitative representation of the proteins. We chose to 

focus on the proteins involved in the ribosome for two reasons: many unique proteins are 

required (therefore many protein measurements exist); and these proteins physically interact 

in a protein complex. Our rationale is that physically interacting proteins should have very 

similar temporal protein abundance patterns. The dataset with better protein quantification 

should display a higher correlation between ribosomal associated proteins. In the work 

completed by Sowell et al., 55 ribosomal proteins were identified, with data at roughly 50% 

of all time points. In the current dataset, we identified 64 ribosomal proteins, with data at 

roughly ~98% of all time points and replicates. If we normalize the data within a protein and 

within a day and then correlate all pairwise protein temporal patterns, we would expect 

interacting proteins would have higher Pearson correlation coefficients. We completed this 

for the proteins involved in the ribosome from both Sowell et al. and our current data (Fig. 

3G and H, respectively). In the original work by Sowell et al. the distribution of ribosomal 

protein correlations showed a median value of negative 0.01. This indicates no systematic 

correlation between the observed ribosomal temporal patterns. In contrast, our current data 
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has a median correlation of 0.71. This suggests that our current data more accurately 

quantifies the temporal proteome.

3.4. The effect of aging on energy consumption: TCA cycle, oxidative phosphorylation, and 
glycolysis

Eukaryotic energy production, via oxidative phosphorylation or the TCA cycle, occurs 

primarily in the mitochondria. The highly reactive environment within this organelle results 

from the generation of metabolites, such as NAD+, acetyl-CoA, and ATP. Oxidative 

modification of mitochondrial proteins has been shown to increase during aging [29,30], 

which could result from increases in the above mentioned reactive species. We observed an 

increased abundance relative to day zero for 53/58 oxidative phosphorylation proteins (out 

of a total of 144 proteins in this pathway, Fig. 4A, black line). Of these proteins, 

Cytochrome b c1 subunit 9 showed the largest increase in abundance with time (Fig. 5A, 

circles). This accessory protein assists in correctly orienting a heme group in complex 3 of 

the pathway [31]. Overexpression of this protein has also been able to rescue complexes 

lacking Cytochrome b c1 subunit 6 [32]. We also observed Cytochrome b c1 subunit 7, from 

this same complex, which shows a similar protein abundance pattern (Fig. 5A, squares). 

Finally, one other protein, stunted isoform B (Fig. 5A, triangles), also showed increased 

temporal abundance. Mutation of this protein can increase longevity [33]. This protein is 

expressed and binds the G-protein coupled receptor in the synapse called methuselah, which 

has been shown to alter lifespan [34]. Correlated abundance patterns for these proteins is not 

unexpected as they are all part of a contiguous metabolic pathway.

Another pathway in mitochondria is the tricarboxylic acid (TCA) cycle, which generates 

NADH equivalents used in the oxidative phosphorylation pathway. Of the 43 proteins in the 

TCA cycle, we observed 31. Of these, 24 showed increased abundance with time. The 

median TCA protein abundance and standard deviation are shown in Fig. 4C (black line). 

Pyruvate carboxylase (Fig. 5C, circles), which converts pyruvate to oxaloacetate, showed 

great overlap with the median value (R = 0.85). Citrate synthase and aconitase both show 

similar abundance patterns, which were distinct from that of the median TCA protein (Fig. 

5C, triangles and squares respectively). These enzymes catalyze the sequential conversion of 

oxaloacetate to citrate and then to cis-aconitate.

The glycolysis pathway is also used for energy generation and storage. Of the 54 proteins in 

the glycolysis pathway, we observed 28. Of these, 24 showed an increased abundance with 

time. The median abundance of this biochemical pathway is shown (Fig. 4E, black line). The 

first enzyme in this pathway, which converts sugar to pyruvate, is phosphotransferase, whose 

temporal pattern matches this pathway’s median protein abundance (Fig. 5E, circles). 

However, the protein showing greatest overlap with the median abundance is 

triosephosphate isomerase (Fig. 5E, triangle, R = 0.98). This protein interconverts 

dihydroxyacetone phosphate and glyceraldehyde-3-phosphate (GAP). Subsequent 

conversion of GAP to a reactive methylglyoxal compound can lead to erroneous 

modifications of proteins and DNA. Deficiencies in triosephosphate isomerase have been 

linked to neurological pathologies [35]. One protein that shows a decreased abundance with 
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time is aldose 1 epimerase (Fig. 5E, squares). This protein is involved in the conversion of 

alpha-glucose to beta-glucose, either of which can enter early in the glycolysis pathway.

3.5. Effect of aging on proteostasis: the ribosome and the proteasome

Cellular proteostasis is the combined processes of protein production, maintenance and 

degradation. Proper proteostasis is critical for the optimal function of complex biological 

pathways [36]. Proteostatic dysregulation has been observed with aging as well as numerous 

diseases. One example is the accumulation of plaques, observed in Alzheimer’s Disease, as a 

result of aberrant protein degradation [37]. Given the complexity of cellular proteostasis, it is 

important to develop a better understanding of how this process is regulated in an age 

dependent manner for otherwise healthy individuals. This will provide a framework for 

interpreting which changes are critical during disease progression.

Overall, we observed 330 proteins which showed a 50% or greater decrease in abundance at 

some time point relative to day zero. Gene ontology analysis revealed that these proteins 

were enriched for a range of biological functions, including pathways for the ribosome and 

proteasome, as well as heat shock proteins. Given the central role of proteasomal processing 

in proteostasis, we examined these components in more detail. In total, we quantified the 

abundance of 28 of the 50 annotated proteasome components. Of those components, all 28 

decreased in abundance (Fig. 4B). Both core (13/13) and regulatory (15/15) subunits were 

down regulated over time. Fig. 5B shows the core alpha subunit 4 and beta subunit 6 as well 

as the regulatory ER ATPase Ter94 protein. Ter94, which has previously been linked to 

apoptosis [38], showed one of the largest decreases in abundance of proteasomal proteins.

Of the 94 D. melanogaster proteins annotated in the ribosomal pathway, we quantified 48. 

All of the observed ribosomal proteins showed a decrease in abundance of at least 50% as 

the organism aged (Fig. 4D), with a median decrease of 53%. The overall trend of ribosomal 

abundance is shown in Fig. 4D, where the median ribosomal protein level is shown as a 

black line. For additional reference, ribosomal proteins S17 and S24 are shown (Fig. 5D), as 

circles and squares, respectively. The S24 ribosomal protein, which has previously been 

linked to ribosomal biogenesis via ribosomal RNA pre-processing [39], showed the most 

drastic decreases amongst ribosomal proteins.

Because proper folding is critical for protein function, organisms have evolved a series of 

mechanisms to maintain this aspect of protein structure. These mechanisms involve 

pathways to aide in protein folding, refolding and (in the case of misfolded proteins) 

unfolding. Chaperones are one class of proteins which promote protein folding during 

expression and coordinate refolding events during the protein’s lifespan. Heat shock proteins 

(HSP), a sub-class of chaperones, mediate a host of functions including preventing 

aggregation, facilitating protein transport to organelles, refolding misfolded proteins and 

binding partially unfolded proteins [40]. We analyzed 14 of the 37 annotated heat shock 

proteins (in Uniprot), and seven showed a temporal decrease in abundance. This group of 

proteins, while sharing a common set of functions, are not for the most part physically 

associated. As a consequence, we would not expect their temporal abundance patterns to be 

as highly correlated as those of the proteasome or ribosome. Overall, the median heat shock 

protein abundance showed an overall decrease at all time points relative to day zero, shown 
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as a black line in Fig. 4F. A proteasome accessory protein, small heat shock protein 27 

decreased 93%, showing the greatest change in protein abundance of this group (Fig. 5F, 

squares). This protein has been shown to accelerate the rate of degradation by the 

proteasome via enhancement of the NF-κB pathway [41]. In contrast to other HSPs, HSP60c 

and the HSP 70 kDa protein showed small increases in abundance. HSP60c is incorporated 

into the mitochondrial matrix, where it recognizes misfolded or damaged proteins (i.e. by 

oxidation) for refolding or removal [42]. It is particularly interesting that this HSP, one of 

the few incorporated into mitochondria, shows a similar temporal pattern to that of 

mitochondrial proteins, rather than correlating with other HSPs. The HSP 70 kDa protein 

has been linked to oxidative stress [43] and response to neuronal protein aggregation [44].

3.6. Age dependent loss of proteostasis

We hypothesized our data could demonstrate that the ability to maintain proteostasis 

decreases as an organism becomes older [8]. Multiple biological replicates at each time point 

allowed us to ask if protein variation between individuals increased with age. For a given 

protein and time point, we measured the variation in protein abundance between biological 

replicates and plotted this as a function of time, an example of which is shown in Fig. 6A for 

ribosomal protein subunit 31. We observed a notable increase in the variation of this protein 

particularly at day 30. To investigate protein level changes more globally, we calculated the 

relative standard deviation (%RSD) for each protein across the biological replicates at a 

given day. For each protein, we determined the day at which it was most variable and plotted 

this data as a histogram (Fig. 6B). We observe a clear day dependent increase in protein 

variability. Day ten and day 30 showed the highest degree of variability with ~300 proteins 

being most variable at each of these days.

It has been proposed that as an organism ages, the proteome changes in response to the 

unique environment experienced by that individual [45]. Overall, we observe that proteins 

become more variable with time, particularly when compared to day zero post-eclosion. 

Changes in protein expression can have variable effects on protein pathways depending on 

whether other proteins in that pathway also show a similar change in abundance. We sought 

to determine if our data could provide evidence to address this issue. We acquired four 

biological replicates at each day throughout the time course, allowing for us to determine the 

similarity between replicate datasets. One way to quantify their similarity is to rank order the 

observed proteins by their abundance. We can then plot these data as a scatter plot (Fig. 6C) 

and calculate the R2 value. We show a single comparison at each day of our analysis. 

Interestingly, the scatter increases up to day 10 and then remains relatively constant during 

the remaining days. If we complete this analysis for the remaining biological replicates and 

days we generate six R2 values at each day. We then plot the averaged R2 value (Fig. 6D), 

which shows a decrease as the fly ages.

4. Discussion

We successfully developed a method that reproducibility detects and quantifies 1281 

proteins from D. melanogaster. Our temporal proteome experiments included seven time 

points between day zero and 30 post-eclosion, with a total of four biological replicates. 
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These data allowed us to characterize co-regulated protein abundance patterns within 

specific biological pathways. We observed a decrease in both ribosomal and proteasomal 

protein abundances, which we believe results in increased stress on an organism’s ability to 

maintain proteostasis. We provide evidence that impairments in maintaining the relationship 

between protein synthesis and catabolism should be considered a hallmark of aging.

4.1. Comparison to previous studies

Since the original analysis by Sowell et al. [10] many technological advances have increased 

our ability to profile an organism’s proteome. The initial success of that study was based on 

multiple analytical techniques, including fractionation using strong cation exchange. 

Furthermore, spectral counting allowed for approximate quantification of the identified 

species. Our current technique, based upon Top3 quantification appears to be much more 

accurate for these types of samples. Furthermore, instrument advances have also allowed for 

increased sensitivity and decreased analysis time. While the original work by Sowell et al. 

helped set the foundation for proteome analysis across lifespan, the presented data advances 

and showcases the power of this technique to interrogate important biological aging 

phenotypes.

4.2. Technological advancement

Our results demonstrate the utility of uHDMSe for large scale D. melanogaster protein 

quantification. Furthermore, we describe a method to systematically define the optimal 

collision energy across an IMS separation. Our optimization is based off of the relationship 

between collision energy and m/z combined with that between m/z and drift time. The 

resulting collision energy profile maximizes the amount of informative fragmentation, 

thereby increasing the number of peptides identified in a single acquisition. This approach to 

optimize collision energy can be applied across instrument platforms. We expect these 

settings to vary for different instruments and laboratories (due to factors such as gas 

pressures, voltage stability, etc.), however once optimized should be independent of sample 

origin.

In part due to the increased technological capabilities, our data shows a ~103 dynamic range, 

which agrees well with that reported for other organisms and tissues [46]. Biochemical 

pathways function in concert, such as subunits of the ribosome during protein translation. It 

is therefore not surprising that proteins belonging to a pathway show similar abundances at a 

particular age. This observation could potentially be used to further define functional protein 

pathways using proteomic data [47]. Future work should be done to determine if age 

dependent changes in abundance spread, provide insight into the overall fitness or efficacy of 

particular pathways.

4.3. Analysis of the temporal proteome pattern

In general, one would expect protein species involved in specific biological pathways to 

show similar temporal protein abundance patterns. Our quantitative data were accurate 

enough to demonstrate such patterns. Across a range of biological processes, we show that 

components of a specific pathway correlate strongly with others in that pathway. Of course, 

most biochemical pathways have multiple points of regulation. Therefore, it seems likely 
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that subsets of an individual biochemical pathway may be differentially regulated. We 

observe this phenomenon particularly in the case of glycolytic and heat shock proteins, 

where not all components showed the same time dependent changes.

We observe that pathways involved in both energy generation and metabolism, mainly 

localized to the mitochondria, are highly correlated and increase with age, consistent with 

previous transcriptomic analysis in mouse brain [48]. The oxidizing environment within the 

mitochondria could lead to cumulative protein or mitochondrial DNA damage. This damage 

could lead to mutations in amino acid sequence, and further cause protein misfolding, or 

decreased enzymatic function. The overall increase in protein abundance may be a 

mechanism to compensate for the decreased activity over time in the oxidizing environment. 

One other explanation is that energy requirements in adult flies increase with age, and 

eventually reach a steady state. To address potential impairments in mitochondrial function 

[49] or the increased energy demands [50] one could directly characterize the activity level 

of isolated mitochondria as a function of age [51].

It has become increasingly appreciated that protein aggregation, occurring via many 

mechanisms, plays a key role in aging and disease. The most fundamental of these 

mechanisms include protein unfolding [52], and deficiencies in protein degradation 

pathways [53,54]. Our data shows that the abundance of proteins involved in the ribosome as 

well as those involved in the proteasome decrease with age. Proteostasis can be thought of as 

a balance between protein production via the ribosome, and protein degradation via the 

proteasome. Our data points toward two possible mechanisms connecting the changes we 

observed in the ribosome and the proteasome. In the first, age dependent decreases in 

ribosomal protein abundance could be sensed by mechanisms regulating proteasome levels, 

with the decreased level of protein synthesis causing a decreased need for protein 

degradation. Alternatively, deficits in proteasome level or function would lead to increased 

protein accumulation, activating a similar negative homeostatic feedback for protein 

synthesis via the ribosome. An isotopic pulse-chase analysis could delineate the extent to 

which ribosomal and proteasomal function is impaired with age.

4.4. Misregulation increases with aging

Our data demonstrates that as an organism ages, its proteome become less regulated, and 

therefore proteome dysregulation could be a phenotype associated with normal, disease-free 

aging. One explanation for this dysregulation is stochastic epigenetic changes which 

accumulate with time [8,45,55]. This decreased correlation becomes apparent at a fairly 

early age, approximately day 10–15 (Fig. 6). This time range corresponds to D. 
melanogaster’s peak fecundity [56]. It is interesting to speculate that when an organism can 

no longer reproduce, there is little evolutionary pressure to maintain specific protein 

temporal patterns. Additional misregulation, as may occur during specific disease states, 

would exacerbate the proteome changes noted above. Our data represents an initial attempt 

to probe this phenomenon, and further investigations of the interplay of disease and aging 

will be particularly revealing.

In general, protein abundances show the largest changes between day 0 and day 15, with 

changes after day 15 being of smaller magnitude (Figs. 4 and 5). This likely reflects the fact 
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that younger organisms in general show a greater degree of change with time compared to 

their older counterparts. In addition, we demonstrate that older organisms show significantly 

more variations in their proteome than younger organisms (Fig. 6). While older organisms 

may be changing more slowly, the effects of individual deviations in protein expression have 

had more time to accumulate, and thus become greater in magnitude.

5. Conclusion

A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry and 

database searching techniques were used to map the proteome isolated from the heads of D. 
melanogaster. A key aspect of our analysis was the systematic optimization of drift specific 

collision energies promoting successful precursor fragmentation. We determined the 

abundance patterns for 1281 proteins, which vary over a factor of ~103 throughout the adult 

organism’s lifespan. Examination of the data revealed individual biochemical pathways 

displayed unique temporal patterns. We focused on those changes involved in the ribosome, 

proteasome, heat shock proteins, oxidative phosphorylation, TCA cycle, and glycolysis. 

These data also show protein abundances from the younger fly populations were more 

similar to each other than corresponding abundances from the older fly populations. In other 

words, younger flies were very similar to each other, but older flies were more unique. This 

suggests that proteostasis becomes less regulated with age in the population. Proteome 

dysregulation has previously been linked with disease and aging [8,57]. Finally, we hope this 

study will establish an updated frame work to probe the intimate connection between disease 

and aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Systematic determination of the optimal drift bin specific collision energy ramp. (A) A 

series of HDMSe runs were acquired with a fixed high energy collision value for 

fragmentation in the transfer cell. Ions were detected using a time-of-flight (TOF) mass 

spectrometer. For each subsequent run, the collision energy was increased. When a peptide 

was identified at multiple collision energies, the collision energy producing the highest 

scoring match was retained. (B) Peptides were binned by the (M + H) of the precursor, and 

within each bin, the average best collision energy for those peptides was determined. Error 

bars represent one standard deviation. (C) For precursor ions, there is a linear dependence 

observed between drift time and mass-to-charge. (D–E) The distribution of collision energies 

used to generate product ions at a particular drift bin window is shown. Black bars represent 

the average collision energy for that drift bin window. (F) The average collision energies for 

peptides eluting from all drift bin windows are plotted as black circles. The intensities of the 

red circles are proportional to the number of individual peptide identifications. Error bars 

represent one standard deviation. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Label-free protein quantification. (A) An example of peptides from odorant binding protein 

(Q7K084). For each peptide, the precursor intensity as a function of day was plotted. The 

four peptides identified were SPANEWAFR (open circle), TFDYPDDDITR (triangle), 

GFKVENLVAQLGQGKEDK (cross diamond), and VENLVAQLGQGKEDK (center dot 

diamonds). Peptides show good correlation with each other across the time points. (B) The 

top 3 peptide intensities were then averaged together to determine the protein intensity at 

each day. (C) Using an internal standard, equine alcohol dehydrogenase, an absolute 

abundance can also be determined. (D–I) Lifespan median absolute abundance data were 

plotted for all proteins in rank abundance order along the X axis. Black squares represent 

specific groups of proteins associated with biochemical pathways; including proteasome 

(D), ribosome (E), heat shock (F), TCA cycle (G), oxidative phosphorylation (H), and 

glycolysis (I).
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Fig. 3. 
Quantitative mass spectrometric comparison to previous work by Sowell et al. [10]. Arginine 

kinase isoform E from Sowell et al. (A) and current dataset (B) were plotted using spectral 

matches and Top3 intensity measurements, respectively, over the lifespan of the fly. Four 

replicate analysis are averaged in the current dataset (B) with error bars representing SEM. 

The 50 most abundant (C) and all mutually quantified proteins (D) were rank ordered in 

each dataset and plotted as scattergrams. Heat maps showing the day and protein normalized 

data are shown for Sowell et al. (E) and current dataset, demonstrating increased coverage of 

protein abundance values in the current dataset. Each day in the current dataset contains 

biological replicates which are denoted by tick marks (F). Color represents the relative 

abundance from low (green) to high (red). Empty data points remain white. Ribosome 

proteins were extracted from the heat map analysis and pairwise Pearson cross correlations 

were determined. These are plotted as histograms for the number of protein pairs correlated 

at a specific correlation value for Sowell et al. (G) and the current dataset (H). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
Normalized temporal abundances for proteins of various biological function. Proteins 

annotated as oxidative phosphorylation (A), proteasome (B), TCA cycle (C), ribosome (D), 

glycolysis (E), and heat shock proteins (F) using the bioinformatics gene annotation program 

David are shown (HSPs annotations were extracted from Uniprot). For all classes, the 

median protein abundance is plotted as the thick black line with error bars denoting SEM. 

Within each line plot, all individual proteins are shown as thin grey lines.
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Fig. 5. 
Average protein abundance measurements. Cytochrome b c1 subunit 7 and 9 are shown as 

squares and circles, respectively along with protein stunted isoform B in triangles. (A) 

Proteasome core subunits alpha 7 and beta 1 are shown as open circles and open triangles, 

respectively. (B) An accessory proteasome protein Ter94 is shown as squares. (B) Aconitase 

hydratase, pyruvate carboxylase and ATP citrate synthase are given as squares, circles, and 

triangles, respectively. (C) Ribosome protein subunit 17 and 24 are shown as circles and 

squares, respectively. (D) Aldose 1 epimerase, phosphotransferase, and triosephosphate 

isomerase are squares, circles and triangle, respectively. (E) Heat shock protein 27, 60 kDa 

heat shock protein mitochondrial homolog, and the HSP 70 kDa protein are shown as 

squares, circles, and triangles, respectively. (F) Error bars represent SEM.
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Fig. 6. 
Loss of correlated protein abundance with time. (A) A scattergram of the average (black 

line) and individual protein-level abundance measurements (black points) for 60S ribosomal 

protein L31 (RpL31) across four biological replicates. RpL31 shows an increased spread of 

abundance with increasing time. (B) To systematically assess this, we calculated the intraday 

relative standard deviation for all proteins at all days. For each protein, we then determined 

the day at which it displayed the largest %RSD. This data was then plotted as a histogram 

where for each day the total number of proteins having highest variation at that day was 

shown. The rank order of a protein within one replicate can be compared to its order in the 

other replicates at the same day. An example of this for each day is shown as a scattergram 

(C). To get a broader picture of the degree to which individual proteins vary with age, we 

calculated the R2 values for the graphs shown in C along with the other possible pairs of 

replicates not shown. These average R2 values at a given day are shown as a scatter plot, 

with error bars representing SEM (D). These results support a hypothesis where protein 

abundance variation increases during aging (E).
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