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SUMMARY

Seminal yeast studies established the value of comprehensively mapping genetic interactions (GIs) 

for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of 

this approach, but the feasibility of generating large-scale, diverse human GI maps remains 

unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of 

human GIs. We systematically perturbed 222,784 gene pairs in two cancer cell lines. The resulting 

maps cluster functionally related genes, assigning function to poorly characterized genes, 

including TMEM261, a new electron transport chain component. Individual GIs pinpoint 

unexpected relationships between pathways, exemplified by a specific cholesterol biosynthesis 

intermediate whose accumulation induces deoxynucleotide depletion, causing replicative DNA 

damage and a synthetic-lethal interaction with the ATR/9-1-1 DNA repair pathway. Our map 

provides a broad resource, establishes GI maps as a high-resolution tool for dissecting gene 

function, and serves as a blueprint for mapping the genetic landscape of human cells.

Graphical Abstract

In brief

A large-scale genetic interaction map in human cells reveals unexpected interdependencies 

between core pathways and exposes potential combination therapies for cancer
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INTRODUCTION

A powerful approach to objectively and systematically identify gene function is to map 

genetic interactions (GIs)—pair-wise measurements of how the activity of one gene 

modulates the phenotype of another gene. Applied broadly across many pairs of functionally 

diverse genes, GI maps provide a signature of interactions for each gene that act as a high-

resolution, quantitative phenotype. This signature can be used to objectively identify genes 

with similar functions without any a priori assumptions. The pattern of GIs can also reveal 

the hierarchical organization of gene products into functional complexes and pathways 

(Collins et al., 2007).

By far the most mature efforts to exploit GI maps have been in the budding yeast S. 
cerevisiae. Pioneering work from Boone and colleagues enabled the first large-scale 

measurement of GIs (Tong et al., 2001,2004). Early GI maps demonstrated the broad utility 

of such efforts in enabling functional discoveries including the identification of 

uncharacterized protein complexes, cellular quality control and regulatory strategies, as well 

as unrecognized biosynthetic pathways (Collins et al., 2007; Jonikas et al., 2009; Pan et al., 

2004, 2006; Schuldiner et al., 2005; Segrè et al., 2005). GI maps also revealed functional 

rewiring in yeast response to DNA damage or autophagy stress (Bandyopadhyay et al., 

2010; Kramer et al., 2017). More recently, hallmark papers in S. cerevisiae revealed the first 

and only comprehensive functional genetic landscape of a cell (Costanzo et al., 2010, 2016). 

Additionally, GI mapping efforts in prokaryotes, as well recent work in S. pombe, fruit fly 

and human cells, demonstrate the general utility and enormous promise of GI maps across 

diverse organisms (Babu et al., 2014; Bassik et al., 2013; Boettcher et al., 2018; Du et al., 

2017; Fischer et al., 2015; Frost et al., 2012; Han et al., 2017; Roguev et al., 2007, 2013; 

Rosenbluh et al., 2016; Shen et al., 2017; Wong et al., 2016).

Given the success of yeast studies, as well as focused efforts in mammalian cells, it is clear 

that large-scale GI maps of human cells could be transformative tools for facilitating the 

systematic elucidation of the function of protein coding and non-coding genes as well as 

revealing higher-level principles of cellular organization. Additionally, large-scale GI maps 

can aid the design of therapeutic efforts both by identifying synthetic-lethal combinations, 

which can enable rational design of combination therapies, as well by identifying buffering 

or suppressive interactions, which can provide molecular targets whose inhibition will 

ameliorate the consequences of genetic mutations. However, the broader goal of mapping 

diverse cellular processes in vertebrates comprehensively remains unmet.

Multiple challenges have limited large-scale GI mapping efforts in human cells. There are an 

enormous number of possible gene pair combinations to query (~200 million for a 

mammalian cell), and strong GIs are typically rare (Hartman et al., 2001). Thus, generating 

quantitative genetic interaction maps require a method for robustly perturbing a given gene’s 

functions while avoiding heterogeneity and off-target effects. Additionally, for large 

numbers of gene pairs, one must be able to precisely measure the effect of each genetic 

perturbation and quantitatively evaluate the observed defect for a gene pair relative to that 

expected from the phenotypes of the individual perturbations. These challenges have been 

mitigated by preselecting smaller subsets of functionally related genes (e.g., involved in 
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chromatin-regulation, toxin resistance, regulators of β-catenin activity, or cancer biology) 

(Bassik et al., 2013; Du et al., 2017; Han et al., 2017; Roguev et al., 2013; Rosenbluh et al., 

2016; Shen et al., 2017; Wong et al., 2016) (Table S1). However, it remains unresolved 

whether a GI map of diverse human genes can generate a GI signature enabling one to 

cluster genes by function and assign function to poorly characterized genes.

Here, we describe a mammalian GI mapping platform, based on CRISPR interference 

(CRISPRi), in which the expression of targeted genes is specifically repressed using a 

catalytically dead version of Cas9 (dCas9) fused to a KRAB transcriptional repression 

domain, allowing for precise and homogenous gene knockdowns (Gilbert et al., 2013, 2014; 

Horlbeck et al., 2016a). We present a combined experimental and analytic framework for 

high-precision, ultra-rich GI mapping and apply this platform to create a high-content, large-

scale GI map of human genes that are diverse with respect to function and localization of the 

encoded proteins. Our GI map contains 1,044,484 sgRNA pairs targeting 222,784 gene 

pairs, which greatly increases the number of genetic interactions measured in human cells 

(Table S1). Our GI platform reveals high-content GI signatures that enable us to group 

related genes and assign function to even poorly characterized genes in an unbiased manner. 

Our CRISPRi GI map also delineates known and new GIs in pathways and protein 

complexes across diverse cellular processes, revealing unexpected biological principles and 

demonstrating that this method is well suited for systematic functional analysis of 

mammalian cells. We further show that GI maps can be used to identify robust genetic 

suppressors and synthetic sick/lethal (SSL) gene pairs, which point to therapeutic strategies 

for human diseases. Our maps are both a broad resource and a demonstration that large-scale 

CRISPRi GI maps can systematically elucidate how sets of genes encode the biology of 

protein complexes, pathways and organelles in human cells, providing both the motivation 

and an experimental and analytic framework for constructing a GI map of the entire human 

cell.

RESULTS

A CRISPRi Platform for Mapping GIs in Human Cells

We devised a strategy for creating loss-of-function GI maps in human cells using CRISPRi-

expressing cells transduced with dual sgRNA lentiviral vectors to screen for pairwise 

sgRNA phenotypes (Figure 1A). CRISPRi has several unique properties that facilitate GI 

mapping efforts (Gilbert et al., 2014; Horlbeck et al., 2016a; Liu et al., 2017; Qi et al., 

2013). Unlike nuclease-active CRISPR/Cas9, CRISPRi does not produce in-frame indels 

which can generate partially active proteins (Wong et al., 2016). In pooled functional 

genomic screens, in-frame indels have been shown to generate phenotype heterogeneity that 

will be compounded by simultaneously targeting more than one gene (Shalem et al., 2015). 

We have shown by population and single-cell RNA sequencing that CRISPRi can be used to 

effectively, specifically, and homogeneously silence the expression of up to 3 genes 

simultaneously (Adamson et al., 2016). Lastly, CRISPRi activity does not generate DNA 

double stranded breaks that activate a DNA damage response and can lead to non-specific 

toxicity phenotypes (Wang et al., 2015).
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To construct GI maps, we developed a barcoded, dual-sgRNA lentiviral vector that enabled 

us to robustly silence pairs of genes and then track each perturbation in a pooled CRISPR 

screen (Figure S1A). Recombination has been shown to confound quantitative genetic 

analysis by scrambling nucleic acid information (Du et al., 2017; Han et al., 2017). To avoid 

this issue, we developed a new sequencing strategy and analysis pipeline we named “triple 

sequencing” that sequences both the barcodes and the sgRNAs encoded by each DNA 

molecule, allowing us to identify and discard in silico all recombination events (Figure S1A 

and see Methods).

A GI Map of Diverse Cellular Processes

We constructed a large loss-of-function GI map primarily by selecting sgRNAs targeting 

genes that we previously identified in a CRISPRi screen as essential for robust cell 

proliferation or viability (see Methods, Figure 1B, and Table S2) (Gilbert et al., 2014). As 

demonstrated in yeast, partial loss-of-function genetic methods, such as CRISPRi, are 

particularly well suited for the study of essential genes (Costanzo et al., 2016; Schuldiner et 

al., 2005). The genes in our map represent diverse cellular processes localized to all major 

intracellular compartments (Figure 1C and Table S2). We used a custom cloning strategy to 

construct a dual sgRNA library of 1,044,484 pairwise CRISPRi genetic perturbations 

targeting 222,784 gene pairs (472 genes × 472 genes) representing 111,628 unique 

combinations (Figure 1A and S1A-C).

We transduced K562 cells stably expressing dCas9-KRAB with our GI library in replicate 

and conducted two independent cell growth screens to measure how each sgRNA pair 

perturbs cell proliferation (Figure S1B-D). Using triple sequencing, we measured the growth 

phenotype (γ) of sgRNA pairs based on their relative abundances at the start (day 5 post-

infection, referred to here as T0) and end of the screen, normalized to the number of cell 

doublings (Figure S2A). Our triple sequencing analysis clearly revealed recombination 

between the A and B sgRNA positions in our vector, with ~5% of sgRNA A and the 

corresponding barcode mismatched and ~16% of sgRNA B and barcode mismatched, 

proportional to the distance between those elements in the lentiviral vector. We used this 

strategy to remove recombination products, thus correcting this artifact that limited the 

dynamic range of our screen phenotypes (Figure S2B-D and Table S3).

We also performed the GI screen in Jurkat cells using the same library and approach (Figure 

S2E-F). The triple sequencing correction had minimal impact prior to phenotypic selection 

(i.e., T0) but had a substantial effect at the screen endpoint (Figure S2G-H). We filtered from 

further analysis a subset of sgRNAs that produced growth phenotypes in K562 but not in 

Jurkat cells (Figure S2I and Table S4).

We then calculated sgRNA- and gene-level interactions from the sgRNA pair phenotypes 

based on a GI paradigm previously established for yeast and shRNA GI screens (Bassik et 

al., 2013; Collins et al., 2007; Jonikas et al., 2009; Kampmann et al., 2013; Schuldiner et al., 

2005) (Figure S1D). For a given “query” sgRNA, buffering or synergistic (i.e. SSL) 

interactions were calculated based on the deviation of the observed double-sgRNA 

phenotype from the expected phenotype (Figure 1D-E). In our dataset, we found that a 
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quadratic fit of single vs. pair sgRNA phenotypes best modeled the expected phenotype 

(Figure S3A-B).

Five observations argue for the validity and reproducibility of the measured sgRNA GIs in 

K562 and Jurkat cells. First, GIs for each replicate screen are well correlated especially 

when GIs distributed near zero, which represent gene pairs that do not interact, are masked 

(Figure 2A and Table S5). Second, sgRNA GI profiles show substantial correlation across 

independent replicate screens (R=0.75 and 0.44 for K562 and Jurkat respectively; Figure 2B, 

S3C). Third, sgRNAs targeting the same gene correlated well (the median same-gene 

sgRNA correlation was 8-fold stronger than background in K562, Figure 2C). Fourth, 

sgRNAs targeting genes in the same biological complex are similarly well correlated, with 

the caveat that for extremely sick sgRNA pairs, it is difficult to accurately measure a GI 

signature (Figure 2B-C, S3C, and interactive sgRNA-level GI map files). Finally, we 

experimentally validated a number of buffering and SSL GIs in K562 and Jurkat (Figure 

S4A-F, and Table S6).

To construct gene-level GI maps, we first averaged interactions for all sgRNA pairs targeting 

a given gene pair. Gene-level GI scores and GI correlations correlated well, and as with 

sgRNA-level interactions, intra-complex gene pairs were much more highly correlated than 

background (Figure 2D-F, S3D, and Table S5). The magnitude of intra-complex correlations 

varies by complex, which may be due to the challenge of GI mapping for highly essential 

gene pairs or may point to functionally distinct complex subunits or sub-complexes (Bassik 

et al., 2013; Collins et al., 2007). Our analysis also shows that GI maps containing more than 

1 sgRNA per gene will boost signal-to-noise at the cost of larger double-sgRNA libraries 

(see Mendeley extended data [doi:10.17632/rdzk59n6j4.1]).

GI Maps Cluster Genes by Function

GI maps give two distinct types of information: clustering of genes by similarities of their 

profile of GIs informs assignment of genes to complexes, pathways, or processes; specific 

GIs reveal functional connections between gene pairs (Figure 1A). Here, we first describe 

the structure and insights gained from gene clustering and then discuss the analysis and 

hypotheses generated by GIs below.

Hierarchical clustering of our K562 and Jurkat GI maps demonstrates the power of GI 

mapping for the functional characterization of human genes of diverse or unknown functions 

(Figure 2G and see Mendeley[doi:10.17632/rdzk59n6j4.1] for annotated Jurkat map and 

interactive GI heatmaps and network diagrams). We used a systematic approach to annotate 

the clusters enriched for genes known to act in a given complex, process, or cellular 

compartment, assigning Gene Ontology (GO) annotations for clusters at any level of the 

hierarchy if a given GO term was enriched relative to the full GI map at P≤10−9, and if it 

was more enriched than at any other cluster. This identified 33 functionally coherent clusters 

in K562 at the highest resolution, each containing between 2 and 19 genes (Figure 2G). The 

same approach in the smaller Jurkat map found 22 clusters and recapitulated many of the 

same GO-annotated clusters found in K562, highlighting the consistency of these findings. 

Prominent highlights include a mitochondrial supercluster with clear sub-clusters 

functionally defining mitochondrial metabolism genes, mitochondrial protein translation, 
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and Complex I of the Electron Transport Chain (ETC), indicating that our GI mapping 

platform can reveal interconnected functional processes within an organelle (see 

Mendeley[doi:10.17632/rdzk59n6j4.1] for GI map excerpts). We also observe two large 

clusters of genes involved in the secretory pathway and in mitosis. We note that repression 

of several of the ER Membrane Complex (EMC) genes does not confer a primary growth 

phenotype; however, all EMC genes cluster well together (see Mendeley[doi:10.17632/

rdzk59n6j4.1] and see Methods). Future maps targeting genes without primary phenotypes 

will require robust sgRNA activity predictions. We find that even with genes previously 

found to be difficult to target (Du et al., 2017), 2 of every 3 sgRNAs predicted to be highly 

active by our current algorithm gave greater than 90% repression of the target gene, and all 

gave greater than 75% repression (Figure S4G) (Horlbeck et al., 2016a). Finally, we 

reanalyzed both our sgRNA-level and gene-level maps while systematically excluding large 

clusters of genes, limiting GIs to only buffering or SSL, or greatly reducing the dynamic 

range of the GI scores, and found that clustering of the map was robust to each of these 

perturbations suggesting that GI correlations are driven by broad trends in the GI map rather 

than specific interactions (Figure S5A-E).

GI Maps Reveal a High Degree of Unannotated Gene Function in Human Cells

To explore the ability of correlations to uncover new functional relationships more 

systematically, we next analyzed the distribution of GI profile correlations (Figure 3A). The 

large majority of gene pairs showed poor correlation, as expected; however, many gene-gene 

correlations were stronger than any gene-negative control correlation (20,464 correlations > 

0.178, 20.4% of all interactions), suggesting enrichment for functional relationships. Gene 

correlations within a given cellular compartment were enriched for strong correlations 

compared to the total distribution or to cross-compartment relationships (Figure 3B), and 

highly correlated gene pairs were enriched for known physical interactions annotated by the 

STRING physical interaction database (Figure 3C and S5F). Notably, many of the most 

highly correlated gene pairs were not captured by STRING annotation (315 unannotated 

pairs of 390 at GI correlation > 0.6), suggesting both unidentified physical interactions and 

functionally related genes that do not physically interact (Figure 3C). Conversely, GI 

correlations captured the majority of STRING-annotated interactions (79.3% of highest 

confidence interactions at GI correlation > 0.1; Figure S5F) and also could predict gene pairs 

that frequently co-occurred in GO terms (Figure S5G). Between K562 and Jurkat, we found 

that both the GI profiles for each gene and the gene-gene GI correlations within each cell 

line were well correlated (Figure 3D-E).

To explore the ability our GI map to identify known and previously unannotated functional 

relationships further, we examined all 390 gene pairs with a correlation above 0.6 in the 

K562 GI map. Within this set of highly correlated genes, we found strong enrichment for 

genes that encode physical protein complexes annotated by STRING (grey lines, Figure 3F). 

We also observed highly correlated gene pairs (166 of all 390 top correlated gene pairs) that 

were not annotated to interact but were both annotated as important for mitochondrial 

function in MitoCarta (purple lines, Figure 3F). We also noted that two gene pairs with 

unannotated associations have closely neighboring gene transcription start sites (TSS). We 

and others have shown CRISPRi can repress expression of TSSs within ~1kb of the target 
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site, so in these cases orthogonal methods are required to separate the contribution of each 

gene perturbation to the GI profile (Figure 3F starred pairs, S5H-I). We have annotated all 

gene pairs within the map that could have a neighbor effect that convolutes analysis (Table 

S2). Even after considering STRING, MitoCarta, and neighboring genes, we identified 35 

unannotated functional associations at this high threshold of GI correlation (red lines, Figure 

3F).

Further inspection of these 35 unannotated functional correlations reveals novel predictions 

for ER protein trafficking, DNA synthesis, and the ETC. For example, we identify a strong 

correlation between the genes ASNA1 and CAMLG. ASNA1/CAMLG are homologous to 

the yeast genes GET3/2; we provide unbiased in vivo support that these genes coordinate 

protein import to the ER (see Mendeley[doi:10.17632/rdzk59n6j4.1] GI map excerpts). We 

also identify strong GI correlations associated with canonical DNA replication genes such as 

between POLE2 and PRIM2 as well as POLD1, POLD3 and CACTIN (Figure 3F). We were 

intrigued by the strong correlation of CACTIN within a DNA replication gene cluster that 

includes canonical DNA replication genes such as POLD1, POLD3, POLE, MCM3, MCM4, 
RFC4 and RFC5 (Figure 2G). While the biology of CACTIN is poorly characterized, it is 

evolutionarily conserved and physically associated with the spliceosome (Baldwin et al., 

2013). In our GI map, the CACTIN GI profile is more strongly correlated (R > 0.6) with 

DNA replication genes than with core splicing factors (R = 0.16–0.32), although a number 

of genes considered to be splicing cofactors correlate well with CACTIN (see Mendeley[doi:

10.17632/rdzk59n6j4.1] extended data for CACTIN analysis and validation). We provide 

support for similarities between loss of CACTIN and core components of DNA polymerase 

∂ Repression of CACTIN more closely phenocopies repression of polymerase ∂ subunits 

than several tested splicing factors. Specifically, repression of CACTIN and POLD1/3 

results in S phase arrest, decreased DNA replication, and activation of CHEK1 S345 

phosphorylation (p-Ser345 CHEK1), a hallmark of DNA damage signaling activated by 

defects in DNA replication (Harper and Elledge, 2007).

We were also intrigued by the observation that the poorly characterized gene TMEM261 is 

most strongly correlated with four ETC Complex I genes present in the K562 GI map and 

also exhibits buffering genetic interactions with these and other genes functioning in the 

TCA cycle and ETC in K562 and Jurkat (Figure 2G, 3F, 4A and see Mendeley[doi:

10.17632/rdzk59n6j4.1]).Validation studies revealed that repression of TMEM261 decreased 

ATP levels in respiratory but not glycolytic conditions in a manner quantitatively 

indistinguishable from repression of core Complex I genes (Figure 4B). Together with recent 

physical evidence showing that TMEM261 is associated with Complex I components 

(Stroud et al., 2016), our data suggest TMEM261 is indeed a functionally critical component 

of Complex I.

We also observed that the GI pattern for glycolytic genes, such as PGD and PGK1, was anti-

correlated with TMEM261 as well as with other genes required for oxidative 

phosphorylation (OX-PHOS). In one highlighted example, we found that PGK1 was 

strongly anti-correlated with ATP5A1 (R = −0.53), a core component of ATP synthase. 

Repression of ATP5A1 is buffering with repression of genes required for mitochondrial 

processes such as OX-PHOS, while repression of PGK1 results in a synergistic phenotype 
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with the same genes (Figure 4C). Broadly, genes upstream of the TCA cycle were anti-

correlated with ATP5A1, while genes downstream of the TCA cycle were correlated with 

ATP5A1 (Figure 4C-D). We measured ATP produced by respiration or by glycolysis upon 

knockdown of PGK1. Surprisingly, repression of PGK1 reproducibly increased the amount 

of ATP produced by respiration, while ATP associated with glycolysis was unchanged 

(Figure 4B). Although additional experiments will be required to elucidate the underlying 

biology, we believe these experiments support the anti-correlated phenotype in the GI map 

and we hypothesize that the anti-correlated gene sets reveal unanticipated bioenergetic 

regulation.

The Structure of GIs in Human Cells

Finally, we investigated the overall structure of GIs. We first analyzed the distribution of 

gene-negative control interactions in our K562 dataset and used this to both define a 5% 

FDR threshold for GIs as well as a “strong” GI cut-off of +/− 3, essentially beyond the 

distribution of all negative controls (Figure S6A). By this definition, strong GIs are rare, 

representing just 2.2% of total gene-gene interactions measured (Figure 5A). The frequency 

of strong GIs in human cells is similar to the frequency observed in yeast (Costanzo et al., 

2010; Schuldiner et al., 2005), although we note that our gene set is enriched for genes 

required for cell growth and therefore may not reflect an average frequency of GIs across all 

genes. We observed that strong buffering interactions are most frequent between genes with 

highly correlated GI profiles, while synergistic interactions were found across all levels of 

GI correlation (Figure 5B). These GI observations are recapitulated in our Jurkat GI map 

(Figure S6C-E).

GI correlations between gene pairs are most enriched within genes encoding proteins 

localized to specific cellular compartments (Figure 5C). Strong buffering interactions mirror 

this distribution and are enriched within certain cell compartments, while for SSL 

interactions there is less enrichment for interactions within subcellular compartments. 

Instead, we see the majority of SSL interactions occur across subcellular compartments 

(Figure 5C). Gene pairs that co-occurred in GO annotations were also enriched among the 

strongest buffering and SSL interactions (Figure S6B), but to a lesser extent than among 

gene pairs with the highest GI correlations (Figure S5G).

While the above analysis reflects the trend of strong interactions across the full dataset, we 

asked whether this observed structure holds true at the level of functional clusters. Using the 

GO-annotated clusters presented in Figure 2G, we calculated average GIs within clusters 

and between clusters across all levels of the cluster hierarchy. Within clusters, average GIs 

were broadly distributed but most were SSL rather than neutral or buffering, consistent with 

findings in yeast for essential gene clusters (Figure S6F) (Costanzo et al., 2016). The nature 

of genes present in the map dictates these observed GI relationships and will need to be 

evaluated in a genome-scale human GI map. This analysis also revealed strong and coherent 

GIs between both closely related gene sets and across disparate processes (Figure 5D and 

S6F). Comparative analysis of cluster-cluster interactions in K562 and Jurkat cells found 

that average GIs were highly correlated (R=0.62), but also highlighted instances of possible 

functional rewiring (Figure S6G). In one intriguing example, we observed a strong buffering 
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interaction between the MICOS complex and ATP synthase in Jurkat but not K562 despite 

conservation of a strong TIMM9/22 buffering interaction with MICOS in both lines. This 

may represent a differential requirement for maintenance of the oxidation of the 

intermembrane space or for the assembly of ATP synthase. Our cluster-level analysis also 

highlighted numerous interactions mediated by components of the PAF1 transcription 

control complex, which represent a substantial fraction of the both the top buffering and 

synergistic cluster pairs (Figure S6F).These include suppressor interactions between 

repression of LEO1, a component of the PAF1, and mitochondrial dysfunction induced by 

repression of essential mitochondrial genes (Figure S6H-I). We experimentally validated 

strong buffering interactions between LEO1 and several mitochondrial genes (Figure S6J-

K). Broadly, these findings emphasize that GI maps can reveal unexpected genetic 

perturbations that suppress the phenotype of a loss-of-function mutation.

Accumulation of a Specific Metabolite in Cholesterol Biosynthesis Causes Replicative 
DNA Damage

A major goal of GI maps is to uncover unexpected synergistic and buffering interactions that 

can drive new discoveries in cell biology and inform the design of therapies (Hartman et al., 

2001). With that in mind, we were intrigued by an unexpected SSL interaction between 

HUS1, a gene encoding a component of the 9-1-1 cell-cycle checkpoint response complex 

that plays a major role in DNA repair, and FDPS, an enzyme in the mevalonate pathway that 

catalyzes production of farnesyl pyrophosphate, an intermediate product in sterol 

biosynthesis (Figure 6A) (Cerqueira et al., 2016; Harper and Elledge, 2007). Also evident in 

our GI map were SSL interactions between HUS1 and other DNA repair genes, between 

FDPS and the EMC complex, and between both FDPS and HUS1 and RRM1, the catalytic 

subunit of the ribonucleotide reductase complex (RNR), required for deoxynucleotide 

production (Figure 6A) (Arnaoutov and Dasso, 2014). We validated the SSL between FDPS 
and HUS1 (Figure 6B). Intriguingly, HUS1 is not SSL with repression of PMVK, an enzyme 

upstream of FDPS in the canonically linear mevalonate biosynthetic pathway (Figure 6A,C). 

As PMVK and FDPS are the only genes annotated to be in the mevalonate pathway in our 

GI map, this either represents an artifact in the GI map or points to a specific interaction 

between HUS1 and FDPS rather than HUS1 and the mevalonate biosynthesis pathway.

To elucidate this discrepancy, we systematically repressed each gene in mevalonate 

biosynthesis and the pathway leading to cholesterol and other biosynthetic products. 

Repression of only FPDS and IDI1 was SSL with HUS1 knockdown, validating our GI map 

results and suggesting that repression of the mevalonate pathway per se is not SSL with 

HUS1 (Figure 6C-D, S7A-C). Rather, because FDPS and IDI1 both utilize the metabolite 

isopentenyl pyrophosphate (IPP), our results suggest that accumulation of IPP resulting from 

repression of FDPS or IDI1 leads to DNA damage. To further support this conclusion, we 

used lovastatin, a chemical inhibitor of HMGCR, an enzyme upstream of PMVK, FDPS and 

IDI1 in the mevalonate biosynthesis pathway, or alendronate, a chemical inhibitor of FDPS, 
to recapitulate this genetic phenotype (Bergstrom et al., 2000). We found that chemical 

inhibition of HMGCR by lovastatin does not interact with repression of HUS1, consistent 

with the genetic data. By contrast, lovastatin strongly buffers growth defects induced by 

genetic or chemical repression of FDPS activity (Figure S7D-E). This implied that lovastatin 
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was likely preventing accumulation of IPP, a potentially toxic metabolite, and that the 

observed phenotypes do not relate to sterol biosynthesis or protein prenylation, a proposed 

mechanism for alendronate cytotoxicity (Bergstrom et al., 2000)

If IPP is indeed responsible for the SSL interaction between HUS1 and FDPS/IDI1, then 

inhibition upstream of FDPS should also rescue the genetic interaction between HUS1 and 

FDPS. We knocked down both HUS1 and FDPS in the presence or absence of lovastatin and 

observed that, as predicted, inhibition of HMGCR rescues the SSL phenotype between 

HUS1 and FDPS, providing strong support for the hypothesis that IPP drives this SSL 

phenotype with HUS1 (Figure 6E). In further support of this hypothesis, we observed that 

IPP levels are strongly induced upon knockdown of FDPS and this accumulation of IPP is 

blocked by inhibition of HMGCR with lovastatin (Figure 6F).

To explore the mechanism by which accumulation of IPP leads to DNA damage, we 

genetically or chemically repressed FDPS activity in disparate cell lines (K562, HEK293 

and iPSC) and then measured p-Ser345 CHEK1, a canonical molecular marker of DNA 

damage signaling induced by DNA replication stress and DNA damage (Harper and Elledge, 

2007). We observed that repression of FDPS induced an increase in p-Ser345 CHEK1, 

suggesting decreased FDPS activity is associated with activation of DNA damage signaling 

(Figure 7A-B). Importantly, repression of HUS1 does not induce p-Ser345 CHEK1. To 

further demonstrate that a specific metabolite in the mevalonate biosynthetic pathway drives 

activation of DNA damage signaling, we chemically inhibited both FDPS and HMGCR and 

observed that lovastatin rescues induction of p-Ser345 CHEK1 by alendronate (Figure 7C).

To better understand the nature of the DNA damage induced by accumulation of IPP, we 

surveyed the sensitivity of cells to alendronate following knockdown of key components of 

each major DNA repair pathway. We observed that repression of the ATR signaling or 9-1-1 

DNA repair, but not other DNA damage signaling or repair pathways, strongly sensitizes 

cells to chemical inhibition of FDPS activity (Figure 7D). ATR and the 9-1-1 complex are 

hallmark proteins required for repair of replicative DNA damage (Harper and Elledge, 

2007). In support of this, we found that chemical inhibition of FDPS by alendronate induces 

S-phase arrest and decreases DNA synthesis, which, together with our genetic and signaling 

data, is consistent with the hypothesis that accumulation of IPP induces replicative DNA 

damage (Figure 7E).

Our GI map revealed that repression of RRM1 is synthetic lethal with repression of both 

FDPS and HUS1 (Figure 6A). We also observed repression of RRM1 and to a lesser extent 

RRM2 but not its p53-inducible homolog RRM2B sensitizes cells to alendronate while 

repression of AHCYL1, a negative regulator of RNR (Arnaoutov and Dasso, 2014), 

promotes resistance to alendronate (Figure 7F). Together, these genetic data suggest that the 

accumulation of IPP resulting from repression of FDPS directly or indirectly inhibits RNR, 

leading to decreased dNTP levels and replicative DNA damage. To test this hypothesis, we 

repressed FDPS and measured cellular nucleotide and deoxynucleotide levels. Knockdown 

of FDPS causes decreased levels of dATP and dCTP but not NTPs (Figure 7G and Figure 

S7F). Consistent with the idea that IPP accumulation leads to decreased dNTP levels, 
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addition of lovastatin reversed the depletion of dATP and dCTP induced by FDPS 
knockdown (Figure 7G and Figure S7F).

These data support the detailed hypothesis suggested by the GI map data, in which increased 

IPP decreases the cellular pool of the dNTPs, leading to replicative DNA damage that must 

be sensed and repaired for viability (Figure 7H). Decreased dNTP levels must result from 

either a decrease in dNTP production by RNR or an increase in dATP degradation or 

consumption. Allosteric regulation of RNR is complex and it is tempting to speculate that 

IPP, a pyrophosphate, is an allosteric modulator of RNR activity.

These experiments illustrate the potential of GI maps to reveal unexpected druggable SSL 

GIs between genes that do not have a known physical association or correlated GI 

phenotype. Our work demonstrates we can use GI maps as a high-precision tool to decipher 

the cellular consequences of re-wired or dysregulated metabolic processes with clinical 

implications, since bisphosphonates, such as alendronate, are widely used to treat 

osteoporosis as well as bone metastatic prostate cancer and breast cancer.

Discussion

Here we present a combined experimental and analytic framework for high-precision ultra-

rich GI mapping. We apply this platform to create two high-content large-scale GI maps of 

functionally and spatially diverse human genes each targeting 222,784 gene pairs. Our maps 

serve as a broad resource, and our experimental and analytic platform will enable future GI 

mapping efforts. Analysis of these GI maps supports three main conclusions.

First, we establish mammalian GI maps as a powerful tool for the unbiased functional 

characterization of highly diverse genes. The GI signature of a gene yields a high-resolution 

phenotype enabling one to robustly cluster genes of known biological function and assign 

function to poorly characterized genes. Specifically, principled annotation of our GI map 

revealed 33 high-resolution distinct functional gene clusters spanning diverse biological 

processes such as mitochondrial protein translation, electron transport, ER/Golgi protein 

trafficking, kinetochore and centromere biology and DNA replication. We highlight several 

novel functional inferences from GI signatures in our map, establishing the ability of this 

approach to reveal new biology not anticipated by other methods. Within a cluster, buffering 

GIs can be used to identify highly related genes as exemplified here by TMEM261 and 

Complex 1 of the ETC. We also show that most, but not all, gene pair GI correlations are 

conserved between two related hematopoietic cancer cell types.

Second, we establish the ability to identify unexpected SSL and buffering gene pairs to link 

diverse processes and dissect complex pathways. A striking example of an unexpected SSL 

link between disparate processes was the ability of systematic epistasis analysis to identify 

an endogenous chemical metabolite whose accumulation strongly enhances the cells 

dependence on an intact DNA damage response pathway. Further analysis of this SSL in our 

GI map revealed a complex hypothesis in which accumulation of a specific intermediate in 

cholesterol biosynthesis (IPP) causes deoxynucleotide depletion, which in turn leads to 

replicative DNA damage, S phase arrest, and thus exquisite dependence on an intact DNA 
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damage response. Indeed, the specific pattern of GIs observed in the map supports each step 

of this hypothesis, which we have now verified with genetic, metabolomic and biochemical 

experiments. Identifying the mechanism of action of a metabolite in normal physiology or 

disease can be a daunting challenge. Building on the ability of genetic screens to pinpoint 

drug targets (Jost and Weissman, 2018), GI maps provide a strategy for linking a specific 

metabolite to its physiologic target by enabling one knock down to promote accumulation of 

a metabolite and the second to probe its physiological impact. Additionally, SSL and 

buffering interactions have important implications for the design of therapeutic strategies. 

For example, genetic suppressors of loss-of-function perturbations can guide development of 

therapeutic strategies for recessive loss-of-function diseases, and identification of SSL pairs 

can inform the design of combination therapies.

Third, at a broader level our data begins to shed light on the nature and frequency of GIs in 

human cells. Strong buffering and SSL interactions are rare and this scarcity illustrates the 

need for large-scale, systematic and robust methods such as GI mapping capable of 

identifying and characterizing interacting gene pairs. Expanding the analysis of GI 

frequency to more genes and cell types will provide insight into polygenic diseases as well 

as the role of GIs in contributing to missing inheritance seen in association studies (Manolio 

et al., 2009).

Our work provides a robust platform for future GI mapping efforts that will complement the 

rich insights obtained from recent large-scale efforts that use comparative genome-scale 

CRISPR or RNAi screens in the context of naturally occurring cancer-associated genome 

variations across cancer cell lines to define gene function (Hart et al., 2015; Tsherniak et al., 

2017; Wang et al., 2017). Beyond the cancer genome, we envision applying CRISPR-based 

methods to model disease-associated cellular states (genomic variants, transcriptional 

profiling, epigenetic profiling) and then using GI maps to dissect specific disease states with 

high resolution. While we focus here on cell growth, we anticipate that these approaches can 

be applied to any quantifiable measure of cellular phenotype (e.g. expression of fluorescent 

reporters) (Adamson et al., 2016; Jonikas et al., 2009). Given the rich information from the 

present map and the precedent set by yeast, such efforts will be transformative for the study 

of normal biology and pathological states.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jonathan Weissman (Jonathan.Weissman@ucsf.edu).

EXPERIMENTAL MODELS: CELL LINES and LENTIVIRUS

All cell lines were cultured at 37°C 5% CO2 in standard tissue culture incubators. HEK293T 

(female) cells used for packaging lentivirus or for experiments were maintained in 

Dulbecco’s modified eagle medium (DMEM) in 10 % FBS, 100 units/mL streptomycin and 

100 μg/mL penicillin with 2mM glutamine. K562 (female) and Jurkat (male) cells were 

grown in RPMI-1640 with 25mM HEPES and 2.0 g/L NaHCo3 in 10 % FBS, 2 mM 
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glutamine, 100 units/mL streptomycin and 100 μg/mL penicillin (Gibco). WTC Gen1c 

iPSCs (male) were maintained under feeder-free conditions on growth factor-reduced 

Matrigel (BD Biosciences) and fed daily with mTeSR medium (STEMCELL Technologies) 

(Liu et al., 2017). Accutase (STEMCELL Technologies) was used to enzymatically 

dissociate iPSCs into single cells. To promote cell survival during enzymatic passaging, cells 

were passaged with the p160-Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 

(10 μM; Selleckchem). iPSCs were frozen in 90% fetal bovine serum (HyClone) and 10% 

DMSO (Sigma). Lentivirus was produced by transfecting HEK293T with standard 

packaging vectors using TransIT®-LTI Transfection Reagent (Mirus, MIR 2306). Viral 

supernatant was harvested 72 hours following transfection and filtered through a 0.45 μm 

PVDF syringe filter. To construct the CRISPRi K562 cell line, we lentivirally transduced 

K562 cells, originally obtained from ATCC, to stably express dCas9-BFP-KRAB (Gilbert et 

al., 2014). We then sorted the CRISPRi K562 cells by flow cytometry using a BD FACS 

Aria2 for stable BFP signal which marks dCas9-BFP-KRAB expression to create a pure 

polyclonal CRISPRi K562 line. CRISPRi Jurkat cells (Clone NH7) were obtained from the 

Berkeley Cell Culture Facility. WTC Gen1c iPSCs cells are a gift from Bruce Conklin. All 

cell lines were routinely tested for mycoplasma (MycoAlert, Lonza).

METHOD DETAILS

Plasmid design and construction—The GI sgRNA library vector is a modified version 

of a published sgRNA lentiviral plasmid (Figure S1A) (Horlbeck et al., 2016a). In the final 

GI library sgRNA vector, the 5’ sgRNA is expressed from a modified mouse U6 promoter 

while the 3’ sgRNA is expressed from a modified human U6 promoter (Figure S1A). Both 

sgRNAs expressed from this vector employ the same optimized S. pyogenes sgRNA 

constant region. The GI library sgRNA vector also encodes 4 randomized 16 base pair DNA 

barcodes allowing us to measure vector recombination by Illumina sequencing (Figure 

S1A). The GI lentiviral sgRNA construct co-expresses BFP and a puromycin resistance 

cassette separated by a T2A sequence from a Ef1Alpha promoter. The lentiviral sgRNA 

vectors for the dual color competition assay to confirm GI phenotypes are previously 

described but briefly each vector encodes a modified mouse U6 promoter that drives 

expression of the sgRNA described above as well as either GFP or BFP and a puromycin 

resistance cassette separated by a T2A sequence from an Ef1Alpha promoter.

We used previously described lentiviral vectors to express the CRISPRi dCas9-KRAB 

protein (Gilbert et al., 2013). The CRISPRi fusion encodes mammalian codon optimized S. 
pyogenes dCas9 (DNA 2.0) fused at the C-terminus with two SV40 nuclear localization 

sequences (NLS), BFP and the Kox1 KRAB domain expressed from either the SFFV or 

Ef1Alpha promoter.

GI library design—The gene set was obtained from all genes that had a growth phenotype 

(γ) less than −0.1 and greater than −0.3 in a CRISPRi v1 growth screen (Gilbert et al., 

2014). Genes were further filtered to require that all genes had a “discriminant score” based 

on both effect size and P-value greater than 30 in our sgRNA activity dataset (Horlbeck et 

al., 2016b), to ensure that multiple sgRNAs targeting each gene were active. To evaluate 

whether these genes were also deleterious for growth when disrupted by CRISPR nuclease, 
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genes in the GI map were checked against genes scoring above the cell line-specific Bayes 

Factor threshold from (Hart et al., 2015) and below adjusted P-value of 0.05 from (Wang et 

al., 2015). 90.6% of the CRISPRi v1 genes with negative growth phenotypes incorporated 

into the map were deleterious to growth in at least two of ten CRISPR nuclease screens, 

suggesting many of the genes in this gene set can be considered essential to cell viability in a 

range of contexts. Two sgRNAs targeting each gene were selected using the top two sgRNAs 

by activity score; in arbitrary cases, the third sgRNA was also included to assess the 

improvement in gene GI measurement with additional sgRNAs/gene. CRISPRi v1 sgRNAs 

were of variable length (18-25bp); for the GI map, all were standardized to G[N19]NGG as 

with our CRISPRi v2 libraries (Horlbeck et al., 2016a). sgRNAs targeting several genes in 

complexes of interest (e.g., EMC), including several genes that do not exhibit a growth 

phenotype upon repression, were included manually.

GI library cloning—Our GI CRISPRi libraries were prepared by library cloning protocols 

similar to those previously described for sgRNA libraries with the following differences. Our 

final GI sgRNA library vector is assembled in four steps. Vectors are listed in the Key 

Resources table.

We first cloned the sgRNA constant region and two 16 base pair random DNA barcodes into 

a modified pSICO vector PCR (pLG_GI1). The PCR product and parental vector were 

restriction digested with XbaI/BamHI, gel purified and the appropriate fragments were 

ligated together. The 5’ and 3’ barcode are upstream and downstream of the sgRNA constant 

region. The randomized barcodes were encoded on oligonucleotides purchased from IDT. 

This starting vector lacks a U6 promoter.

In a second step, a starting pool of oligonucleotides encoding 1016 sgRNAs targeting 508 

genes (2 sgRNAs/gene) was synthesized by Agilent. The library was amplified by PCR, the 

library and library vector were digested with either BstXI and BlpI, and then ligated and 

cloned as a pooled library into the barcoded promoterless vector described above 

(pLG_GI1). We Sanger sequenced ~4000 bacterial colonies from the pooled library of 1000 

sgRNAs that we had cloned. We retained DNA and glycerol bacterial stocks from each 

sequenced colony to create an arrayed library of 750 unique sgRNAs. To complete our 

arrayed GI library we then filled in the remaining 250 sgRNAs desired for our GI map by 

ordering arrayed oligos and cloning sgRNAs in an arrayed fashion by oligo annealing (Liu et 

al., 2017). By Sanger sequencing all 1,022 sgRNA plasmids we are able to ensure that out 

library should have no mutations or errors and to assign each sgRNA in the library with two 

unique barcodes. We then pooled the 1,022 sgRNA plasmids targeting 472 genes (1-3 

sgRNAs/gene, Figure S1C) including 18 negative control sgRNAs at even stoichiometry. We 

used Illumina sequencing to ensure our pooled library was intact and evenly distributed, and 

found that 1,008 were well represented (Table S3).

Next, we next cloned either a modified human or modified mouse U6 promoter into our 

pooled sgRNA library, creating two libraries where each vector encodes 1 U6-sgRNA 

cassette and 2 unique barcodes (pLG_GI2 and pLG_GI3). We restriction digested parental 

mouse or human U6- sgRNA vectors or the GI library library with XhoI/BstXI and then 
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ligated the appropriate fragments together. We used Illumina sequencing to ensure each 

library was intact.

Finally, we then restriction digested the mouse U6-sgRNA library with AvrII and KpnI and 

the human U6-sgRNA library with XbaI and KpnI, isolated the appropriate DNA fragment 

and ligated these two libraries together creating our final GI sgRNA library vector that 

encodes 2 sgRNAs expressed from the 5’ position by the mouse U6 promoter and the 3’ 

position by the human U6 promoter and 4 unique DNA barcodes (pLG_GI4 and Figure 

S1A). By constructing an arrayed library and then pooling the library evenly each sgRNA in 

our intermediate library assembly steps is well represented, enabling us to randomly ligate 

the two intermediate libraries together to create a final pool of sgRNA pairs while 

maintaining even sgRNA representation within the library. We used Illumina sequencing to 

ensure the final library was assembled properly. We note that even with this strategy, because 

we cloned this library at only 25-fold coverage we lost a number of sgRNAs resulting in a 

final pool of 964,621 sgRNA pairs represented (Figure S1C).

High-throughput pooled GI screening—CRISPRi K562 or Jurkat cell lines were 

infected with sgRNA libraries by spinoculation for 2 hours at 1000g in the presence of 8 

μg/mL polybrene (Gilbert et al., 2014). The lentiviral infection was scaled to achieve an 

effective multiplicity of infection of less than one lentiviral integration per cell as measured 

by BFP signal encoded on the GI sgRNA library vector. Throughout the GI screen, cells 

were maintained at a density of between 500,000 and 1,500,000 cells / mL continually 

maintaining a library coverage of at least 500 cells per sgRNA except at the initial infection 

where we infected 250 cells per sgRNA. Two days after lentiviral infection, cells were 

selected with 0.75-1 μg / mL puromycin (Sigma) for 2 days, and recovered with addition of 

fresh media ~24-48 hour recovery. For the screen, populations of K562 or Jurkat cells 

expressing this GI library were harvested at the outset of the experiment or after ~10 

population doublings. Two biological replicates of each screen were performed. Genomic 

DNA was harvested from all samples; the sgRNA-encoding regions were then amplified by 

PCR and sequenced on an Illumina HiSeq 2500 or 4000 using custom primers described in 

the Key Resources table at high coverage. For triple sequencing, minimum cycle lengths 

were 19bp for reads 1 and 2, 6bp for the index read, and 38bp in read 3, although in some 

cases cycle lengths were extended due to other samples on the sequencer but additional 

cycles were discarded in demultiplexing. From this data, we quantified the frequencies of 

cells expressing different sgRNA pairs in each sample.

GI validation and GI mechanism experiments.—Individual phenotype re-test 

experiments for sgRNA pair phenotypes from the GI screens were performed as dual color 

(BFP/GFP) competitive growth experiments on a partially transduced population of 

CRISPRi K562 or Jurkat cells. The sgRNA vectors for validation experiments are listed in 

the Key Resources table; sgRNAs were selected based on their inclusion in the GI map, their 

activity score, or, for cholesterol biosynthesis genes, their alendronate resistance or 

sensitivity phenotype from (Yu et al., 2018). Briefly, cells were co- transduced at ~5-60% 

infection with two lentiviral vectors marked with either BFP or GFP each encoding a single 

sgRNA. This assay enables us to track uninfected cells, cells that express each single sgRNA 
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or cells that express a pair of sgRNAs within one internally controlled sample by flow 

cytometry over time to quantify how each sgRNA or pair of sgRNAs influences cell 

proliferation (Figure S4A). Three or four days following infection, cells were counted and 

seeded in 24 well plates at 0.25 million cells / mL and diluted 1:2 or 1:4 every 2 or 3 days as 

cells reached ~1,000,000/mL. Duplicate or triplicate samples for each GI re-test experiment 

were grown under standard conditions described above. The absolute cell number and 

percentage of cells that express BFP or GFP (indicating sgRNA expression) was measured 

for each sample at the indicated time points. The epistasis results from sgRNA pair 

validation experiments are summarized in Table S6.

For chemical inhibitor studies, cells were treated with alendronate at the stated concentration 

or 4 μM lovastatin for 48 hours unless otherwise noted. For the FDPS/HUS1 rescue 

experiments, cells were treated with 4 or 6 μM lovastatin or a DMSO control as indicated 

every 3 or 4 days over the time course of the experiment.

To genetically manipulate cells for the downstream assays described, cells were partially 

lentivirally transduced with individual sgRNA constructs encoding the indicated sgRNAs 

and BFP or GFP and a Puromycin resistance cassette. For cell cycle analysis relating to 

CACTIN, we analyzed a mixed population of sgRNA+ and sgRNA− cells allowing for 

internal normalization of EdU incorporation and cell cycle. For experiments including 

metabolomics, western blotting and gene knockdown for individual sgRNAs, at 2 or 3 days 

post infection cells were selected with 3 μg / mL puromycin. Cells were allowed to recover 

from selection and expanded for analysis for 3-6 days and then were harvested for 

metabolomics, western blotting, or RT-qPCR. For glycolysis/respiration ATP assays and for 

western blotting experiments relating to CACTIN, infected cell populations were sorted by 

flow cytometry using a BD FACS Aria2 or a Sony SH800S Cell Sorter for stable BFP or 

GFP signal which marks sgRNA expression 2-3 days following infection and then cultured 

for additional 4-5 days. The sgRNA sequences are listed in the Table S6.

Quantitative RT-PCR—Cells were harvested and total RNA was isolated using the Direct-

zol-96 RNA (Zymo Research), according to manufacturer’s instructions. RNA was 

converted to cDNA using Superscript III reverse transcriptase under standard conditions 

with oligo dT primers and RNaseOUT (ThermoFisher). Quantitative PCR reactions were 

prepared with a 2x SYBR Select master mix according to the manufacturer’s instructions 

(ThermoFisher). Reactions were run on a QuantStudio7 thermal cycler (Applied 

Biosystems). Primer sequences for qPCR reactions are listed in Table S6.

Western Blotting—K562s were harvested by centrifugation and resuspended in lysis 

buffer (1% Triton-X, 0.15M NaCl, 1mM EDTA, 50mM Tris-HCl pH 7.5, 1X Halt Protease 

Inhibitor Cocktail (Thermo Fisher Scientific), 1X Phosphatase Inhibitor Cocktail A and B 

(Biotool Chemicals)). Cells were lysed by vortexing for 1 min, and incubating on ice for 30 

min. Lysate was clarified by centrifugation at 10,000 g for 30 min. Protein concentration was 

measured by the Pierce BCA Protein Assay (Thermo Fisher Scientific). Cell lysates were 

denatured at 100°C for 5 min in 1X NuPAGE LDS Sample Buffer (Thermo Fisher 

Scientific). Proteins were separated on a Bolt 4-12% Bis-Tris gel (Thermo Fisher Scientific), 

transferred to a TransBlot Turbo Mini-size nitrocellulose membrane (Bio-Rad) according to 
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the manufacturer’s instructions, blocked with Odyssey Blocking Buffer (LiCor), and 

subsequently probed. Chk1 was detected with the Chk1 mouse antibody (Cell Signaling 

#2360, 1:1000 dilution). Phospho-Chk1 was detected with the Phospho-Chk1 (Ser345) 

rabbit antibody (Cell Signaling #2348, 1:1000 dilution). Actin was detected with the anti-β-

Actin mouse antibody (Sigma Aldrich #A5441, 1:5000 dilution). IRDye 680RD Goat anti-

Rabbit (Odyssey) and IRDye 800CW Donkey anti-Mouse (Odyssey) secondary antibodies 

were used at a 1:5000 dilution. All blots were visualized using the Odyssey Clx Li-Cor 

systems. All antibodies are listed in the Key Resources table.

Cell cycle and DNA synthesis analysis—To measure DNA replication, EdU (5-

ethynyl-2'-deoxyuridine) was added at 10 μM final concentration to each sample for 2.5-3 

hours. 500,000-1,000,000 cells were harvested and processed as per manufacturers 

instruction for the Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry Assay 

(ThermoFisher). To measure cellular DNA content, cells were incubated in a FxCycle™ 

Propidium Iodide / RNase solution (ThermoFisher) for at least 30 minutes. EdU 

incorporation and PI signal was quantified by flow cytometry on a BD LSR-II flow 

cytometer. For CACTIN experiments, we also measure BFP signal associated with sgRNA+ 

cells within the population. Analysis was performed with FlowJo 8.8.6 (FlowJo, LLC). 

Commercial cell cycle analysis reagents are listed in the key Resources Table.

Bioenergetics assays for ATP production—For the ATP measurement assay, 20,000 

K562 cells were seeded per well in an opaque 96-well plate. ATP levels were measured for 

cells after treatment with 10 mM 2-deoxy-D-glucose and 10 mM pyruvate (acute 

respiration-only conditions), or 2 mM glucose, 3 mM 2-deoxy-D-glucose and 5 μM 

oligomycin (acute glycolysis-only conditions) for 1 hour, and compared to ATP levels 

measured from cells not exposed to either acute treatment conditions (all reagents from 

Sigma). In the acute glycolysis-only condition, 3 mM 2-deoxy-D-glucose is supplemented to 

increase the dynamic range for ATP levels relative to baseline. Cell ATP levels were 

measured using a luciferase-based assay, with the CellTiterGlo 2.0 kit (Promega, Madison, 

WI), and luminescence was measured on a Biotek H4 plate reader.

LC-MS/MS Measurement of IPP and NTPs/dNTPs—Target metabolites were 

extracted and analyzed using a modified published protocol as described below (Zhu et al., 

2018). Cell pellets of ~10 million cells per replicate with indicated genetic or chemical 

conditions were spun down, washed once in ice cold PBS and frozen. Briefly, 200 μL of pre-

cold MeOH/ACN (v/v, 50:50) containing 250 μM internal standards was directly added to 

cell pellets. The cells were scraped off the bottom, and incubated for 20 min at 4 °C prior to 

sonication at 0 °C for 5 min. After p rotein precipitation, 800 μL of ice cold water was added 

to extract the target compounds. The samples were vortexed and centrifuged at 13000 rpm 

for 15 min at 4 °C. A 10 μL aliquot of the resulting supernatants was then injected into the 

LC-MS/MS system for dNTP measurement and for NTP measurement a separate 10 μL 

aliquot of the 20× dilution supernatants was used.

Compounds were separated using an Agilent 1290 Infinity LC equipped with an Hypercarb 

column (100 × 4.6 mm, 5 μm) from Thermo Fisher Scientific and detected with an Agilent 

6470 Triple Quad mass spectrometer. Mobile phase A was composed of 0.5 % (v/v) 
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ammonium hydroxide in H2O containing 10 mM NH4HCO3, and mobile phase B consisted 

of 0.5 % (v/v) ammonium hydroxide in acetonitrile/ H2O (95/5, v/v) and 10 mM NH4HCO3. 

The separation of target compounds was achieved using the following gradient program at a 

flow rate of 0.6 mL/min: the eluting gradient started with 5% B, followed by a linear 

gradient to 15% B in 5.0 min, then linearly increased to 30% B in 3.0 min, to 55% in 2.0 

min, returned to the initial conditions in 1.0 min to equilibrate for 4.0 min between sample 

injections. The mass spectrometric detection was operated in electrospray negative 

ionization mode and multiple reaction monitoring (MRM) functions were used for the 

quantification of analytes. The [M-H]− precursor ions were used for the target compounds 

and internal standards. Nitrogen was used as the nebulizing and collision gas. The ESI 

source settings were a capillary voltage of −3500 V, a gas flow of 5 L min−1 at a temperature 

of 300 °C, a sheath gas flow of 11 L min−1 at a temperature of 400 °C, and a nebulizer 

pressure of 45 psi. The optimal mass spectrometric conditions and multiple reaction mass 

transitions for individual IPP, NTPs, dNTPs and isotope labeled internal standards are shown 

in Table S7. Peak areas were normalized using the internal standard (except IPP for the lack 

of isotopic standard), and concentrations were determined by comparison to calibration 

curves prepared from series dilution of authentic standards for each compound.

QUANTIFICATION AND STATISTICAL ANALYSIS

GI map data analysis

Sequence alignment: Triple sequencing raw data was generated in the form of 3 parallel 

FASTQ files corresponding to Read 1, Read 2, and Read 3 (see Figure S1A), and were 

processed as follows using the tripleseq_fastqgz_to_counts script written in Python 2.7 

(https://github.com/mhorlbeck/GImap_tools). Read 1 and read 2 were stripped to yield only 

the 19bp corresponding to the N19 of sgRNA A and B, respectively, and each were mapped 

separately to the sgRNAs included in the GI map library. Read 3 was reverse complemented 

and stripped to yield two 16bp barcodes corresponding to BC2 (the downstream barcode of 

sgRNA A) and BC3 (the upstream barcode of sgRNA B), and each were mapped separately 

to the list of downstream or upstream barcodes included in the GI map library. All mappings 

tolerated up to one mismatch; typically, 98% of sgRNAs mapped to the library and 50-70% 

of barcodes mapped due to degradation of sequencing quality in the reverse reads.

For “sgRNAs only” and “barcodes only” analysis (Figure S2B-C,F), sgRNA A/B pair 

representation was counted from the sgRNA reads or the barcode reads without further 

filtering. For triple sequencing-based analysis (all other data), the identity of sgRNA A was 

required to match BC2 and sgRNA B was required to match BC3 before including that 

sequence in the count of sgRNA A/B pair representation. In K562, ~5% of sgRNA A and 

BC2 reads did not match while ~16% of B/BC3 reads did not match, proportional to the 

distance between those elements in the lentiviral vector. In Jurkat, the mismatch rates were 

~10% and ~30%, respectively, consistent with the hypothesis that these mismatches arise 

due to template switching during lentiviral reverse transcription, a process that occurs within 

the infected cell and is modified by host cell factors (Sack et al., 2016). In addition, the use 

of triple sequencing would be expected to filter out both the effects of RNA template 

switching due to reverse transcription and DNA template switching by DNA polymerase 

during sequencing sample PCR. Of note, K562 T0 read counts only use barcodes, as we 
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developed the triple sequencing strategy after initial experiments with barcode-only 

sequencing and no further sample was available for re-processing. However, we found using 

the Jurkat screen dataset that using barcode-only sequencing at T0 prior to growth selection 

pressure had a minimal effect on sgRNA pair phenotypes (Figure S2G-H). All pair read 

counts are included in Table S3.

Calculating sgRNA pair phenotypes: Phenotypes for sgRNA pairs were calculated using 

the GImap_analysis script (GI analysis pipeline summarized in Figure S1D; https://

github.com/mhorlbeck/GImap_tools). For a given screen replicate, T0 and endpoint sgRNA 

A/B pair counts were first filtered by requiring that all single sgRNAs (in A or B position) 

had a median representation of at least 35 reads in the endpoint sample across all pairs in 

which that sgRNA was a member. This filter was imposed because sgRNAs that depleted 

significantly by the end of the screen did not yield robust GI measurements (see Mendeley 

extended data[doi:10.17632/rdzk59n6j4.1]), and also enabled us to maintain a square GI 

map for downstream analysis. Similarly, because read count differences in poorly 

represented sgRNA pairs could result in significantly different GI measurements, a 

pseudocount of 10 was applied to all sgRNA pair counts in both T0 and endpoint samples. 

Log2 enrichment of pair representation in endpoint relative to T0 samples was then 

calculated as the fraction of a given sgRNA pair from all reads in endpoint divided by 

fraction at T0. The median enrichment for pairs in which both sgRNAs were non-targeting 

controls was set to zero by subtraction, and growth phenotype (γ) was computed by dividing 

the log2 enrichment by the number of doublings between T0 and endpoint (K562 Rep1 = 

6.91, K562 Rep2 = 7.61, Jurkat Rep1 = 6.15, Jurkat Rep2 = 6.44). sgRNA pair phenotypes 

are included in Table S4.

Computing genetic interaction scores: Replicate pair phenotypes were averaged (except 

for replicate-specific analyses) and then sgRNA A/B and B/A pairs were averaged (Figure 

S2A) to obtain a symmetric phenotype matrix of sgRNA pair phenotypes with reduced 

measurement noise. sgRNA single phenotypes were calculated for each sgRNA from the 

mean phenotype of that sgRNA paired with non-targeting control sgRNAs; this method for 

calculating single phenotypes correlated well with phenotypes obtained from the CRISPRi 

v1 growth screen performed with single sgRNA vectors (Figure S2D). For the Jurkat GI 

map, 179 sgRNAs (of 833 passing read count filter) with a single phenotype < −0.05 in 

K562 but > −0.025 in Jurkat were then excluded. Each sgRNA was then treated as the query 

sgRNA for calculation of GIs (Figure 1D and S3A-B). A quadratic fit of sgRNA single 

phenotypes and sgRNA pair phenotypes with the query sgRNA, with y-intercept set to the 

single phenotype of the query sgRNA, was calculated using the Optimize module of SciPy 

0.17.0. GIs were then calculated by subtracting the expected pair phenotype (determined by 

the quadratic fit function value at the given sgRNA single phenotype) from the measured 

sgRNA pair phenotype. For each query sgRNA these GIs were z-standardized to the 

standard deviation of the negative control/query pair GIs. Finally, the query/sample and 

sample/query GIs for each sgRNA pair were averaged to obtain a symmetric matrix of 

sgRNA GIs (Table S5).
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Gene-level GIs were calculated by simply averaging all sgRNA pairs targeting a given gene 

pair (Table S5). Depending on the gene pair, each gene could be represented by 1, 2, or 3 

sgRNAs (Figure S1C), with 72% of genes targeted by 2 or 3 sgRNAs after read count 

filtering. For analyses requiring “negative control genes,” all possible combinations of two 

non-targeting control sgRNAs were averaged as with sgRNAs targeting the same gene.

Analysis of GI maps

Clustering and visualization: To cluster, visualize, and explore sgRNA-level and gene-

level GI maps, symmetric GI matrices excluding non-targeting controls were clustered with 

average linkage hierarchical clustering using uncentered Pearson correlation in Cluster 3.0 

(de Hoon et al., 2004) and the output files were loaded in Java TreeView 1.1.6r4 (Saldanha, 

2004) (Bassik et al., 2013; Kampmann et al., 2013). Cluster/TreeView files are available at 

weissmanlab.ucsf.edu/CRISPR/GImaps.html and on Mendeley ([doi:10.17632/

rdzk59n6j4.1]).

GI correlations were calculated using NumPy 1.12.1. STRING interactions were obtained 

from the experimentally validated set from version 10.0, and expressed using the STRING-

specified confidence thresholds (low >= 0.15, medium >= 0.4, high >= 0.7, highest >= 0.9) 

(Szklarczyk et al., 2017). The MitoCarta2 database was used for analysis of known 

mitochondrial genes (Calvo et al., 2016). GI correlation network in Figure 3F was generated 

in Cytoscape 3.5.1 (Smoot et al., 2011) using equally-weighted edges between all gene pairs 

with GI correlation >= 0.6, with edge length set with force-directed layout. Neighbor TSS 

analysis was performed as in (Liu et al., 2017) based on the closest of all P1/P2 TSS 

annotation pairs from (Horlbeck et al., 2016a), and nearest neighbor identities and distances 

are included in Table S2.

Analysis of clustering robustness in Figure S5A-E was performed with BioPython Cluster 

module version 1.50 (de Hoon et al., 2004) to manipulate dendrograms and SciPy 0.17.0 

cluster module to calculate cophenetic correlation. This was done first by reanalyzing GI 

data for sgRNAs targeting the same gene. Even after eliminating the top 100-400 sgRNAs 

correlated with a given sgRNA, the median correlation between two same-gene sgRNAs was 

still 7.6-6.5-fold higher than background (Figure S5A). Similarly, same-gene sgRNA pairs 

remained well correlated (>6.5-fold over background) after eliminating all buffering or 

synergistic interaction information (Figure S5B) or limiting the dynamic range of sgRNA GI 

scores (Figure S5C). To evaluate the robustness of clustering at the gene level, the GI map 

clustering hierarchy was divided into the 20 top-level clusters and analyzed for the impact of 

removing each cluster on GI correlation of the remaining map (Figure S5D). While the 

correlation of a given cluster was often most sensitive to exclusion of that cluster’s GI scores 

from the GI correlation calculation, no intra-cluster correlation was reduced by more than 

40% and functionally disparate clusters were also highly informative in clustering. Similarly, 

the overall structure of the GI map remained largely intact after removing clusters, as 

measured by maintenance of top-level clusters, rank correlation of GI profiles, and 

cophenetic correlation of the map dendrograms (Figure S5E). Contour plots for GI map 

experiments were generated using the fast_kde script written by Joe Kington (https://

gist.github.com/joferkington/d95101a61a02e0ba63e5). Additional visualization tools 
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available on Mendeley ([doi:10.17632/rdzk59n6j4.1]) and at weissmanlab.ucsf.edu/CRISPR/

GImaps.html were generated using Bokeh 0.12.15 and Cytoscape.js 3.2.8 with Compound 

Spring Embedded-Bilkent layout (Dogrusoz et al., 2009).

Annotation of gene function and localization: For the pie chart in Figure 1C, we annotated 

gene function using the Entrez Gene Summary and UniProt databases. To generate an 

unbiased annotation of the localization of the protein products of the genes included in the 

GI map (e.g. Figure 5C), we leveraged two recently published datasets: the mass-

spectrometry-based Map of the Cell (Itzhak et al., 2016) and the immunofluorescence-based 

Cell Atlas (Thul et al., 2017). Together, these annotations contained localization predictions 

for the large majority of genes in the GI map and could be used to refine localization in 

cases where one dataset gave ambiguous calls. To obtain a single “high level” localization 

for the product of each gene, Map of the Cell predictions were used wherever available 

unless the prediction was “Large Protein Complex” or “No Prediction.” If no prediction was 

available, the first listed and best available Cell Atlas prediction (of “Approved,” 

“Supported,” and “Validated”) was used. If no prediction was available, the gene localization 

was listed as “Undetermined.” To generate a high-level annotation, these calls were 

collapsed to cell compartments as follows:

Early trafficking: Golgi apparatus, ER_high_curvature, Golgi, Ergic/cisGolgi, ER Cytosol: 

Cytoplasmic bodies, Cytosol

Late trafficking: Cell Junctions, Peroxisome, Vesicles, Endosome, Plasma membrane 

Mitochondria: Mitochondria, Mitochondrion

Other/Undetermined: Undetermined

Nucleus: Nucleoli fibrillar center, Nuclear bodies, Nuclear pore complex, Nucleus, Nuclear 

membrane, Nucleoli, Nucleoplasm, Nuclear speckles

Cytoskeleton: Midbody ring, Focal adhesion sites, Microtubules, Actin filaments, Midbody, 

Cytokinetic bridge, Centrosome, Intermediate filaments

Localization annotations and functional annotations are included in Table S2.

For principled GO annotation, terms for all genes in the K562 and Jurkat GI maps were 

accessed from DAVID 6.8 for the GO_BP_DIRECT, GO_MF_DIRECT, and 

GO_CC_DIRECT annotations. Terms that included only one gene in the map were 

discarded, and for each remaining term, the term enrichment P-values compared to the 

background map gene set for genes linked to each node in the hierarchical clustering 

dendrogram was calculated using the hypergeometric test survival function (SciPy 0.17.0 

stats module). Nodes were then designated key nodes if they had at least one GO term with 

P ≤ 10−9 and at least one term scored higher than at any other node. To reduce redundancy 

between similar GO terms, if a key node and the next key node below it in the hierarchy 

scored with best terms that were similar by Cohen's kappa ≥ 0.4 or the lower node contained 

80% of the genes of the upper node, the lower node would be removed. GO terms used and 

clusters identified in K562, Jurkat, and combined GI maps are included in Table S5. These 
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GO terms were also used for the gold standard set in GO co-occurrence precision-recall 

analysis, with gene pairs appearing in the same term at least four times were considered 

positives and gene pairs appearing in no terms as negatives. In each case only gene pairs in 

which each gene was annotated by at least five GO terms was included.

Alendronate CRISPRi screen analysis—Briefly, we used the ScreenProcessing 

analysis pipeline (github.com/mhorlbeck/ScreenProcessing) to process and normalize 

CRISPRi data for genes that modulate response to alendronate from Yu et al. (Gilbert et al., 

2014; Horlbeck et al., 2016a; Yu et al., 2018). We extracted data relating to DNA repair 

genes and deoxynucleotide synthesis from this dataset (Table S7). P-values were calculated 

by Mann-Whitney test of all 10 sgRNAs targeting a given gene compared to negative 

controls.

Additional statistical analyses—Correlation analysis (e.g. between experimental 

replicates or K562/Jurkat experiments) was performed using SciPy 0.17.0 stats Pearson 

correlation function. Pearson correlation P-values are throughout the manuscript are < 

10−300 unless otherwise stated. To compare clustering performance (Figure S5), Spearman 

correlation was used to compare the rank similarity of GI correlations (SciPy stats module) 

and cophenetic correlation was used to compare clustering dendrogram structure (SciPy 

cluster module).

All validation experiments measure two or more (2-16) experimental replicates (denoted by 

N) as stated in the relevant figure legend. For the bioenergetics experiments, data was 

analyzed by one-way ANOVA with Dunnett’s multiple comparisons test using Prism 7 

(GraphPad). For the metabolomics experiments, data displayed was normalized by input cell 

number for each sample and analyzed relative to NT sgRNA by T-test using Prism 7 

(GraphPad).

DATA AND SOFTWARE AVAILABILITY

All processed GI map data are available as supplementary tables to this manuscript, and in 

tab-delimited text format on Mendeley[doi:10.17632/rdzk59n6j4.1]. Raw sequencing data is 

available on NCBI GEO (accession GSE116198). Scripts for analyzing triple sequencing 

and GI mapping data is available at https://github.com/mhorlbeck/GImap_tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Genetic interaction (GI) mapping enables elucidation of human gene function

• Large-scale, diverse maps of 222,784 gene pairs reveal buffering and 

synthetic GIs

• Clustering of GIs identifies novel members of functional complexes

• Specific GIs can define the physiological impact of biosynthetic metabolites
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Figure 1. A large-scale quantitative GI mapping platform in human cells.
(A) Schematic of the overall GI mapping approach. (B) Histogram of gene growth 

phenotypes (γ) from a CRISPRi v1 growth screen (Gilbert et al., 2014). A subset of these 

genes were selected for inclusion in the GI map based on exhibiting a moderate growth 

phenotype and a high-confidence p-value. (C) Cellular processes represented in GI map, 

with number of genes in parentheses (see also Table S2). (E) Approach for quantifying 

epistasis between sgRNAs, based on the relationship between single sgRNA phenotypes and 

the corresponding pair phenotypes with a given “query” sgRNA. (F) Example of sgRNA 

epistasis with query sgRNA sgANAPC13-1. Negative control sgRNAs are circled in red, and 
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red line corresponds to quadratic fit of all sgRNA single and pair phenotypes (see also 

Figure S3A).
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Figure 2. A large-scale CRISPRi-based GI map.
(A-B) sgRNA GI scores (A) and GI correlations (B) from two independent replicates 

performed in K562. Contours correspond to 99th, 95th, 90th, 75th, 50th, and 25th 

percentiles of data density. Pearson correlation (R) is of all sgRNA pair correlations. Due to 

the size of the dataset, Pearson P-values here and throughout the manuscript are < 10−300 

unless otherwise stated. (C) Histogram of sgRNA GI correlations calculated from replicate-

averaged sgRNA pair phenotypes. Smoothed histograms of all pairs of sgRNAs or only 

sgRNA pairs targeting the same gene or complex were generated with Gaussian kernel 

density estimation. (D-E) Gene-level GI scores (D) and GI correlations (E), displayed as in 
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A-B. (F) Histogram of gene GI correlations from replicate-averaged screens, displayed as in 

C. (G) Full gene-level GI map in K562. Dendrogram indicates average linkage hierarchical 

clustering based on uncentered Pearson correlations between genes. Clusters were annotated 

by assigning GO annotations if the GO term was significantly enriched in that cluster 

(hypergeometric P ≤ 10−9) and not more enriched in another cluster.
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Figure 3. GI correlations identify members of protein complexes and functionally related 
pathways.
(A) Histogram of all correlations between K562 gene GI profiles (green) or between non-

targeting (NT) control and gene GI profiles (black). (B) Cumulative distribution of GI 

correlations for all genes (as in A), for gene pairs within mitochondria or early trafficking, or 

for pairs with one gene in each compartment. (C) Fraction of gene pairs with a given GI 

correlation annotated by the STRING experimentally validated interaction set. GI 

correlations were binned to the next-lowest tenth. (D) Histogram of the correlations between 

GI score profiles in K562 and Jurkat maps. Only genes present in both K562 and Jurkat are 
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included. (E) Comparison of GI correlations within each GI map. (F) Gene networks of the 

most highly correlated genes in K562. Edges represent correlations greater than 0.6. GI 

correlations that correspond both to STRING-annotated interactions and to MitoCarta gene 

pairs were labeled according to their STRING interaction confidence. Edge lengths were 

determined by force-directed layout. Asterisks indicate gene pairs that have closely 

neighboring TSSs.
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Figure 4. Oxidative metabolism is highly correlated with poorly characterized gene TMEM261 
and anti-correlated with glycolytic metabolism.
(A) Selected GIs with mitochondrial complex I and glycolytic genes from the K562 GI map. 

(B) ATP levels relative to baseline ATP following one-hour incubation in either respiratory 

or glycolytic conditions. Data show mean ± SEM, and N=16 experimental replicates per 

group from two independent experiments. *** indicates P<0.001 versus NT sgRNA in each 

condition by one-way ANOVA with Dunnett’s multiple comparisons test. (C) GI scores for 

genes paired with ATP5A1 and PGK1. (D) GI correlation with ATP5A1 for genes involved 

in carbon metabolism.
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Figure 5. Structure of genetic interactions in the GI map.
(A) Histogram of all GI scores between unique gene pairs in K562. Same-gene pairs were 

not included. (B) Relationship between GI correlation and GI score. GI correlations were 

binned to the next-lowest tenth. (Left) Boxplot of scores within each bin. (Middle) Percent 

strong buffering interactions within each bin. (Right) Percent strong synergistic interactions 

within each bin. (C) Enrichment of correlations and strong interactions for gene pairs 

between the indicated cellular compartments. Values indicate the percent of all gene pairs 

between the compartments that are correlated or have a GI score above the stated thresholds. 

(D) Average GI score between GO-annotated clusters in the K562 GI map. Clusters 
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correspond to those displayed in Figure 2G. Numbers in parentheses indicate number of 

member genes.
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Figure 6. Repression of FDPS is synthetic lethal with HUS1 and results in accumulation of the 
cholesterol intermediate IPP.
(A) Selected interactions with HUS1 and with FDPS in the K562 GI map. (B) Individual 

validation experiments sgRNAs targeting HUS1 and FDPS, performed as in Figure S4A. 

Lines represent mean of two experimental replicates (open circles). (C) Schematic of the 

cholesterol biosynthesis pathway. Gene names are colored by mean validation GI (see also 

Figure 6D) of all sgRNA pairs targeting HUS1 and the indicated gene. (D) sgRNA pair 

epistasis for sgRNAs targeting HUS1 and cholesterol biosynthesis genes. Epistasis was 

calculated as the measured double-sgRNA phenotype subtracted by the sum of the 
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individual phenotypes and by epistasis with non-targeting (NT) sgRNA. Bars represent mean 

of duplicate experiments and error bars represent the maximum and minimum data points. 

(E) Epistasis between sgRNAs targeting HUS1 and FDPS in the presence of DMSO control 

or 4 μM lovastatin. (F) IPP concentration in cells containing NT or FDPS-targeting sgRNAs 

grown in the presence or absence of 4 μM lovastatin for 48 hours. N=6 replicates each (4 for 

lovastatin-treated samples).
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Figure 7. Chemical and genetic perturbation of FDPS causes replicative DNA damage via 
deoxynucleotide depletion.
(A) Western blot measuring CHEK1 and CHEK1 p-S345 abundance in K562 cells 

expressing sgRNAs targeting HUS1 or FPDS. (B) Western blots measuring CHEK1 and 

CHEK1 p-S345 abundance in K562, HEK293T, and iPSC cells treated with the indicated 

concentrations of alendronate. (C) Western blots measuring CHEK1 and CHEK1 p-S345 

abundance in K562 treated with 4 μM lovastatin, 200 μM alendronate, or both drugs. (D) 
Sensitivity or resistance to alendronate induced by CRISPRi repression of genes involved 

major DNA repair pathways, excerpted from an unbiased alendronate screen in K562 cells 
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(see methods and Table S7). (E) Cell cycle analysis of K562 cells before and after treatment 

with 250 μM alendronate. Cells undergoing DNA synthesis incorporate EdU and propidium 

iodide labels overall DNA content. (F) Sensitivity or resistance to alendronate induced by 

CRISPRi repression of genes that modify RNR activity, as in Figure 7D. P-values were 

calculated by Mann-Whitney test of all 10 sgRNAs targeting a given gene compared to 

negative controls; * indicates P<0.05, *** indicates P<0.001. (G) dATP and ATP 

concentration in K562 cells expressing NT or FDPS-targeting sgRNAs grown in the 

presence or absence of 4 μM lovastatin, measured by LC-MS/MS as in Figure 6F. N=6 

replicates each (4 for lovastatin-treated samples). *** indicates P<0.001. (H) Schematic of 

proposed mechanism of FDPS/RRM1/HUS1 synthetic interactions. Red lines indicate the 

observed consequences of chemical and/or genetic perturbations.
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