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Abstract

Resistant hypertension (RHTN), defined as uncontrolled blood pressure (BP) ≥ 140/90 using three 

or more drugs or controlled BP (<140/90) using four or more drugs, is associated with adverse 
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outcomes, including decline in kidney function. We conducted a genome-wide association analysis 

in 1194 White and Hispanic participants with hypertension and coronary artery disease from the 

INternational VErapamil-SR Trandolapril STudy—GENEtic Substudy (INVEST-GENES). Top 

variants associated with RHTN at p < 10−4 were tested for replication in 585 White and Hispanic 

participants with hypertension and subcortical strokes from the Secondary Prevention of 

Subcortical Strokes GENEtic Substudy (SPS3-GENES). A genetic risk score for RHTN was 

created by summing the risk alleles of replicated RHTN signals. rs11749255 in MSX2 was 

associated with RHTN in INVEST (odds ratio (OR) (95% CI) = 1.50 (1.2–1.8), p = 7.3 × 10−5) 

and replicated in SPS3 (OR = 2.0 (1.4–2.8), p = 4.3 × 10−5), with genome-wide significance in 

meta-analysis (OR = 1.60 (1.3–1.9), p = 3.8 × 10−8). Other replicated signals were in IFLTD1 and 

PTPRD. IFLTD1 rs6487504 was associated with RHTN in INVEST (OR = 1.90 (1.4–2.5), p = 1.1 

× 10−5) and SPS3 (OR = 1.70 (1.2–2.5), p = 4 × 10−3). PTPRD rs324498, a previously reported 

RHTN signal, was among the top signals in INVEST (OR = 1.60 (1.3–2.0), p = 3.4 × 10−5) and 

replicated in SPS3 (OR = 1.60 (1.1–2.4), one-sided p = 0.005). Participants with the highest 

number of risk alleles were at increased risk of RHTN compared to participants with a lower 

number (p-trend = 1.8 × 10−15). Overall, we identified and replicated associations with RHTN in 

the MSX2, IFLTD1, and PTPRD regions, and combined these associations to create a genetic risk 

score.

Introduction

Despite the availability of numerous effective antihypertensive drug classes and medications 

within each class, nearly half of the patients with hypertension (HTN) continue to have 

uncontrolled BP and a subset of these of patients suffer from resistant hypertension (RHTN) 

[1].

According to the American Heart Association position statement in 2008, RHTN is defined 

as uncontrolled BP despite the use of maximum tolerated doses of three or more 

antihypertensive medications or controlled BP with the use of four or more medications, 

ideally with a diuretic included [2]. The prevalence of RHTN is estimated at 8–12% of adult 

population on the basis of 140/90 mmHg BP control cut-off [3, 4], these prevalence rates are 

estimated to increase by 4% with the release of the new American College of Cardiology/

American Heart Association clinical guidelines, proposing both lower thresholds for 

hypertension detection and treatment goals [5]. The 2017 guidelines describe the diagnosis, 

risk factors and treatment of RHTN, driving recognition to this clinically important, high-

risk phenotype. Hypertensive patients with RHTN are especially at a higher risk of adverse 

outcomes, including stroke, congestive heart failure, end stage renal disease compared to 

patients with easily controlled BP [6, 7].

RHTN is a complex phenotype driven by genetic and non-genetic factors. Lifestyle risk 

factors, lack of adherence, physician inertia and inaccurate measurements of blood pressure 

(BP), are considered non-genetic factors of RHTN [2]. While the clinical and lifestyle risk 

factors of RHTN have been extensively studied, the genetic risk factors of RHTN are less 

well studied and most of the published data come from small or candidate gene studies [8].
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We hypothesize that RHTN is a pharmacogenomics phenotype for which some of the 

genetic variants will have large effect sizes, like other pharmacogenomics phenotypes, that 

may lead to inadequate response to different classes of BP lowering medications. In the 

current study, we sought to identify genetic variants of RHTN through the use of a genome-

wide association analysis (GWAS) and create a genetic risk score using validated RHTN 

signals from this analysis. Discovery GWAS was performed in a cohort of hypertensive 

patients with documented coronary artery disease from the INternational VErapamil-SR 

Trandolapril Study (INVEST)—GENEtic Substudy (INVEST-GENES) and replication was 

performed in an independent cohort of hypertensive patients with stroke from the Secondary 

Prevention of Small Subcortical Strokes (SPS3) Genetic Substudy (SPS3-GENES). As a 

secondary validation, we performed a look-up of associated SNPs in a third RHTN dataset 

from the electronic Medical and Genomics network (eMERGE).

Materials and methods

Study design and participants

INVEST (discovery)—The INternational VErapamil and Trandolapril STudy (INVEST) 

was an international, multi-center clinical trial investigating cardiovascular (CV) outcomes 

of hypertensive patients with coronary artery disease after randomization to a β-blocker 

strategy (βB, atenolol) or calcium antagonist strategy (CA, verapamil); (https://

clinicaltrials.gov/identifier, NCT00133692) [9]. INVEST-GENES, the genetic substudy of 

INVEST included 5979 participants with DNA samples, 1529 of whom had genome-wide 

genotypic information.

SPS3 (replication)—The Secondary Prevention of Small Subcortical Strokes study was 

an international, multi-center clinical trial evaluating the optimal antiplatelet regimen and 

BP target goal for patients with a history of subcortical stroke [10] (http://

www.clinicaltrials.gov, NCT00059306). SPS3-GENES included 1139 participants with 

available DNA samples, 1049 of whom had genome-wide genotypic information.

The main studies and genetic substudies of INVEST and SPS3 were approved by the 

institutional review boards, and were conducted in accordance with the Declaration of 

Helsinki. Participants provided separate, voluntary, written informed consent for 

participation in main studies and genetic substudies.

eMERGE (secondary validation)—The electronic MEdical Records & GEnomics 

(eMERGE) network consists of electronic health record (EHR) linked bio-repositories from 

10 sites in the US [11].

Detailed information about the studies is included in the Data Supplement.

Resistant hypertension phenotype

INVEST—RHTN was defined using medication and BP measurements at the visit prior to 

experiencing study outcomes or censoring [7, 12]. Participants were classified as RHTN if 

their SBP was ≤140 or DBP ≤ 90 using three or more medications, or if they were using four 

or greater antihypertensive medications regardless of BP. Participants with SBP < 140 and 
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DBP < 90 mmHg using three or fewer medications were included in the controlled BP 

group. Participants with SBP ≥ 140 or DBP ≥ 90 mmHg while on two or fewer medications 

were excluded from this analysis.

For the analyses described herein, we included a total of 1194 participants with GWAS data 

who met the criteria for RHTN dataset as either having RHTN or controlled BP. This 

included 657 Whites (226 RHTN; 431 controlled) and 537 Hispanics (143 RHTN; 394 

controlled). Patients with uncontrolled BP on two or fewer antihypertensive drugs were 

excluded from the analysis.

SPS3—To construct the RHTN phenotype in SPS3, we excluded non-hypertensive 

participants. RHTN status was defined at the 12-month follow-up visit, which allowed 

enough time for BP medication titration to be complete and ensure that RHTN status was 

not driven by addition of more BP lowering medications in the low BP target goal. We 

observed a high concordance rate (>90%) in RHTN status between any two consecutive 

visits within a 6 months window from the 12-month visit (i.e., 12 months ± 6 months). 

RHTN phenotype was defined similarly to INVEST, with the exclusion of participants with 

SBP ≥ 140 or DBP ≥ 90 mmHg on two or fewer medications.

For our analyses in SPS3-GENES, we classified 585 hypertensive participants with available 

GWAS data who met the criteria for RHTN dataset as either having RHTN or controlled BP. 

This included 263 Whites (71 RHTN; 192 controlled) and 321 Hispanics (83 RHTN; 239 

controlled BP). Patients with uncontrolled BP on two or fewer anti-hypertensive drugs were 

excluded from the analysis.

eMERGE—The RHTN dataset was constructed using EHR-linked data of hypertensive 

patients from seven sites in eMERGE (excluding the pediatric sites) [11]. RHTN was 

defined according to two algorithms; the first algorithm defined patients as RHTN if they 

have an outpatient SBP > 140 mmHg or DBP > 90 despite the use of ≥3 anti-hypertensive 

medication classes for at least one month after meeting medication criteria, and the second 

algorithm defined patients as RHTN if they used at least four concomitant antihypertensive 

medication classes. Patients with controlled BP were defined as hypertensive patients with 

SBP < 135 mmHg and DBP < 90 Hg, and used one antihypertensive medication. Patients 

were excluded if they had systolic heart failure or chronic kidney disease. The RHTN dataset 

within eMERGE included predominantly White patients and a very few Hispanics. 

Therefore, we looked up five top associations within INVEST–SPS3 patients using a cohort 

of RHTN and non-RHTN White patients within eMERGE (1946 cases and 471 controls).

Genotyping, quality control, and imputation

The details on genotyping, quality control, and imputation performed on INVEST, SPS3, 

and eMERGE participants are presented in the online-only Data Supplement.

Statistical analysis

Clinical characteristics of INVEST and SPS3 participants are presented as frequency and 

percentage for categorical variables, and means ± standard deviations for continuous 
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variables. Univariate logistic regression was used to evaluate the differences in clinical 

characteristics between participants with and without RHTN. Analysis of clinical 

characteristics was performed using SAS version 9.3 (SAS Institute Inc, Cary, NC).

INVEST-SPS3—First, we assessed the associations between RHTN and 696,317 

genotyped SNPs in INVEST-GENES (n = 1194) using logistic regression analysis and 

adjusting for clinical predictors of RHTN in INVEST as reported previously by Smith et al 

[7]. GWAS analysis was performed separately in Whites and Hispanics, based on PCA-

defined genetic race, using PLINK v1.07 [13] and adjusting for clinical predictors of RHTN 

and ancestry specific PCA: PC1 in Whites and PC1 and PC2 in Hispanics. Our main 

analysis focused on genotyped SNPs, however, we performed a confirmatory analysis using 

imputed, 1000 Genomes, phase 3v5 data. For imputed data, we used EPACTS v3.2.6 

software (http://genome.sph.umich.edu/wiki/EPACTS) to perform GWAS analysis on 

dosage files.

Second, we performed study-wide, fixed effect, inverse variance weighted meta-analysis in 

METAL [14] using association summary statistics of INVEST Whites and INVEST 

Hispanics, with the assumptions that functional SNPs should have consistent associations 

across racial/ethnic groups [15]. Genome-wide significance was set at 5 × 10−8 and 

suggestive SNPs were arbitrarily set at 1 × 10−4 in order to not dismiss biologically 

important SNPs if they do not meet a more stringent cut-off p-value. Studies have shown 

that carefully selected SNPs based on functional evidence and biological plausibility are 

more likely to be replicated [16, 17]. Therefore, we adopted a screening strategy to prioritize 

loci for validation, which is detailed in the online-only Data Supplement. Based on available 

support from literature to validate SNPs that did not meet the stringent genome-wide 

significance [18, 19], we set out to validate both genome-wide significant and suggestive 

SNPs and selected SNPs from INVEST meta-analysis to test their association in 

independent hypertensive participants (n = 585) from SPS3, the primary validation cohort 

for this GWAS study. A total of ten SNPs in ten independent genomic loci were tested for 

validation, (Supplementary Table S2) and SNPs were considered validated in SPS3 by 

meeting a one-sided (same direction as discovery cohort) Bonferroni-corrected p-value of 

0.005 (0.05/10 signals). Codes for GWAS association analysis can be made available upon 

request.

INVEST-SPS3-eMERGE—Next, to increase the power of GWAS to detect associations for 

signals with small to modest effect size, we conducted a meta-analysis of summary statistics 

of White and Hispanic participants of INVEST and SPS3 using fixed effect, inverse variance 

weighted meta-analysis in METAL [14]. eMERGE was used as a secondary validation 

cohort for genome-wide (p < 5 × 10−8), and suggestive SNPs (p < 5 × 10−5) from INVEST-

SPS3 meta-analysis that met the SNP prioritization criteria and had the same direction of 

association in INVEST and SPS3. SNPs were considered validated if they had similar 

association as in INVEST and SPS3 at a Bonferroni-corrected one-sided p-value of 0.01 

(0.05/5 SNPs) since a one-sided hypothesis was being tested.

Risk score analysis in INVEST and SPS3—We set out to construct a genetic score of 

RHTN SNPs to evaluate the effect of having multiple risk alleles on the phenotype, and 
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advance potential translations of the findings. A risk score was generated using three 

independent SNPs that were replicated in SPS3 and included: rs11749255 in MSX2, 

rs6487504 in IFLTD1, and rs324498 in PTPRD. Genetic risk scores were constructed using 

an unweighted, allele counting method [20]. One participant was exluded from this analysis 

due to missing genotype. A single point was given to the risk allele associated with 

increased odds of RHTN [20]. The risk score ranged from 0 to 6 (2 points if participant was 

homozygous for risk allele, 1 point if heterozygous for risk allele, 0 points if homozygous 

for the protective allele). We evaluated the prevalence of RHTN across the risk score groups 

using a Cochran-Armitage Trend test separately within the four ancestry/ethnic groups, and 

the combined dataset of INVEST-SPS3.

Results

The baseline clinical characteristics of patients in INVEST and SPS3 are summarized in 

Table 1. On average, INVEST participants were older (mean age is 68 years) than SPS3 

participants (mean age is 63 years). In INVEST, participants with RHTN had a higher 

prevalence of other cardiovascular co-morbidities such as congestive heart failure, 

myocardial infarction, and peripheral vascular disease. Participants with RHTN were more 

likely to be diabetic and have higher BMI compared to non-RHTN participants (Table 1). In 

eMERGE, approximately, half of patients were males, with a median BMI in the overweight 

category (~30–31 kg/m2), a median birth decade of 1940 (25%; 75% quartiles = 1930;1940, 

respectively) in both cases and controls.

Patients with RHTN generally had a significantly higher use of major antihypertensive 

medication drug classes compared to patients without RHTN, as shown in Table 2. A 

significantly higher percentage of patients with RHTN used the recommended combination 

of medications for RHTN management such as thiazide diuretics, calcium channel blockers 

(CCBs), and angiotensin converting enzyme inhibitors (ACEIs), compared to patients 

without RHTN, suggesting that these patients in both trials were optimally managed with 

medications to reach their BP goals. In INVEST, approximately >80%, 50%, and 80% of 

patients with RHTN were on thiazide diuretics, CCBs, and ACEIs, respectively. Similarly, in 

SPS3, approximately >80% and, 70% of patients with RHTN were on thiazide diuretics and 

CCBs, respectively, and almost 60% were on ACEIs.

The majority of patients were defined as RHTN based on having controlled BP on ≥4 drugs. 

This was specifically the case in 61% and 73% of INVEST Whites and Hispanics, 

respectively, and 45% and 55% of SPS3 Whites and Hispanics, respectively. This reflects the 

effective BP titration protocols in both INVEST and SPS3 in which patients’ BP was closely 

monitored, and medications were added and optimized, and explains the reason that the 

average BP in RHTN cases (Table 2) was <140 and <90 mmHg.

GWAS analysis in INVEST did not identify SNPs that reached genome-wide significance. 

However, 43 independent SNPs (Supplementary Table S1) from INVEST (White-Hispanic 

meta-analysis) met the suggestive evidence of association and had consistent association 

among INVEST Whites and Hispanics participants; 10 of which (Supplementary Table S2) 

were selected for replication in SPS3 (White-Hispanic meta-analysis) since they had the 
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strongest evidence for a functional role according to Haploreg v.4 [21] and RegulomeDB 

v1.1 [22], and/or a biological role.

Among the 10 evaluated SNPs, 3 SNPs in the MSX2, IFLTD1, and PTPRD gene regions 

were replicated in SPS3 (Table 3). Minor allele frequencies and Hardy–Weinberg 

equilibrium p-values for the 3 SNPs are shown in Supplementary Table S3. The first 

replicated gene region included a SNP (rs11749255) located 82 kb upstream of MSX2. The 

A allele of rs11749255 was associated with a 50% increase in odds of RHTN in INVEST 

(OR (95% CI) 1.50 (1.2–1.8), p = 7.3 × 10−5) and twofold increased odds in RHTN in SPS3 

(OR (95% CI) 2.00 (1.4–2.8), p = 4.4 × 10−5). This SNP reached genome-wide significance 

when INVEST and SPS3 were combined (OR (95% CI) 1.60 (1.3–1.9), p = 3.8 × 10−8) (Fig. 

1, Table 2). The MSX2 gene region has several signals in linkage disequilibrium (LD) with 

rs11749255 as shown in the regional plot (Supplementary Figure S2 and S4).

The second region was found near the IFLTD1 region, where rs6487504 was consistently 

associated with RHTN in both INVEST (OR (95% CI) 1.9 (1.4–2.5), p = 1.1 × 10−5) and 

SPS3 (OR (95% CI) 1.7(1.2–2.5), p = 4.0 × 10−3). Each additional copy of the variant allele 

(A) was associated with 81% higher odds for RHTN in the INVEST and SPS3 metaanalysis 

(OR (95% CI) = 1.81 (1.5–2.3)), p = 1.6 × 10−7 (Fig. 2).

The third association of interest was an intronic SNP rs324498 in the PTPRD, a previously 

reported association with RHTN from INVEST that was identified using a large gene-centric 

chip analysis [12]. The SNP was associated with RHTN in INVEST (OR (95% CI) 1.62 

(1.30–2.0), p = 3.4 × 10−5) and replicated in SPS3 (OR (95% CI) 1.63 (1.10–2.4), one-sided 

p = 0.005). Each additional copy of the variant allele (G) was associated with 62% increase 

in RHTN risk in the INVEST and SPS3 meta-analysis (OR (95% CI) = 1.62 (1.30–2.0)), p = 

1.3 × 10−6 (Fig. 3).

The Manhattan and Q–Q plot of the INVEST–SPS3 meta-analysis are shown in 

Supplementary Figures S2 and S3. We selected five SNPs to validate in eMERGE including 

the rs11749255 MSX2 and rs324498 PTPRD that replicated in SPS3 (rs6487504 IFLTD1 
SNP was not available in eMERGE). We were not able to validate signals rs11749255 

MSX2 and rs324498 PTPRD associations in eMERGE. However, we found a SNP 

rs16934621 in the BNC2 gene region (Supplementary Figure S5) that was associated with 

RHTN in the INVEST–SPS3 meta-analysis and had a directionally similar association in 

eMERGE (Supplementary Table S4). New genetic loci were not identified when data was re-

analyzed using imputed data.

We constructed a genetic score based on the three replicated SNPs (MSX2 rs11749255, 

PTPRD rs324498, and IFLTD1 rs6487504).The Cochran-Armitage Trend test revealed that 

participants with increased number of risk alleles (higher risk score) had a higher prevalence 

of RHTN compared to lower score participants (p = 1.8 × 10−15, Fig. 4). The association 

was consistent across the four ancestry/ethnic groups of INVEST and SPS3 (Supplementary 

Figure S6A–D).
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Discussion

We sought to identify and replicate common genetic variants associated with RHTN across 

two cohorts of hypertensive patients treated with antihypertensive medications for BP 

control. Through a GWAS analysis approach, we identified three regions associated with 

RHTN in INVEST that validated in SPS3: MSX2, IFLTD1, and PTPRD. The lead SNPs of 

these associated loci were the same, and were tested for association in both whites and 

Hispanics. We also found another region of interest near the BNC2 region, which was first 

identified in a meta-analysis of INVEST and SPS3 and validated in a cohort of hypertensive 

patients from EHR data in eMERGE.

The first identified region is in MSX2 and included multiple associated variants. MSX2 
(msh homeobox 2) encodes for MSX2, a transcriptional factor that promotes the expression 

of osteogenic factors including alkaline phosphatases and plays a role in bone development 

[23]. Additionally, MSX2 acts as transcriptional modulator in vascular calcification [24]. In 

a model of vascular calcification, transgenic overexpression of Msx2 in mice was shown to 

activate Wnt-dependent signaling and promote vascular calcification [25]. The MSX2 
rs11739255 was associated with increased risk of RHTN and reached genome-wide 

significance when INVEST and SPS3 were combined, with a consistent association across 

INVEST whites, INVEST Hispanics; SPS3 whites, and SPS3 Hispanics. Additionally, 

rs11749255 is associated with histone modification mark (H3k4me1) in fetal heart tissue and 

placenta and altered binding of several regulatory motifs according to Haploreg v4 [21]. This 

SNP is an eQTL for MSX2 in brain cortex according to the GTEx portal (Supplementary 

Figure S7), which suggests that rs11749255 may modulate gene expression of MSX2.

The second identified region of interest is in the intermediate filament tail domain containing 

1 (IFLTD1), which has a role in structural activity and cell proliferation. IFLTD1 rs6487504 

was associated with RHTN in INVEST and SPS3. Although it is unclear how the association 

in the IFLTD1 gene region influences HTN and RHTN, several associations in IFLTD1 with 

cardiovascular phenotypes including body mass index, carotid femoral pulse wave velocity, 

and left ventricular ejection time have been reported [26, 27].

The third associated and replicated region is in the PTPRD locus. The PTPRD protein 

belongs to the protein tyrosine phosphatase (PTP), a family of signaling molecules involved 

in a variety of cellular processes including mitotic cycle and cellular differentiation. The 

PTPRD rs324498 association was first identified in a large-centric gene analysis as a RHTN 

association [12] and was among the top associated SNPs in this analysis. We confirmed this 

association in hypertensive patients with a history of stroke from SPS3. Recently, two SNPs, 

rs12346562 and rs10739150 near the PTPRD were associated with BP response to atenolol 

in hypertensive participants from the Pharmacogenetics Evaluation of Antihypertensive 

Responses (PEAR) study [28].

BNC2 encodes basonuclin 2, a zinc finger transcriptional factor [29]. SNPs in BNC2 have 

been associated with glycemic control in type I diabetes and glycemic complications 

including diabetic nephropathy and retinal complications [30]. A recent analysis from the 

GenSalt study reported an association of BNC2—potassium interaction with diastolic blood 
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pressure [31, 32]. BNC2 is characterized by extreme conservation among vertebrates, 

suggesting its important regulatory function. While the exact mechanism of the associated 

BNC2 SNP in the context of RHTN is unknown, data from ENCODE [33] illustrate that 

rs16934621 is associated with chromatin states in cell lines and affects protein binding 

(Supplementary Figure S8).

Finally, participants with increased number of risk alleles were at a higher risk of developing 

RHTN compared to participants with lower number of risk alleles. This is in line with the 

polygenic nature of complex phenotypes in which multiple genetic variants are likely to act 

in concert to derive the phenotype. The genetic risk score has yet to be validated in 

independent RHTN cohorts. To date, there are no available RHTN cohorts with genome-

wide data in which the risk score can be replicated. However, the International Consortium 

for Antihypertensive Pharmacogenomics Studies (https://icaps-htn.org/) include GWAS data 

available on antihypertensive drug response from 29 hypertensive cohorts. Datasets with 

ascertained BP response and potential to infer the RHTN phenotype, similar to INVEST and 

SPS3 are available in ICAPS, and present potential validation cohorts for the identified 

RHTN signals and genetic risk score. This is likely to promote the utility of prediction risk 

scores to identify high-risk patients, with whom nephrologists/clinicians need to be strict 

with risk factor modifications, for example, dietary sodium restriction. Such patients should 

have their antihypertensive regimen optimized with the recommended agents that include 

diuretic, long acting non-dihydropyridine calcium channel blocker, and a renin–angiotensin 

system blocker (ACEI or ARB). If BP is still uncontrolled, spironolactone, a highly effective 

mineralocorticoid receptor antagonist should be added as a fourth agent [34]. These patients 

may also benefit from referral to hypertension specialists and focused interviews with 

clinicians and pharmacists to educate about their disease risk and enhance compliance with 

pharmacological and non-pharmacological interventions.

The RHTN prevalence rates in our studies were higher than that in the most recent BP 

clinical trial called SPRINT [35]. Compared to INVEST and SPS3, the SPRINT trial 

randomized patients who were generally at lower risk, and particularly excluded certain 

patients in whom RHTN is more prevalent, e.g., patients with stroke and diabetes, both of 

which are well-documented risk factors for RHTN. In contrast, both INVEST and SPS3 

allowed those patients and INVEST required patients to have coronary disease for 

enrollment and SPS3 required patients to have had a previous small subcortical stroke [9, 

36]. Thus, the SPRINT inclusion criteria likely led to a cohort with lower prevalence of 

RHTN.

To our knowledge, this is the first GWAS analysis to identify RHTN using data from two 

randomized, outcomes-driven clinical trials. Strengths of this study are the consistency of 

findings across two clinical trials with well-documented drug use and dose optimization to a 

BP-driven protocol, overcoming physician inertia seen in clinical practice. Specifically in 

INVEST, a centralized and electronic data reporting system was used, which allowed for 

accurate monitoring of drug use. INVEST involved mechanisms to eliminate the reliance on 

patients to obtain study medications, and therefore allowing for consistent filling of 

medications. Specifically, a mail ordering pharmacy was used for processing and delivery of 

medications to the patient’s home, and the receipt of medications was confirmed via 

El Rouby et al. Page 9

Pharmacogenomics J. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://icaps-htn.org/


patient’s postcards [37]. Moreover, patients in INVEST experienced BP and heart rate 

lowering effects of atenolol and verapamil, an expected pharmacodynamics effect, further 

confirming ingestion of the drugs [9]. In SPS3, patients were followed monthly until BP is 

in goal, and then quarterly. Compliance with the medications was assessed in the follow-up 

visits and adherence was reported to be good or excellent in >75% of the visits [10]. 

Additionally, medications were offered at no cost whenever appropriate [10]. Finally, the 

consistency of associations and replicating/validating the signals in other datasets suggest 

that RHTN observed in these studies reflect a difficult to treat BP phenotype.

We acknowledge some limitations in our study. First, we were powered to detect signals of 

large effect sizes, therefore, the power in our discovery cohort (INVEST) was limited to 

detect associations with variants of small to moderate genetic effect; this was overcome to 

some extent by combining association results of two hypertensive cohorts. Second, we 

sought to utilize data derived from the EHR as part of eMERGE, as a secondary validation 

for the identified signals; however, we believe that heterogeneity in RHTN phenotype 

between INVEST–SPS3 and eMERGE, and the general quality of data in clinical trials 

versus within the electronic health records may have precluded replication of some the 

signals. In general, the data in EHR data were not necessarily collected to answer a specific 

type of research question, rather, were intended for clinical care. Additionally, some 

phenotypes may be more prone to error than others, resistant hypertension is one example. 

The challenges of creating RHTN from EHR was highlighted in a manuscript by Newton et 

al. [38]. Some of these challenges were related to the involvement of many variables that 

needed to be extracted from EHR to create the RHTN phenotype such as systolic, and 

diastolic blood pressures, free texts, ICD9 codes, medications, and laboratory tests. The need 

to accurately define the most meaningful time for blood pressure measurements using 

repeated measures data in EHR was also among the major challenges encountered in 

creating the RHTN phenotype [38]. Finally, the movement of patients in and out of the 

systems known as transience could have resulted in fragmented data, slightly decreasing the 

number of RHTN cases and controls within eMERGE and negatively influencing the power 

[11]. Despite the general limitations of using EHR in GWAS associations, the fact that one 

of INVEST–SPS3 signals in BNC2 locus, a recently reported BP gene [32], was consistently 

associated in eMERGE at a nominal p-value suggests that the association with RHTN found 

in our analyses are likely real, and demonstrate the usefulness of collaborative approaches in 

discovering RHTN signals.

Third, systematic measures were not taken to completely rule out pseudo-resistance, for 

example, urine pharmacological screens were not performed to rule out nonadherence, and 

thus, we cannot ascertain that RHTN phenotype in our studies is strictly a true RHTN. The 

fact that we replicated/validated signals in three independent datasets suggest that the 

phenotype studied is driven by resistance to pharmacological treatments.

In conclusion, we identified and validated multiple variants for RHTN in different gene loci. 

Further validating the association of these variants and risk score in emerging RHTN cohorts 

may help in the precision medicine era, where patients with genetic predisposition to RHTN 

can be identified and treated accordingly to prevent adverse CV sequelae.
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Fig. 1. 
Adjusted odds ratios and 95% CIs for resistant hypertension risk for MSX2 rs11749255 in 

INternational VErapamil-SR Trandolapril STudy (INVEST) Whites, INVEST Hispanics, 

Secondary Prevention of Small Subcortical Strokes (SPS3) Whites, SPS3 Hispanics, and 

meta-analysis
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Fig. 2. 
Adjusted odds ratios and 95% CIs for resistant hypertension risk for IFLTD1 rs6487504 in 

INternational VErapamil-SR Trandolapril STudy (INVEST) Whites, INVEST Hispanics, 

Secondary Prevention of Small Subcortical Strokes (SPS3) Whites, SPS3 Hispanics, and 

meta-analysis
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Fig. 3. 
Adjusted odds ratios and 95% CIs for resistant hypertension risk for PTPRD rs324498 in 

INternational VErapamil-SR Trandolapril STudy (INVEST) Whites, INVEST Hispanics, 

Secondary Prevention of Small Subcortical Strokes (SPS3) Whites, SPS3 Hispanics, and 

meta-analysis
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Fig. 4. 
Genetic risk score association with resistant hypertension (RHTN) in INternational 

VErapamil-SR Trandolapril STudy (INVEST) and Secondary Prevention of Small 

Subcortical Strokes (SPS3) datasets. Risk score was calculated using three SNPs: 

rs11749255 MSX2, rs324498 PTPRD and rs6487504 IFLTD1. One point was given to each 

allele conferring risk for RHTN. Participants with a higher risk score had a higher 

prevalence of RHTN compared to participants with a lower risk score

El Rouby et al. Page 17

Pharmacogenomics J. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El Rouby et al. Page 18

Ta
b

le
 1

C
lin

ic
al

 c
ha

ra
ct

er
is

tic
s 

of
 I

N
V

E
ST

 a
nd

 S
PS

3

C
lin

ic
al

 c
ha

ra
ct

er
is

ti
cs

IN
V

E
ST

SP
S3

W
hi

te
s

H
is

pa
ni

cs
W

hi
te

s
H

is
pa

ni
cs

C
on

tr
ol

s 
N

 =
 

43
1

R
H

T
N

 c
as

es
 N

 =
 

22
6

C
on

tr
ol

s 
N

 =
 

39
4

R
H

T
N

 c
as

es
 N

 =
 

14
3

C
on

tr
ol

s 
N

 =
 

19
2

R
H

T
N

 c
as

es
 N

 =
 

71
C

on
tr

ol
s 

N
 =

 
23

9
R

H
T

N
 c

as
es

 N
 =

 
83

A
ge

70
 ±

 1
0

70
 ±

 9
66

 ±
 1

0
66

 ±
 1

0
64

 ±
 1

0
63

 ±
 9

63
 ±

 1
1

63
 ±

 1
1

Fe
m

al
e

18
4 

(4
3%

)
11

4 
(5

0%
)

22
5 

(5
7%

)
87

 (
61

%
)

70
 (

36
%

)
18

 (
25

%
)

98
 (

41
%

)
37

 (
45

%
)

B
M

I,
 m

ea
n 

±
 S

D
29

 ±
 6

29
 ±

 6
28

.5
 ±

 5
30

 ±
 5

**
29

 ±
 6

31
 ±

 1
0

28
 ±

 4
30

 ±
 6

##

SB
P 

at
 R

H
T

N
 c

la
ss

if
ic

at
io

n
12

6 
±

 9
14

1 
±

 1
7*

12
4 

±
 9

14
3 

±
 1

8*
*

12
6 

±
 9

13
8 

±
 1

4#
12

2 
±

 1
1

13
3 

±
 1

4#
#

D
B

P 
at

 R
H

T
N

 c
la

ss
if

ic
at

io
n

73
 ±

 8
76

 ±
 1

1*
76

 ±
 7

84
 ±

 1
0*

*
71

 ±
 8

73
 ±

 9
67

 ±
 1

0
70

 ±
 1

0

D
ia

be
te

s
64

 (
15

%
)

66
 (

29
%

)*
51

 (
13

%
)

25
 (

18
%

)
44

 (
23

%
)

25
 (

35
%

)#
71

 (
30

%
)

33
 (

40
%

)

H
ea

rt
 f

ai
lu

re
27

 (
6%

)
17

 (
8%

)
6 

(2
%

)
8 

(6
%

)*
*

1 
(1

%
)

2 
(1

.4
%

)
2 

(0
.9

%
)

1 
(1

.2
%

)

M
yo

ca
rd

ia
l i

nf
ar

ct
io

n
17

0 
(3

9%
)

92
 (

41
%

)
35

 (
9%

)
23

 (
16

%
)

6 
(3

%
)

8 
(1

1%
)#

8 
(3

%
)

2 
(2

%
)

Pe
ri

ph
er

al
 v

as
cu

la
r 

di
se

as
e

40
 (

9%
)

35
 (

16
%

)*
34

 (
9%

)
23

 (
16

%
)*

*
4 

(2
%

)
2 

(3
%

)
0 

(0
%

)
2 

(2
%

)

Sm
ok

in
g

20
4 

(4
7%

)
11

3 
(5

0%
)

13
7 

(3
5%

)
44

 (
31

%
)

41
 (

21
%

)
21

 (
30

%
)

18
 (

8%
)

3 
(4

%
)

C
on

tin
uo

us
 v

ar
ia

bl
es

 a
re

 e
xp

re
ss

ed
 a

s 
m

ea
ns

 ±
 s

ta
nd

ar
d 

de
vi

at
io

ns
 (

SD
),

 c
at

eg
or

ic
al

 v
ar

ia
bl

es
 a

re
 e

xp
re

ss
ed

 a
s 

fr
eq

ue
nc

y 
an

d 
pe

rc
en

ta
ge

s

B
M

I B
od

y 
m

as
s 

in
de

x,
 S

B
P 

sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e,

 D
B

P 
di

as
to

lic
 b

lo
od

 p
re

ss
ur

e

* p 
<

 0
.0

5 
co

m
pa

re
d 

to
 c

on
tr

ol
le

d 
B

P 
in

 I
N

V
E

ST
 W

hi
te

s

**
p 

<
 0

.0
5 

co
m

pa
re

d 
to

 c
on

tr
ol

le
d 

B
P 

in
 I

N
V

E
ST

 H
is

pa
ni

cs

# p 
<

0.
05

 c
om

pa
re

d 
to

 c
on

tr
ol

le
d 

B
P 

in
 S

PS
3 

W
hi

te
s

##
p 

<
 0

.0
5 

co
m

pa
re

d 
to

 c
on

tr
ol

le
d 

B
P 

in
 S

PS
3 

H
is

pa
ni

cs

Pharmacogenomics J. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El Rouby et al. Page 19

Ta
b

le
 2

B
lo

od
 p

re
ss

ur
e 

an
d 

dr
ug

 u
se

 a
t t

he
 v

is
it 

of
 R

H
T

N
 c

la
ss

if
ic

at
io

n 
in

 I
N

V
E

ST
 a

nd
 S

PS
3

D
ru

g 
cl

as
s

IN
V

E
ST

SP
S3

W
hi

te
s

H
is

pa
ni

cs
W

hi
te

s
H

is
pa

ni
cs

C
on

tr
ol

s 
N

 =
 

43
1

R
H

T
N

 c
as

es
 N

 =
 

22
6

C
on

tr
ol

s 
N

 =
 

39
4

R
H

T
N

 c
as

es
 N

 =
 

14
3

C
on

tr
ol

s 
N

 =
 

19
2

R
H

T
N

 c
as

es
 N

 =
 

71
C

on
tr

ol
s 

N
 =

 
23

9
R

H
T

N
 c

as
es

 N
 =

 
83

SB
P 

at
 R

H
T

N
 c

la
ss

if
ic

at
io

n
12

6 
±

 9
14

1 
±

 1
7*

12
4 

±
 9

14
3 

±
 1

8*
*

12
6 

±
 9

13
8 

±
 1

4#
12

2 
±

 1
1

13
3 

±
 1

4##

D
B

P 
at

 R
H

T
N

 c
la

ss
if

ic
at

io
n

73
 ±

 8
76

 ±
 1

1*
76

 ±
 7

84
 ±

 1
0*

*
71

 ±
 8

73
 ±

 9
67

 ±
 1

0
70

 ±
 1

0

T
hi

az
id

e 
di

ur
et

ic
s

26
1 

(6
1%

)
19

0 
(8

4%
)*

24
0 

(6
1%

)
12

2 
(8

5%
)*

*
11

4 
(5

9%
)

57
 (

80
%

)#
12

3 
(5

1%
)

70
 (

84
%

)##

C
al

ci
um

 c
ha

nn
el

 b
lo

ck
er

s
20

2 
(4

7%
)

11
3 

(5
0%

)
20

1 
(5

1%
)

62
 (

43
%

)
61

 (
32

%
)

55
 (

77
%

)#
80

 (
33

%
)

74
 (

89
%

)##

B
et

a 
bl

oc
ke

rs
21

2 
(4

9%
)

10
7 

(4
7%

)
17

8 
(4

5%
)

79
 (

55
%

)*
*

39
 (

20
%

)
49

 (
69

%
)#

30
 (

13
%

)
61

 (
73

%
)##

A
C

E
 in

hi
bi

to
rs

29
2 

(6
8%

)
19

6 
(8

7%
)*

25
1 

(6
4%

)
12

9 
(9

0%
)*

*
99

 (
52

%
)

43
 (

61
%

)
11

0 
(4

6%
)

49
 (

59
%

)##

C
on

tin
uo

us
 v

ar
ia

bl
es

 a
re

 e
xp

re
ss

ed
 a

s 
m

ea
ns

 ±
 s

ta
nd

ar
d 

de
vi

at
io

ns
 (

SD
),

 c
at

eg
or

ic
al

 v
ar

ia
bl

es
 a

re
 e

xp
re

ss
ed

 a
s 

fr
eq

ue
nc

y 
an

d 
pe

rc
en

ta
ge

s

* p 
<

 0
.0

5 
co

m
pa

re
d 

to
 c

on
tr

ol
le

d 
B

P 
in

 I
N

V
E

ST
 W

hi
te

s

**
p 

<
0.

05
 c

om
pa

re
d 

to
 c

on
tr

ol
le

d 
B

P 
in

 I
N

V
E

ST
 H

is
pa

ni
cs

# p 
<

 0
.0

5 
co

m
pa

re
d 

to
 c

on
tr

ol
le

d 
B

P 
in

 S
PS

3 
W

hi
te

s

##
p 

<
 0

.0
5 

co
m

pa
re

d 
to

 c
on

tr
ol

le
d 

B
P 

in
 S

PS
3 

H
is

pa
ni

cs

Pharmacogenomics J. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El Rouby et al. Page 20

Ta
b

le
 3

R
H

T
N

 S
N

Ps
: d

is
co

ve
ry

 in
 I

N
V

E
ST

 w
ith

 r
ep

lic
at

io
n 

in
 S

PS
3

SN
P

C
h

P
os

it
io

n
N

ea
re

st
 g

en
e

A
1

St
ud

y
W

hi
te

-H
is

pa
ni

c 
O

R
 (

95
%

 C
I)

W
hi

te
-H

is
pa

ni
c 

m
et

a-
an

al
ys

is
 p

IN
V

E
ST

–S
P

S3
 

m
et

a-
an

al
ys

is
 

O
R

 (
95

%
 C

I)

IN
V

E
ST

–S
P

S3
 m

et
a-

an
al

ys
is

 p
H

et
er

og
en

ei
ty

 p

rs
11

74
92

55
5

17
46

42
66

5
M

SX
2

A
IN

V
E

ST
1.

5 
(1

.2
, 1

.8
)

7.
3 

×
 1

0−
5

1.
60

 (
1.

3,
 1

.9
)

3.
8 

×
 1

0−
8

0.
14

SP
S3

2.
0 

(1
.4

, 2
.8

)
4.

4 
×

 1
0−

5

rs
64

87
50

4
12

25
65

43
74

IF
LT

D
1

A
IN

V
E

ST
1.

9 
(1

.4
, 2

.5
)

1.
1 

×
 1

0−
5

1.
81

 (
1.

4,
 2

.3
)

1.
6 

×
 1

0−
7

0.
92

SP
S3

1.
7 

(1
.2

, 2
.5

)
4.

0 
×

 1
0−

3

rs
32

44
98

9
90

59
54

5
PT

PR
D

G
IN

V
E

ST
1.

62
 (

1.
3,

 2
.0

)
3.

4 
×

 1
0−

5
1.

62
 (

1.
3,

 2
.0

)
1.

3 
×

 1
0−

6
1

SP
S3

1.
63

 (
1.

1,
 2

.4
)

0.
01

A
1 

co
de

d 
al

le
le

, O
R

 o
dd

s 
ra

tio
, H

et
er

og
en

ei
ty

 p
 I

N
V

E
ST

-S
PS

 m
et

a-
an

al
ys

is
 h

et
er

og
en

ei
ty

 p
-v

al
ue

Pharmacogenomics J. Author manuscript; available in PMC 2020 June 01.


	Abstract
	Introduction
	Materials and methods
	Study design and participants
	INVEST (discovery)
	SPS3 (replication)
	eMERGE (secondary validation)

	Resistant hypertension phenotype
	INVEST
	SPS3
	eMERGE

	Genotyping, quality control, and imputation
	Statistical analysis
	INVEST-SPS3
	INVEST-SPS3-eMERGE
	Risk score analysis in INVEST and SPS3


	Results
	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Table 2
	Table 3

