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Abstract

Computed tomography (CT) is a popular medical imaging modality and enjoys wide clinical 

applications. At the same time, the x-ray radiation dose associated with CT scannings raises a 

public concern due to its potential risks to the patients. Over the past years, major efforts have 

been dedicated to the development of Low-Dose CT (LDCT) methods. However, the radiation 
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dose reduction compromises the signal-to-noise ratio (SNR), leading to strong noise and artifacts 

that downgrade CT image quality. In this paper, we propose a novel 3D noise reduction method, 

called Structurally-sensitive Multi-scale Generative Adversarial Net (SMGAN), to improve the 

LDCT image quality. Specifically, we incorporate three-dimensional (3D) volumetric information 

to improve the image quality. Also, different loss functions for training denoising models are 

investigated. Experiments show that the proposed method can effectively preserve structural and 

textural information in reference to normal-dose CT (NDCT) images, and significantly suppress 

noise and artifacts. Qualitative visual assessments by three experienced radiologists demonstrate 

that the proposed method retrieves more information, and outperforms competing methods.
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I. INTRODUCTION

X-RAY computed tomography (CT) is one of the most popular imaging modalities in 

clinical, industrial, and other applications [1]. Nevertheless, the potential risks (i.e., a chance 

to induce cancer and cause genetic damage) of ionizing radiation associated with medical 

CT scans cause a public concern [2]. Studies from the National Council on Radiation 

Protection and Measurements (NCRP) demonstrate a 600% increase in medical radiation 

dose to the US population from 1980 to 2006, showing both great successes of the CT 

technology and an elevated alert to patients [3].

The main drawback of radiation dose reduction is to increase the image background noise, 

which could severely compromise diagnostic information. How to minimize the exposure to 

ionizing radiation while maintaining diagnostic utility of low-dose CT (LDCT) has been a 

challenge for researchers, who follows the well-known ALARA (as low as reasonably 

achievable) guideline [1]. Numerous methods were designed for LDCT noise reduction. 

These methods can be categorized as follows: (1) Sinogram filtering-based techniques [4]–

[9]: these methods directly process projection data in the projection domain [6]. The main 

advantage of these methods is computational efficiency. However, they may result in loss of 

structural information and spatial resolution [6], [7], [10]; (2) Iterative reconstruction (IR) 
[11]–[20]: IR techniques may potentially produce high signal-to-noise ratio (SNR). 

However, these methods require a substantial computational cost and troublesome 

parametric turning; (3) Image space denoising techniques [20]–[27]: these techniques can be 

performed directly on reconstructed images so that they can be applied across various CT 

scanners at a very low cost. Examples are non-local means-based filters [16], [21], 

dictionary-learning-based K-singular value decomposition (KSVD) method [20] and the 

block-matching 3D (BM3D) algorithms [24], [25]. Even though these algorithms greatly 

suppress noise and artifacts, edge blurring or resolution loss may persist in processed LDCT 

images.

Deep learning (DL) has recently received a tremendous attention in the field of medical 

imaging [28], [29], such as brain image segmentation [30], image registration [31], [32], 
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image classification [33], and LDCT noise reduction [34]– [40]. For example, Chen et al. 
[35] proposed a Residual Encoder-Decoder Convolutional Neural Network (REN-CNN) to 

predict NDCT images from noisy LDCT images. This method greatly reduces the 

background noise and artifacts. However, a limitation is that the results look blurry 

sometimes since the method targets minimizing the mean-squared error between the 

generated LDCT and corresponding NDCT images. To cope with this problem, the 

generative adversarial network (GAN) [41] offers an attractive solution. In the GAN, the 

generator G learns to capture a real data distribution Pr while the discriminator D attempts to 

discriminate between the synthetic data distribution and the real counterpart. Note that the 

loss used in GAN, called the adversarial loss, measures the distance between the synthetic 

data distribution and the real one in order to improve the performance of G and D 
simultaneously. Originally, GAN uses the Jensen-Shannon (JS) divergence to evaluate the 

similarity of the two data distributions [41]. However, several problems exist in training 

GAN, such as unstable training and non-convergence. To address these issues, Arjovsky et 
al. introduced the Wasserstein distance instead of the Jensen-Shannon divergence to improve 

the neural network training [42]. We will discuss more details on this aspect in Section II-

D3.

In our previous work [37], we first introduced the perceptual loss to capture perceptual 

differences between denoised LDCT images and the reference NDCT images, providing the 

perceptually better results for clinical diagnosis at a cost of low scores in traditional image 

quality metrics. Since the traditional image quality metrics evaluate the generated images 

with reference to the gold-standard in generic ways, minimizing the perceptual loss does not 

ensure the results optimal in terms of the traditional image quality metrics. To address this 

discrepancy and inspired by the work in [36], [43], here we propose a novel 3D clinical 

Structurally-sensitive Multi-scale Generative Adversarial Network (SMGAN) to capture 

subtle structural features while maintaining high visual sensitivity. The proposed 

structurally-sensitive loss leverages a combination of adversarial loss [42], perceptually-

favorable structural loss, and pixel-wise L1 loss. Moreover, to validate the diagnostic quality 

of images processed by our method, we report qualitative image assessments by three expert 

radiologists. Systematically, we demonstrate the feasibility and merits of mapping LDCT 

images to corresponding NDCT images in the GAN framework.

Our main contributions in this paper are summarized as follows:

1) To keep the underlying structural information in LDCT images, we adopt a 3D 

CNN model as a generator based on WGAN which can enhance the image 

quality for better diagnosis.

2) To measure the structural difference between generated LDCT images and the 

NDCT gold-standard, a structurally-sensitive loss is used to enhance the 

accuracy and robustness of the algorithm. Different from [37], we replace the 

perceptual loss with a combination of L1 loss and structural loss.

3) To compare the performance of the 2D and the 3D models, we perform an 

extensive evaluation on their convergence rate and denoising performance.
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This paper is organized as follows: Section II introduces the proposed approach and analyzes 

the impact of each component loss function on the image quality. Section III presents the 

experimental design and results. Section IV discusses relevant issues. Finally, the concluding 

remarks and future plans are given in Section V.

II. METHODS

A. Problem Inversion

Assuming that y ∈ ℝH × W × D denotes the original LDCT image, and x ∈ ℝH × W × D denotes 

the corresponding NDCT image, the relationship between them can be expressed as:

y = T(x) + ϵ (1)

where T :ℝH × W × D ℝH × W × D is a generic noising process that degrades a real sample x 
of NDCT to a corresponding LDCT sample y in a non-linear way. ∈ stands for the additive 

noise and unmodeled factors, and H, W, D are height, width and depth respectively.

From another standpoint, considering that the real NDCT distribution Pr is unknown, we 

focus on extracting information to recover desired images x from the noisy LDCT images y. 

In general, the noise distribution in CT images is regarded as the mixture of Poisson 

quantum noise and Gaussian electronic noise [44]. Compared with traditional denoising 

methods, the DL-based method is capable of effectively modeling any type of data 

distributions since the DL-based denoising model itself can be easily adapted to any 

practical noise model with statistical properties of typical noise distributions in a 

combination. Therefore, the proposed DL-based denoising network is to solve the inverse 

problem T† ≈ T–1 to retrieve feasible images, and the solution can be expressed as:

T†y = x ≈ x (2)

As shown in Fig. 1, the overall network comprises three parts. Part 1 is the generator G, part 

2 is the Structurally-Sensitive loss (SSL) function, and part 3 is the discriminator D. G maps 

a volumetric LDCT image to the NDCT feature space, thereby estimating a NDCT image. 

The SSL function computes the structurally-sensitive dissimilarity which encodes multi-

scale structural information. The loss computed by the SSL function aims to improve the 

ability of G to generate realistic results. D distinguishes a pair of synthetic and real NDCT 

images. If D can identify the input image as “synthetic” or “real” correctly and tell us the 

discrepancy between the estimated CT image and the corresponding real NDCT image, we 

will know if G yields a high-quality estimation or not. With the indication from D, G can 

optimize its performance. Also, D can upgrade its ability as well. Hence, G and D are in 

competition: G attempts to generate a convincing estimate to an NDCT image while D aims 

to distinguish the estimated image from real NDCT images. See Sections II-C and II-D for 

more details. For your convenience, the summary of notations that we use in this paper is in 

Table V.
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B. 3D Spatial Information

The advantages of using 3D spatial information are evident. Hence, volumetric imaging and 

3D visualization have become standards in diagnostic radiology [45]. There is a large 

amount of 3D NDCT and LDCT volumetric images available in practice. However, most of 

the networks are of 2D-based architecture. With a 3D network architecture, adjacent 

crosssection slices from a 3D CT image volume exhibit strong spatial correlation which we 

can utilize to preserve more information than with 2D models.

As mentioned above, here we use a 3D ConvNet as the generator and introduce a 3D 

Structurally-Sensitive loss (SSL) function. Accordingly, we extract 3D image patches and 

use a 3D filter instead of a 2D filter. The generator in our network takes 3D volumetric 

LDCT patches as the input and process them with 3D non-linear transform operations. For 

convenience and comparison, 2D and 3D denoising networks are referred to as SMGAN-2D 

and SMGAN-3D respectively. The details of the network architecture are in the following 

Section II-C.

C. Network Structure

Inspired by the studies in [36], [37], we introduce our proposed SMGAN-3D network 

structure. First, in Section II-C1 we present the 3D generator G which captures local 

anatomical features. Then, in Section II-C2 we define the 3D SSL function which guides the 

learning process. Finally, we outline the 2.5D discriminator D in Section II-C3.

1) 3D CNN Generator: The generator G consists of eight 3D convolutional (Conv) 

layers. The first 7 layers each has 32 filters, and the last layer has only 1 filter. The odd-

numbered convolutional layers apply 3 × 3 × 1 filters, while the evennumbered 

convolutional layers use 3 × 3 × 3 filters. The size of the extracted 3D patches is 80×80×11 

as the input to our whole network; see Fig. 1. Note that the variable n denotes the number of 

the filters and s denotes the stride size, which is the step size of the filer when moving across 

an image so that n32s1 stands for 32 feature maps with a unit stride. Furthermore, a pooling 

layer after each Conv layer may lead to loss of subtle textural and structural information. 

Therefore, the pooling layer is not applied in this network. The Rectified Linear Unit 

(ReLU) [46] is our activation function after each Conv layer.

2) Structurally-Sensitive Loss (SSL) Function: The proposed 3D SSL function 

measures the patch-wise discrepancy between a 3D output from the 3D ConvNet and the 3D 

NDCT image in the spatial domain. This measure is back-propagated [47] through the 

neural network to update the parameters of the network; see Section II-D for more details.

3) Discriminator: The discriminator D consists of six convolutional layers with 64, 64, 

128, 128, 256, and 256 filters and the kernel size of 3 × 3. Two fully-connected (FC) layers 

produce 1024 and 1 feature maps respectively. Each layer is followed by a leaky ReLU 

defined as max(0,x) – α max(0,−x) [46], where α is a small constant. A stride of one pixel is 

applied for odd-numbered Conv layers and a stride of two pixels for even-numbered Conv 

layers. The input fed to D is of the size 64×64×3, which comes from the output of G. The 

reason why we use a 2D filter in D is to reduce the computational complexity. Since the 
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adversarial loss between each two adjacent slices in one volumetric patch contribute equally 

to the weighted average in one iteration, it can be easily computed. Following the suggestion 

in [42], we do not use the sigmoid cross entropy layer in D.

D. Loss Functions for Noise Reduction

In this sub-section, we evaluate the impact of different loss functions on LDCT noise 

reduction. This justifies the use of a hybrid loss function for optimal diagnostic quality.

1) L2 loss: The L2 loss can efficiently suppress the background noise, but it could make 

the denoised results unnatural and blurry. This is expected due to its regressionto-mean 

nature [43], [48]. Furthermore, the L2 loss assumes that background noise is white Gaussian 

noise, which is independent of local image features [49] and not desirable for LDCT 

imaging.

The formula of L2 loss is expressed as:

L2 = 1
HWD G(y) − x

2

2
(3)

where H, W, D stand for the height, width, and depth of a 3D image patch respectively, x 
denotes the gold-standard (NDCT), and G(y) represents the generated result from the source 

(LDCT) image y. It is worth noting that since the L2 loss has appealing properties of 

differentiability, convexity, and symmetry, the mean squared error (MSE) or L2 loss is still a 

popular choice in denoising tasks [50].

2) L1 Loss: The L1 and L2 losses are both the mean-based measures, the impacts of these 

two loss functions are different on denoising results. Compared with the L2 loss, the L1 loss 

does not over-penalize large differences or tolerate small errors between denoised and gold-

standard images. Thus, the L1 loss can alleviate some drawbacks of the L2 loss we 

mentioned earlier. Additionally, the L1 loss enjoys the same fine characteristics as L2 loss 

except for the differentiability. The formula for the L1 loss is written as:

L1 = 1
HWD G(y) − x (4)

As shown in Figs. 3–6, compared with the L2 loss, the L1 loss suppresses blurring, but does 

not help reduce blocky artifacts. For more details, see Section III.

3) Adversarial Loss: The Wasserstein distance with the regularization term was 

proposed in [48], which is formulated as

Ladv = − 𝔼[D(x)] + 𝔼[D(z)] + λ𝔼 ∇x D(x) 2 − 1 2
(5)
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where the first two terms are for the Wasserstein distance, and the third term implements the 

gradient penalty. Note that z denotes G(y) for brevity. x is uniformly sampled along the 

straight line between a pair of points sampled from G and corresponding NDCT images.

4) Structural Loss: Medical images contain strong feature correlations. For example, 

their voxels have strong interdependencies. The structural similarity index (SSIM) [49] and 

the multi-scale structural similarity index (MS-SSIM) [51] are perceptually motivated 

metrics, and perform better in visual pattern recognition than mean-based metrics [49]. To 

measure the structural and perceptual similarity between two images, the SSIM [49] is 

formulated as follows:

SSIM (x, z) =
2μxμz + C1

μx
2 + μz

2 + C1
*

2σxz + C2
σx

2 + σz
2 + C2

(6)

= l(x, z) *  cs (x, z) (7)

where C1,C2 are constants and μx,μz,σx,σz,σxz denote means, standard deviations and cross-

covariance of the image pair (x,z) from G and the corresponding NDCT image respectively. 

l(x,z), cs(x,z) are the first term and second factor we defined in Eqn. 6.

The multiscale SSIM provides more flexibility for multiscale analysis [51]. The formula for 

MS-SSIM [51] is expressed as:

MS−SSIM(x, z) = ∏
j = 1

M

SSIM x j, z j (8)

where xj,zj are the local image content at the jth level, and M is the number of scale levels. 

Clearly, SSIM is a special case of MS-SSIM.

The formula for the structural loss (SL) is generally expressed as:

LSL = 1 − MS−SSIM(x, z) (9)

Note that the loss can be easily back-propagated to update weights in the network, since it 

can be differentiated [43].

5) Objective Function: As mentioned in the recent studies [37], [43], minimizing the 

L2 loss leads to over-smoothed appearance. The adversarial loss in GAN may yield sharp 

images, but it does not exactly match the corresponding real NDCT images [37]. The 

perceptual loss computed by a VGG network [47] evaluates the perceptual differences 
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between the generated images and real NDCT images in a high-level feature space instead of 

the voxel space. Since the VGG network is trained on a large dataset of natural images, not 

CT images, it may result in distortions of processed CT images. To tackle these issues, we 

propose to utilize different loss terms together for high image quality.

As revealed in [43], the L1 loss allows noise suppression and SNR improvement. However, it 

blurs anatomical structures to some extent. In contrast, the structural loss discourages 

blurring and keeps high contrast resolution. To have the merits of both loss functions, the 

structural sensitive loss (SSL) is expressed as:

LSSL = τ × LSL + (1 − τ) × L1 (10)

where τ is the weighting factor to balance between structure preservation in the first term 

(from Eq. 9) and noise suppression in the second term (from Eq. 4).

Nevertheless, the above-mentioned two losses may still miss some diagnostic features. 

Hence, the adversarial loss is incorporated to keep textural and structural features as much as 

possible. In summary, the overall objective function of SMGAN is expressed as:

Lob j = LSSL + β × Ladv (11)

where β is the weight for the adversarial loss. In the last step of the network, we compare the 

difference between the output volume and the target volume, and then the error can be back-

propagated for optimization [52].

III. EXPERIMENTS AND RESULTS

A. Experimental Datasets and Setup

To show the effectiveness of the proposed network for LDCT noise reduction, we used a real 

clinical dataset, published by Mayo Clinic for the 2016 NIH-AAPM-Mayo Clinic Low Dose 
CT Grand Challenge [53]. The Mayo dataset consists of 2,378 normal dose CT (NDCT) and 

low dose (quarter dose) CT (LDCT) images from 10 anonymous patients. The 

reconstruction interval and slice thickness in the dataset were 0.8mm and 1.0mm 
respectively.

For limited data, the denoising performance of DL-based methods depends on the size of 

the training datasets, so large-scale valid training datasets can improve the denoising 

performance. However, it is worth noting that the training image library may not contain 

many valid images. To enhance the performance of the network, the strategies we utilized 

are as follows. First of all, in order to improve generalization performance of the network 

and avoid over-fitting, we adopted the “10-fold cross validation” strategy. The original 

dataset was partitioned into 10 equal size subsets. Then, a single subset was used in turn as 

the validation subset and the rest of data were utilized for training. Moreover, considering 

the limited number of CT images, we applied the overlapping patches strategy because it can 
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not only consider patch-wise spatial interconnections, but also significantly increase the size 

of the training patch dataset [54], [55].

For data preprocessing, the original LDCT and NDCT images are of 512 × 512 pixels. 

Since directly processing the entire patient images is computationally inefficient and 

infeasible, our denoising model was applied to image patches. First, we applied the 

overlapped sliding window with a sliding size of 1 × 1 × 1 to obtain image patches and then 

randomly extracted 100,100 pairs of training patches and 5,100 pairs for validation from 

remaining patient images of the same size 80 × 80 × 11. Then, the “10-fold cross validation” 

strategy is used to ensure the accuracy of the proposed algorithm. Next, the CT Hounsfield 

Unit (HU) scale was normalized to [0, 1] before the images were fed to the network.

For qualitative comparison, in order to validate the performance of our proposed methods 

(SMGAN-2D and SMGAN-3D), we compare them with eight state-of-the-art denoising 

methods, including CNN-L2 (L2-net), CNN-L1 (L1-net), structural-loss net (SL-net), multi-

scale structural-loss net (MSL-net), WGAN, BM3D [25], RED-CNN [35], and WGAN-

VGG [37]. Among these existing denoising methods, BM3D is a classical image space 

denoising algorithm. WGAN-VGG represents a 2D perceptual-loss-based network, and 

RED-CNN refers to a 2D pixel-wise network. Note that the parameter settings in these 

methods [25], [35], [37] had been followed per the suggestions from the original papers.

For quantitative comparison, to evaluate the effectiveness of the proposed methods, three 

metrics were chosen to perform image quality evaluation, including peak signal-to-noise 

ratio (PSNR), structural similarity index (SSIM) [51], and rootmean-square error (RMSE).

B. Parameter Selection

In our experiments, the Adam optimization algorithm was implemented for our network 

training [56]. In the training phase, the mini-batch size was 64. The hyperparameter λ for 

the balance between the Wasserstein distance and gradient penalty was set 10, per the 

suggestion from the original paper [42]. The parameter β for the trade-off between 

adversarial loss and mixture loss was set be 10−3. The parameter τ was set to 0.89. The slope 

of the leaky ReLu activation function was set to 0.2. The networks are implemented in the 

TensorFlow [57] on an NVIDIA Titan Xp GPU.

C. Network Convergence

To examine the robustness of different denoising algorithms, ten methods corresponding to 

the L1 loss (L1), structural loss (SL), and Wasserstein distance were separately trained in the 

same settings as that for SMGAN-3D. Note that the parameter settings of RED-CNN, 

WGAN-VGG, and BM3D from the original papers had been followed [25], [35], [37]. In 

addition, the size of the input patches of the 2D network is 80 × 80 while our proposed 3D 

model uses training patches with the size of 80 × 80 × 11. We calculated the averaged loss 

value achieved by different methods versus the number of epochs as the measure of 

convergence in Fig. 2.

In Fig. 2a and 2b, in terms of L1 and SL, we observe that L1-net and L2-net achieved the 

fastest convergence rate and have similar convergence trends in that all curves decreased 
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initially and then smoothly converged, indicating that these mean-based algorithms both 

have fast convergence rates. Fig. 2a shows that they both converged around the 6th epoch. In 

contrast, in Fig. 2a, there are differences between SL-based and mean-based methods. We 

can see that the convergence curve of the SL-net decreases initially and then slightly rises 

around the 4th epoch as shown in Fig. 2a. MSL-net also shows a small increase like SL-net 

in terms of L1. This observation indicates that SL-based and mean-based methods have 

different emphasis on minimizing perceptually motivated similarity between real NDCT 

images and generated NDCT images. For WGAN-based methods, it can be clearly observed 

that the curves for WGAN, WGAN-VGG, SMGAN-2D, and SMGAN-3D slightly oscillate 

in the convergence process after the 5th epoch in Fig. 2a and 2b. The reason for such 

oscillatory behaviors is as follows: G attempts to mimic the real NDCT distribution while D 
aims to differentiate between the real NDCT distribution and the denoised LDCT 

distribution. Since GAN’s intrinsic nature is a two-player game, the distributions of G and D 
are constantly changing, and this leads to the oscillatory behavior when converging to their 

optimal status.

As shown in Fig. 2c, we can evaluate the convergence performance of WGAN. It can be 

seen that our proposed SMGAN-2D has the mildest oscillatory behavior compared with the 

other three models and reaches a stable state after the 13th epoch. Moreover, the 

SMGAN-3D oscillates in a relatively large range in the training process. This is because our 

proposed SMGAN-3D considers 3D structural information which results in a relatively 

larger vibrating amplitude in the training process. However, the curve still oscillates close to 

the x-axis, indicating SMGAN-3D’s robustness in minimizing the Wasserstein distance 

between the generated samples and real samples.

D. Denoising Performance

To demonstrate the effectiveness of the proposed network, we perform the qualitative 

comparisons over three representative abdominal images presented in Figs. 3, 5 and 7. For 

better evaluations of the image quality with different denoising models, zoomed regions-of-

interest (ROIs) are marked by red rectangles and shown in Figs. 4, 6 and 8 respectively. Note 

that all results from different denoising models focus on two aspects: content restoration and 

noise-reduction. All CT images in axial view are displayed in the angiography window 

[-160, 240]HU.

The real NDCT images and corresponding LDCT images are presented in Figs. 3a and 3b. 

As observed, there are distinctions between ground truth (NDCT) images and LDCT 

images. Figs. 3a and 7a show the lesions/metastasis. Fig. 5a presents focal fatty sparing/

focal fat. In Figs. 4a, 6a and 8a, these lesions can be clearly observed in NDCT images; in 

contrast, from Figs. 4b, 6b, and 8b, it can be seen that the original LDCT image is noisy, and 

lacks structural features for task-based clinical diagnosis. All adopted denoising models 

suppress noise to some extent.

1) Comparison with CNN-based denoising methods: To study the robustness of 

the adversarial learning framework in SMGAN-3D, we compared SMGAN-3D with the 

CNN-based methods, including CNN-L2, CNN-L1, RED-CNN [35], SLnet and MSL-net. It 
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is worth noting that CNN-L2, CNN-L1, and RED-CNN are mean-based denoising methods, 

and SLnet and MSL-net are SL-based denoising methods. All of the methods greatly reduce 

the noise compared with LDCT images. Our proposed method preserves more structural 

details, thereby yielding better image quality, compared with the other five methods.

Mean-based methods can effectively reduce noise, but the side effect is impaired image 

contents. In Fig. 3c, L2-net greatly suppresses the noise, but blurs some crucial structural 

information in the porta hepatis region. Meanwhile, some waxy artifacts can still be 

observed in Fig. 6c. L2-net does not produce good visual quality because it assumes that the 

noise is independent of local characteristics of the images. Even though it retains high SNR, 

its results are not clinically preferable. Compared with L2-net, in Figs. 3d and 5d, it can been 

seen that L1-net encourages less blurring and preserves more structural information. 

However, as observed in Fig. 4d, it still over-smooths some anatomical details. Meanwhile, 

in Fig. 6d, there are some blocky effects marked by the blue arrow. The results obtained by 

RED-CNN [35] deliver high SNR but blur the vessel details as shown in Figs. 4i and 6i.

For SL-based methods, as observed in Figs. 3e and 5e, SL-net generates images with higher 

contrast resolution and preserves texture of real NDCT images better than L2-net and L1-net. 

However, Figs. 4e and 6e show that SL-net does not preserve the structural features well, 

and there still remain small streak artifacts. Subsequently, in Figs. 4e and 4f, SLnet and 

MSL-net have low frequency image intensity variance because SSIM/MS-SSIM is 

insensitive to uniform biases [49], [51]. On the other hand, L1-net preserves the overall 

image intensity, but it does not preserve high contrast resolution well as SL-net and MSL-net 

do.

From Figs. 7 and 8, we can see mean-based and SLbased methods work well with effective 

noise suppression and artifact removal. However, the illustrations in Fig. 8 show that these 

methods blur the local strutural features. Our proposed SMGAN-based methods present a 

better edge preservation than the competing methods.

Overall, the observations above support the following statements. First, although the voxel-

wise methods show good noise-reduction properties, to some extent they blur the contents 

and lead to the loss of structural details because they optimize the results in the voxel-wise 

manner. Second, SLbased methods better preserve texture than mean-based methods, but 

they cannot preserve overall image intensity. Third, the results produced by the proposed 

SMGAN-3D demonstrate the benefits of the combination of two loss functions and the 

importance of the adversarial training [41], [42].

2) Comparison with WGAN-based denoising methods: To evaluate the 

effectiveness of our proposed objective function, we compare our method with existing 

WGAN-based networks, including WGAN and WGAN-VGG. Considering the importance 

of clinical image quality and specific structural features for medical diagnosis, we adopted 

the adversarial learning method [41], [42] in our experiments because WGAN could help to 

capture more structural information. Nevertheless, based on our prior experience, utilizing 

WGAN alone may yield stronger noise than other selected approaches, because it only maps 

the data distribution from LDCT to NDCT without consideration of local voxel intensity and 
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structural correlations. The observations demonstrate that the noise texture is coarse in the 

images, as shown in Fig. 4g and Fig. 8g, which support our intuition.

Indeed, the images of WGAN-VGG [37], as shown in Fig. 3j, exhibit better visual quality 

with respect to more details and share structural details similar to NDCT images according 

to human perceptual evaluations. However, Figs. 4j (marked by the red circle) and 6j 

(marked by the green circle) suggest that it may severely distort the original structural 

information. A possible reason is that the VGG network [47] is a pre-trained deep CNN 

network based on natural images, and the structural information and contents of natural 

images are different from medical images.

Compared with WGAN and WGAN-VGG, our proposed SMGAN-3D, as shown in Figs. 4l 

(marked by the red circle) and 6l (marked by the green circle), can more clearly visualize the 

metastasis and better preserve of the portal vein.

In Figs. 7 and 8, it can be found that the SMGAN-based methods can achieve better 

anatomical feature preservations and visual quality than other state-of-the-art methods.

The experimental results demonstrate that our proposed objective function is essential to 

capture more accurate anatomical details.

3) Comparison with Image space denoising: To validate the robustness of DL-

based methods, we compared our method with the image space denoising method. Figs. 4h 

and 6h show that BM3D blurs the low-contrast lesion marked by the red circle and smooths 

specific features marked by the blue arrow. In contrast, SMGAN-3D exhibits better on the 

low-contrast lesion and yields sharper features as shown in Figs. 4l and 6l.

4) Comparison with 2D-based SMGAN network: In order to evaluate the 3D 

structural information, we compared SMGAN-3D with SMGAN-2D. As shown in Fig. 4l, 

our proposed SMGAN-3D generated the results with better subtle details than SMGAN-2D 

and enjoys more similar statistical noise properties to the corresponding NDCT images. The 

reasons why SMGAN-3D outperforms SMGAN-2D are follows. First, SMGAN-3D 

incorporates 3D structural information to improve image quality. Second, SMGAN-2D takes 

input slice by slice, thus potentially leading to the loss of spatial correlation between 

adjacent slices.

Figs. 7 and 8 demonstrate that the SMGAN-3D can be used to provide improved anatomical 

feature preservation over other state-of-the-art methods.

In summary, we compared our proposed methods with existing methods, and it can be 

clearly observed that SMGAN-3D achieves robust performance in noise suppression, artifact 

removal, and texture preservation. Note that we recommend the reader to see ROIs (in Fig. 4 

and 6) or zoom in to better evaluate our results. To further validate the generalization ability 

of our proposed model, we conclude more details in Appendix A.
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E. Quantitative analysis

We performed the quantitative analysis with respect to three selected metrics (PNSR, SSIM, 

and RMSE). Then, we investigated the statistical properties of the denoised images for each 

noise-reduction algorithm. Furthermore, we performed a blind reader study with three 

radiologists on 10 groups of images. Note that quantitative full-size measurements are in 

Table I and image quality assessments of ROIs are in Fig. 9. The NDCT images are chosen 

as the gold-standard.

1) Image quality analysis: As shown in Table I, RED-CNN scores the highest PSNR 

and RMSE, and ranks the second place in SSIM. Since the properties of PSNR and RMSE 

are regression to the mean, it is expected that RED-CNN, a meanbased regressiom 

optimization, has better performance than other feature-based models. For SL-net and MSL-

net, it is not surprising that both models achieve the highest SSIM scores due to the adoption 

of structural similarity loss. However, a good score measured by image quality metrics does 

not ensure the preservation of high-level feature information and structural details, and this 

explains why RED-CNN can have the best PSNR and RMSE despite over-smoothing the 

content. PSNR, SSIM and RMSE are not perfect, and they are subject to image blurring abd 

blocky/waxy artifacts in the denoised images, as shown in Figs. 3–8. Hence, these metrics 

may not be sufficient in evaluating image quality and indicating diagnostic performance. 

Indeed, WGAN can provide better visual quality and achieve improved statistical properties. 

Compared with the CNN-based methods, the WGAN architecture can progressively reserve 

the consistency of the feature distributions between LDCT and NDCT images. By 

encouraging less blurring, WGAN alone could introduce more image noise to compromise 

diagnosis. To keep information in LDCT images, our novel loss function with a 

regularization term is structurally alert to enhance the clinical usability as compared to the 

other methods.

Although mean-based approaches, such as L1-net, L2-net, enjoy high metric scores, they 

may over-smooth the overall image contents and lose feature characteristics, which do not 

satisfy our HVS requirements because mean-based methods favor the regression toward the 

mean. Meanwhile, WGANVGG satisfies HVS requirements, but gets the lowest scores in 

the three selected metrics. The reason for the lowest scores is that WGAN-VGG may suffer 

from loss of subtle structural information or noise features, which may severely affect the 

diagnostic accuracy. The proposed SMGAN-2D outperforms the feature-based method 

WGAN-VGG with reference to the three metrics, illustrating the robust denoising capability 

of our proposed loss function. Compared with the SMGAN-2D model, SMGAN-3D 

achieves higher scores in PSNR and SSIM since it incorporates 3D spatial information. To 

further validate the performance of each denoising model with respect to clinically 

significant local details, we performed the quantitative analysis over ROIs. The summary of 

the quantitative results from ROIs is shown in Fig. 9. It is worth noting that the quantitative 

results of the ROIs follow a similar trend to that of the full-size images.

2) Statistical analysis: To quantitatively evaluate the statistical properties of processed 

images by different denoising models, we calculate the mean CT number (Hounsfield Unit) 

and standard deviations (SDs) of ROIs, as shown in Table II. For each denoising model, the 
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percent error of the mean and SD values were calculated in comparison to those of the 

reference (NDCT) images. The lower percent errors correspond to more robust denoising 

models. As shown in Table II, L1-net, L2-net, SL-net, MSL-net, BM3D, REDCNN, and 

WGAN-VGG generate high percent errors in SD with respect to the NDCT images. There 

are blocky and over-smoothing effects in the images which match our visual inspections. 

Specifically, for Fig. 8, the absolute difference in SD between BM3D and NDCT is the 

largest among all of the denoising models, which indicates that BM3D has the most 

noticeable blurring effects. The standard deviation of BM3D supports our visual 

observations as shown in Figs. 4h, 6h, and 8h. The mean values of WGAN, WGAN-VGG, 

SL-net and SMGAN-2D deviated much from that of the NDCT image in Fig. 4. This 

indicates that WGAN, WGAN-VGG, and SMGAN-2D effectively reduce the noise level but 

compromise significant content information. Nevertheless, the SD value of SMGAN-2D is 

close to that of NDCT, which indicates that it supports HVS requirements. From the 

quantitative analysis in Table II, it can be observed that our proposed SMGAN-3D achieves 

the best matching SD to the NDCT images out of all other methods. Overall, SMGAN-3D is 

a highly competitive denoising model for clinical use.

3) Visual assessments: To validate clinical image quality of processed results, three 

radiologists performed a visual assessment on 10 groups of images. Each group includes an 

original LDCT image with lesions, the corresponding reference NDCT image, and the 

processed images by different denoising methods. NDCT, considered as the gold-standard, is 

the only labeled image in each group. All other images were evaluated on sharpness, noise 

suppression, diagnostic acceptability, and contrast retention using a five-point scale (5 = 

excellent and 1 = unacceptable). We invited three radiologists with mean clinical experience 

of 12.3 years to join our study. Note that these results were evaluated independently and the 

overall image quality score for each method was computed an averaging score from the four 

evaluation criteria. For different methods, the final score is presented as mean±SD (average 

score of three radiologists±standard deviation). The final quantitative results are listed in 

Table III.

As observed, the original LDCT images have the lowest scores because of their severe image 

quality degradation. All denoising models improve the scores to some extent in this study. 

From Table III, RED-CNN obtains the highest score in noise suppression. Compared to all 

other methods, our proposed SMGAN-3D scores best with respect to sharpness, diagnostic 

acceptability, and contrast retention. Furthermore, voxel-wise optimization (CNN-L2) has 

the best visuallyassessed image noise suppression, but it suffers from relatively low scores in 

sharpness and diagnostic acceptability, indicating a loss of image details. The proposed 

SMGAN-3D model gets a superior overall image quality score relative to the 2D model, 

which indicates that a 3D model can enhance CT image denoising performance by 

incorporating spatial information from adjacent slices.

In brief, the visual assessment demonstrates that SMGAN-3D has powerful capabilities in 

noise reduction, subtle image structure and edge preservation, and artifact removal. Most 

importantly, it satisfies the HVS requirements as shown in Figs. 3–6.
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F. Computational Cost

In CT reconstruction, there is a trade-off between the computational cost and the image 

quality. In this aspect, a DL-based algorithm has great advantages in computational 

efficiency. Although the training of DL-based methods is timeconsuming, it can rapidly 

perform the denoising tasks on reconstructed LDCT images after the training is completed. 

In our study, the proposed 2D method requires about 15 hours and the 3D model needs 

approximately 26 hours for training to converge. WGAN-VGG, which has the same number 

of layers, takes about 18 hours in the training phase. Compared with iterative reconstruction, 

any DL-based approach will require much less execution time, which facilitates the clinical 

workflow. In practice, our proposed SMGAN-2D and SMGAN-3D took 0.534s and 4.864s 

respectively in the validation phase on a NVIDA Titan GPU. Compared with the results in 

[58], [59], our method took significantly less time. For example, the computational cost for 

soft threshold filtering (STF)-based TV minimization in the ordered-subset simultaneous 

algebraic reconstruction technique (OS-SART) framework took 45.1s per iteration on the 

same computing platform. Hence, it is clear that once the model is trained, it requires far less 

computational overhead than an iterative reconstruction method given that other conditions 

are equal.

IV. DISCUSSIONS

As mentioned before, different emphases on visual evaluation and traditional image quality 

metrics were extensively investigated. When training with only the mean-based losses (L1-

net, L2-net, RED-CNN), the results can achieve high scores in quantitative metrics and yield 

promising results with substantial noise reduction. When training with the featurebased 

methods (WGAN-VGG), the results can meet HVS requirements for visualization since they 

preserve more structural details than mean-based methods. However, these methods suffer 

from the potential risk of content distortion since a perceptual loss is computed based on a 

network [47] trained on a natural image dataset. Practically and theoretically, even though 

adversarial learning can prevent smoothing in the image, and capture structural 

characteristics, they may often result in severe loss of diagnostic information. To integrate 

the best characteristics of these loss functions, we have proposed a hybrid loss function to 

deliver the LDCT image quality optimally.

Although our proposed network has achieved high-quality denoised LDCT images, there are 

still rooms for potential improvements. First and foremost, some feature edges in the 

processed results still look blurry. Also, some structural variations between NDCT and 

LDCT do not perfectly match. A possible way to enhance correlation between NDCT and 

LDCT is to design a network with a better modeling capability, which is the work we have 

started. As far as our reader study is concerned, although visual assessment may be subject 

to intra-as well as inter-operator variability, on average such assessment can still evaluate 

different algorithms effectively, especially in a pilot study. In our follow-up study, we will 

invite more radiologists to rate the results, and then quantify inter-operator variability in a 

task-specific fashion, and also study intra-operator variability.
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V. CONCLUSION

In conclusion, we have presented a 3D CNN-based method for LDCT noise reduction. As a 

follow-up to our previous work [37], a 3D convolutional neural network is utilized to 

improve the image quality in the 3D contextual setting. In addition, we have highlighted that 

the purpose of loss functions is to preserve high-resolution and critical features for 

diagnosis. Different from the state-of-the-art LDCT denoising method used in [36], an 

efficient structurally-sensitive loss has been included to capture informative structural 

features. Moreover, we have employed the Wasserstein distance to stabilize the training 

process for GAN. We have performed the quantitative and qualitative comparison of the 

image quality.

The assessments have demonstrated that SMGAN-3D can produce results with higher-level 

image quality for clinical usage compared with the existing denoising networks [34]–[37].

In the future, we will extend our model to other medical imaging modalities in a task-

specific manner. Moreover, we plan to incorporate more advanced denoising models such as 

the networks mentioned in [60]–[62] for LDCT reconstruction. Finally, we are also 

interested in making our denoising software robust over different scanners.
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APPENDIX A

DIFFERENT TRAINING SETS FOR SMGAN-3D TRAINING

We randomly splitted the Mayo dataset [53] into four different training sets,each with 5,000 

image patches of size 80 × 80 × 11 pixels. Then, different training sets were used to validate 

the generalizability of our proposed 3D SMGAN model. The results are presented in Fig. 10 

and Table IV.
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Fig. 1: 
The overall structure of the proposed SMGAN network. Note that the variable n denotes the 

number of filters and s denotes the stride size.
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Fig. 2: 
Comparison of loss function value versus the number of epochs with respect to different 

algorithms. (a) L1 Loss, (b) Structural Loss, and (c) Wasserstein Distance curves.
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Fig. 3: 
Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-

net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D, 

and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 4. The display 

window is [-160, 240]HU.
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Fig. 4: 
Zoomed parts of the region of interests (ROIs) marked by the red rectangle in Fig. 3. (a) 

NDCT, (b) LDCT, (c) CNNL2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN, (h) 

BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D and (l) SMGAN-3D. The red 

circle indicates the metastasis and the green and blue arrows indicate two subtle structure 

parts. The display window is [-160,240]HU.
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Fig. 5: 
Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-

net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D, 

and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 6. This display 

window is [-160, 240]HU.
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Fig. 6: 
Zoomed parts of the region of interests (ROIs) marked by the red rectangle in Fig. 5. (a) 

NDCT, (b) LDCT, (c) CNNL2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN, (h) 

BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D and (l) SMGAN-3D. The red 

circle indicates the metastasis and the green and blue arrows indicates two subtle structures. 

The display window is [-160,240]HU.
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Fig. 7: 
Results from abdomen CT images. (a) NDCT, (b) LDCT, (c) CNN-L2, (d) CNN-L1, (e) SL-

net, (f) MSL-net, (g) WGAN (h) BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D, 

and (l) SMGAN-3D. The red rectangle indicates the region zoomed in Fig. 8. This display 

window is [-160, 240]HU.
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Fig. 8: 
Zoomed parts of the region of interests (ROIs) marked by the red rectangle in Fig. 7. (a) 

NDCT, (b) LDCT, (c) CNNL2, (d) CNN-L1, (e) SL-net, (f) MSL-net, (g) WGAN, (h) 

BM3D, (i) RED-CNN, (j) WGAN-VGG, (k) SMGAN-2D and (l) SMGAN-3D. The red and 

the green circles indicate subtle edges. The display window is [-160,240]HU.
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Fig. 9: 
Performance comparison of LDCT and ten algorithms over the ROIs marked by the red 

rectangles in Fig. 3a and Fig. 5a.
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Fig. 10: 
Results from four different training sets for SMGAN-3D. (a)-(d) refer to Fig. 3, (e)-(h) refer 

to Fig. 5 and (i)-(l) refer to Fig. 7. This display window is [-160, 240]HU.
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Table I:

Quantitative results associated with different approaches in Figs. 3 and 5.

Fig. 3 Fig. 5 Fig. 7

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

LDCT 22.818 0.761 0.0723 21.558 0.659 0.0836 24.169 0.737 0.0618

CNN-L1 27.791 0.822 0.0408 26.794 0.738 0.0457 29.162 0.807 0.0348

CNN-L2 27.592 0.819 0.0418 26.630 0.736 0.0466 28.992 0.806 0.0355

SL-net 26.864 0.831 0.0453 25.943 0.745 0.0504 28.069 0.813 0.0395

MSL-net 27.667 0.831 0.0414 26.685 0.744 0.0469 28.902 0.812 0.0359

WGAN 25.727 0.801 0.0517 24.655 0.711 0.0585 26.782 0.781 0.0458

BM3D 27.312 0.809 0.0431 26.525 0.728 0.0472 28.959 0.794 0.0356

RED-CNN 28.279 0.825 0.0385 27.243 0.743 0.0444 29.679 0.811 0.0328

WGAN-VGG 26.464 0.811 0.0475 25.300 0.722 0.0543 27.161 0.793 0.0419

SMGAN-2D 26.627 0.821 0.0466 25.507 0.732 0.0530 27.731 0.795 0.0406

SMGAN-3D 26.569 0.824 0.0473 25.372 0.739 0.0538 27.398 0.794 0.0411
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Table II:

Statistical properties of the images in Figs. 4, 6 axnd 8. These are the ROIs indicated by the red rectangles in 

Figs. 3, 5 and 7. Note that the relative percentage difference of NDCT values versus the rest of models is 

added to aid the readers.

Fig. 4 Fig. 6 Fig. 8

Mean SD Mean SD Mean SD

NDCT 115.282 45.946 56.903 58.512 51.225 73.297

LDCT 114.955 (−0.2837%) 74.299 (61.709%) 57.228 (0.571%) 85.854 (46.729%) 50.142 (−2.114%) 89.346 (21.896%)

CNN-L1 115.809 (0.4571%) 28.532 (−37.9010%) 57.709 (1.416%) 42.315 (−27.682%) 50.917 (−0.6013%) 66.359 (−9.466%)

CNN-L2 117.191 (1.656%) 29.933 (−34.852%) 58.956 (3.608%) 43.411 (−25.808%) 52.229 (1.960%) 66.922 (−8.698%)

SL-net 131.333 (13.923%) 35.844 (−21.987%) 68.471 (20.329%) 50.789 (−13.199%) 63.874 (24.693%) 72.718 (−0.790%)

MSL-net 118.395 (2.701%) 32.548 (−29.160%) 63.271 (11.191%) 46.979 (−19.711%) 57.052 (11.375%) 69.519 (−5.154%)

WGAN 105.461 (−8.519%) 42.659 (−7.154%) 48.432 (−14.887%) 54.306 (−7.188%) 42.417 (−17.195%) 70.904 (−3.265%)

BM3D 114.058 (−1.062%) 31.515 (−31.409%) 25.649 (−54.925%) 69.411 (18.627%) 15.183 (−70.360%) 100.08 (36.540%)

RED-CNN 116.642 (1.180%) 27.194 (−40.813%) 57.985 (1.902%) 42.048 (−28.138%) 51.272 (0.0918%) 66.961 (−8.644%)

WGAN-VGG 108.229 (−6.118%) 36.721 (−20.078%) 54.450 (−4.311%) 48.660 (−16.838%) 44.959 (−12.232%) 67.059 (−8.511%)

SMGAN-2D 108.758 (−5.659%) 40.948 (−10.878%) 51.243 (−9.947%) 53.065 (−9.309%) 48.230 (−5.847%) 72.073 (−1.670%)

SMGAN-3D 115.569 (0.749%) 43.654 (−6.723%) 54.356 (−4.476%) 56.552 (−3.350%) 55.378 (8.107%) 73.303 (−0.00821%)
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Table III:

Visual assessment scores by three radiologist readers.

Sharpness Noise Suppression Diagnostic Acceptability Contrast Retention Overall Quality

LDCT 2.55±1.43 1.55±0.80 1.85±0.96 1.75±0.83 1.93±1.01

CNN-L1 2.80±0.81 3.30±0.71 2.70±0.78 2.75±0.77 2.89±0.77

CNN-L2 2.12±0.42 3.98±0.58 1.93±0.78 2.07±0.83 2.53±0.55

SL-net 2.95±0.86 3.15±0.65 2.70±0.71 2.80±0.81 2.90±0.76

MSL-net 3.01±0.94 3.16±0.57 2.87±0.83 2.84±0.69 2.97±0.76

WGAN 3.30±0.56 2.80±0.81 3.15±0.91 3.45±1.02 3.09±0.66

BM3D 2.21±1.08 3.29±0.80 2.21±0.86 2.29±0.88 2.50±0.91

RED-CNN 3.29±0.88 3.79±0.70 3.51±0.70 3.46±1.12 3.51±0.85

WGAN-VGG 3.35±0.91 3.50±1.07 3.35±0.91 3.45±1.02 3.41±0.94

SMGAN-2D 3.25±0.65 3.48±0.66 3.32±0.58 3.21±0.78 3.32±0.67

SMGAN-3D 3.56±0.73 3.59±0.68 3.58±0.46 3.61±1.02 3.59±0.72
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Table IV:

Quantitative results associated with different training sets for SMGAN-3D in Figs. 10.

Figs. 10a - 10d Figs. 10e - 10h Figs. 10i - 10l

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Case1 26.678 0.811 0.0463 25.842 0.776 0.0510 26.538 0.812 0.0472

Case2 26.759 0.814 0.0459 25.848 0.781 0.0510 26.544 0.814 0.0470

Case3 26.589 0.807 0.0468 25.701 0.772 0.0519 26.455 0.806 0.0475

Case4 26.903 0.815 0.0452 25.914 0.782 0.0506 26.662 0.816 0.0464
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Table V:

Summary of notations.

Notation Meaning

NDCT Normal dose CT

LDCT Low dose CT

SSL Structurally sensitive loss, integrating the structural loss and the L1 loss as defined in Eq. 10

SSIM Structural similarity index (SSIM) [49]

MS-SSIM Multi-scale structural similarity index (MSSSIM) [51]

SL-net (CNN-SL) 8-layer CNN with only structural similarity loss

MSL-net(CNN-MSL) 8-layer CNN with only multi-scale structural similarity loss

WGAN Wasserstein Generative Adversarial Networks with L2 loss

BM3D Block-matching and 3D filtering

RED-CNN Residual encoder-decoder CNN with only
L2 loss

WGAN-VGG Wasserstein generative adversarial network with perceptual loss

SMGAN-2D 2D Wasserstein generative adversarial network with SSL loss

SMGAN-3D 3D Wasserstein generative adversarial network with SSL loss
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