
PERSPECTIVE

The Stanley Neuropathology Consortium Integrative Database
(SNCID) for Psychiatric Disorders

Sanghyeon Kim1
• Maree J. Webster1

Received: 20 July 2018 / Accepted: 17 August 2018 / Published online: 27 November 2018

� Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

The Stanley Medical Research Institute (SMRI) is a non-

profit organization with a primary mission to fund research

on the cause and treatment of severe mental illnesses. The

SMRI also supports a brain bank as part of the mission to

facilitate research into mental illness. The SMRI brain

bank distributes postmortem samples from individuals with

serious mental illness, free of charge, to scientists around

the world. The SMRI brain bank is recognized for the

unique way it is set up, organized, and administered.

Cohorts of demographically-matched groups of patients

with schizophrenia, bipolar disorder (BP), or major depres-

sion (DEP) and unaffected controls are organized such that

all researchers applying for tissue received samples from

the same cohort. The SMRI was the first to include

multiple diagnostic categories in the cohorts as well as the

first to include a large number (N) of cases in each group.

The Stanley Neuropathology Consortium (SNC) was the

first cohort established and contains 60 brains (15 in each

of 4 groups); it was the largest cohort of subjects with

major mental illness that was available when the cohort

was established in 1997. The Array Collection (AC) was a

subsequent cohort with an N of 35 in each of 3 groups and

was established in 2002. Pathologists from the offices of

designated medical examiners in the USA were trained in

standardized collection techniques. All medical and

psychiatric records were obtained and reviewed by two

senior psychiatrists. A psychiatrist also contacted one or

more family members by telephone to clarify and verify

before making the final DSM-IV diagnosis. For the normal

controls, a psychiatrist conducted a structured telephone

interview with first-degree family members to obtain all

pertinent psychiatric and medical history as described in

Torrey et al., 2000 [1]. A pathologist performed a standard

neuropathological examination for every case. While cases

were relatively young (average age 45 years), all brains

were screened for the presence of cardiovascular disease,

hemorrhage, trauma, tumors, or other pathology and

confirmed by the examination of appropriate sections from

the suspect area. Cases were also screened for Alzheimer’s

disease, Parkinson’s disease, ethanol-induced changes, and

anoxic/hypoxic-related alterations and also for RNA

integrity. Only brains that were free from pathology and

that had intact RNA were included in the final research

cohorts. Controls have no history of any neurologic or

psychiatric disorder. Within each research cohort the

diagnostic groups and controls were matched for age,

sex, race, postmortem interval (PMI), pH, and side of brain

frozen.

The SMRI brain bank was involved in the initial efforts

to identify and develop methodology for optimizing

anatomical and tissue integrity for postmortem tissue

necessary for the rapidly-evolving molecular biology

techniques [1, 2]. The SMRI maximized the use of the

brains by distributing aliquots of DNA, RNA, and protein

as well as slide-based sections. In addition to the post-

mortem brain tissue, liver, spleen, serum, and cerebrospinal

fluid (CSF) were also collected from each subject. CSF can

be important for the cross-validation of abnormal protein

expression in the brain, and abnormal CSF proteins may be

useful in the discovery of potential serum biomarkers [3].
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The SMRI was at the forefront for requiring data-sharing

by distributing all tissue coded and researchers only

obtained the code, demographic, and clinical information

for each case after they sent the data back to the SMRI. The

demographic and clinical information includes a wide

range of variables such as age, sex, race, PMI, cause of

death, education, marital status, age at onset, family

history, total duration of hospitalization, estimate of

lifetime antipsychotic medication (fluphenazine milligram

equivalents), and history of drug and alcohol use, including

smoking. To date, the SMRI has obtained more than 6000

individual neuropathology datasets, as well as multiple

microarray gene expression datasets, microRNA array data,

single nucleotide polymorphism (SNP) array data, pro-

teomic data, epigenetic data, and RNA-seq data from

multiple brain regions, all from the same set of brains.

Consequently, the SMRI has the most well-characterized

set of brains ever established and has developed a web-

based interactive tool to integrate all this data. The

integrative database that houses all this data has been

described in detail [4, 5], however it is constantly

expanding and evolving. Thus, this brief report provides

an update of the data and the tools recently added to the

functions of the database. Using the Stanley Neuropathol-

ogy Consortium Integrative Database (SNCID) data we

investigate whether any of the SNPs recently associated

with the risk for schizophrenia can be identified in the SNP

array data and then determine if they are associated with

any of the neuropathological traits that have been measured

in these same brains.

A total of 4712 individual neuropathology datasets have

been added to the SNCID [4] since the integrative database

was first made public in March, 2009. As of June 2018, the

SNCID contains 4078 neuropathology markers measured

in 12 different brain regions of the 60 cases in the SNC.

This is a 136% increase compared to when the database

was first made public (Fig. 1A). There are also 2383

markers measured in 7 brain regions in the 105 cases of the

AC. These datasets are particularly useful for validation

studies (Fig. 1B). These neuropathology datasets include

traditional cytoarchitectural studies that measure the size

and density of neurons and glia, as well as protein studies

(western blots, ELISAs, and immunohistochemistry), RNA

studies (qPCR and in-situ hybridization) and biochemical

studies (receptor binding). In addition, RNA-Seq data from

the hippocampus of the SNC have been integrated into the

correlation module of the SNCID and the raw RNA-Seq

data from seven brain regions of three Stanley brain

collections are available to download.

A variety of statistical analysis tools such as variance

analysis, correlation analysis, and functional annotation

tools are integrated into the database, but new tools

continue to be developed and added to the database [4, 6].

The gene co-expression network analysis algorithm is

widely used to identify modules of co-expressed genes that

show a similar expression pattern across samples [7, 8]. A

quantitative comparison of two co-expression modules

could enable researchers to compute the similarity between

two networks and thereby lead to the possible identification

of the mechanisms underlying complex traits and diseases.

However, the availability of such statistical algorithms to

analyze co-expression modules is limited. We therefore

developed a new web tool that enables researchers to

compare two co-expression modules [8]. This feature has

also been integrated into the SNCID (Fig. S1).

A SNP-based analysis tool has also been developed to

perform association analyses between the SNP genotyping

data and the neuropathology data or gene expression data

and has been added to the SNCID. The genome-wide SNP

genotyping data were generated by Dr. Chunyu Liu and

colleagues using the Human SNP Array 5.0 chips

(Affymetrix). Quality-control of the SNP data was per-

formed as previously described [9]. For the tool, the SNPs

with a call rate of\90% and minor allele frequency\ 5%

were filtered out. A total of 308,560 SNPs passed this filter

and were included in the analysis tool. Our previous study

identified four ethnic outliers from the SNC and three

outliers from the AC [9], and so these cases were excluded

from the SNP-based analysis tool. The new SNP-based

analysis tool enables users to explore whether a particular

SNP of interest is significantly associated with a neu-

ropathology marker (Fig. S2). The tool accepts a gene

symbol, an Entrez ID, dbSNP ID, or chromosomal location

as an input (Fig. S2A). Using correlation analysis, the tool

yields a list of markers in the SNCID that are significantly

associated with that SNP of interest (e.g. Fig. S2B).

A previous large-scale genome-wide association study

(GWAS) identified 108 risk loci for schizophrenia [10],

however the causal genetic variations and the underlying

mechanisms leading to abnormal brain function remain to

be determined. Most GWAS SNPs associated with

schizophrenia risk are located in noncoding regions of

the chromosome, and thus probably mediate their influence

through gene regulation in the brain rather than causing

changes in protein function [10, 11]. The SNCID includes

several different types of quantitative data for various

markers such as RNA, protein, metabolites, and the density

of cells expressing specific markers that are directly related

to the schizophrenia risk SNPs. The SNCID tool allows

users to identify the neuropathology markers that are

correlated with the GWAS SNPs and therefore provides a

unique opportunity to determine if the SNP could actually

cause a change in the levels of the corresponding RNA or

protein. However, among the 108 risk loci for schizophre-

nia, only 10 could be identified on the SNP array in the

SNCID. We identified 18 neuropathology datasets that
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measured the RNA levels of the genes that are located in

the vicinity of these 10 SNPs. We used the SNP-based

analysis tool to determine if any of the 10 SNPs was

correlated with these datasets or with any of the other

unrelated neuropathology datasets (P\ 0.001 was consid-

ered significant).

Using the SNP-based analysis tool, we determined

whether the 10 schizophrenia risk SNPs that are currently

integrated into the database were significantly correlated

with the neuropathology markers (Table 1). While we

found 9 of the 10 SNPs to be correlated with at least 2

neuropathology markers, none showed a significant corre-

lation with the RNA levels of their nearby genes (Table 1).

For example, the SNP rs2514218 is located near the

dopamine receptor gene DRD2 (a schizophrenia risk locus)

in chromosome 11 and the SNCID has 12 and 2 gene

expression datasets that measure RNA expression for

DRD2 in different brain regions of the SNC and the AC,

respectively. However none of these datasets were signif-

icantly correlated with the DRD2 SNP. Similarly,

rs9636017 is located in the intron of the TCF4 gene.

There are three TCF4 RNA expression datasets that were

measured independently in the frontal cortex of the AC and

none of them were significantly associated with the TCF4

SNP.

However, there was a significant correlation between the

SNP rs11210892, located in the vicinity of the KDM4A

gene in chromosome 1, and a possible functionally-related

marker. KDM4A encodes the lysine-specific demethylase

4A enzyme and plays an important role in neuronal

differentiation and the survival of neural stem cells [12].

We found a significant correlation between this SNP and

the density of NeuN-containing neurons in the dorsal raphe

(P\ 0.0001) (Table 1), indicating that the risk allele may

affect the neuronal density of the dorsal raphe by altering

expression of the KDM4A gene.

There are also[ 352 genes located within or near the

108 risk loci for schizophrenia [10]. Of these 352 genes, we

found 13 had corresponding RNA or protein (neuropathol-

ogy markers) measured in the SNC, 22 were measured in

the AC, and all were available in the SNCID. We

performed a non-parametric variance analysis using the

SNCID to determine if there is a statistical difference

between the diagnostic groups and unaffected controls in

the levels of these markers (P\ 0.05 considered signifi-

cant). Using the group comparison tool we analyzed the

various markers that are directly associated with these 352

genes and that have been measured in the SNCID. The

results were visualized using heat maps (Fig. 2). The

DRD2 RNA levels in frontal cortex of the SNC were

significantly decreased in schizophrenia and major depres-

sion, whereas the levels in the hippocampus were not

significantly altered (Fig. 2A). This result was replicated in

the frontal cortex of the AC (Fig. 2B). Dopamine is

involved in the pathophysiology of schizophrenia [13] and

DRD2 is the main target of antipsychotic drugs [14] so the

change in DRD2 RNA expression in the frontal cortex in

schizophrenia supports the dopamine hypothesis. However,

as mentioned above, we found no significant association

between DRD2 expression in the frontal cortex and the

rs2514218 SNP that is located near the DRD2 gene. Thus

there may be other risk variants that affect expression of

the gene or there may be unidentified risk variants that

regulate the expression of DRD2 in the frontal cortex.

However, it is also possible that the results are underpow-

ered because of the small sample size in the SNCID.

Fig. 1 Total numbers of neuropathology markers in the Stanley Neuropathology Consortium Integrative Database. The number of markers from

each brain region from the Stanley Neuropathology Consortium (A) and the Array Collection (B).
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Table 1 Genome-wide risk loci for schizophrenia and the neuropathology markers that were significantly correlated with the loci.

dbSNP_ID Position Genes Tissue

collection

Marker Brain/Region Marker

type

cora P-

value

rs10803138 1:243555219 AKT3, SDCCAG8 SNC Inositol monophosphatase Frontal

cortex

Other 0.52 0.0001

SNC N-Acetylputrescine Hippocampus Other -0.53 0.0009

rs11210892 1:44100084 KDM4A, PTPRF SNC NeuN density (cells/mm2) Dorsal raphe Cell -0.66 0.0000

SNC NeuN density (cells/mm2) Dorsal raphe Cell -0.61 0.0001

SNC PSA-NCAM Hippocampus Protein 0.58 0.0005

AC GRO-alpha Frontal

cortex

Protein 0.35 0.0008

AC Amphiregulin serum Protein 0.37 0.0005

SNC MBP Frontal

cortex

RNA 0.62 0.0005

AC GADD45B Frontal

cortex

RNA -0.35 0.0005

rs6704641 2:200164252 SATB2 n/a n/a n/a n/a n/a n/a

rs6704768 2:233592501 C2orf82 EFHD1 GIGYF2

KCNJ13 NGEF

SNC NOX2 (microglia) Nucleus

accumbens

Cell 0.50 0.0003

SNC GRIK5 Hippocampus RNA 0.47 0.0006

SNC SLC16A1* Thalamus RNA -0.60 0.0008

SNC SLC16A1 M NM** Thalamus RNA -0.60 0.0008

rs1106568 4:176861301 GPM6A SNC GFAP (astrocytes) Orbitofrontal

cortex

Cell 0.65 0.0006

SNC GFAP (astrocytes) Orbitofrontal

cortex

Cell 0.64 0.0007

SNC NTRK2 Frontal

cortex

RNA -0.47 0.0004

SNC SOX11 Thalamus RNA -0.46 0.0009

rs215411 4:23423603 MIR548AJ2 SNC [3H]MK801 Frontal

cortex

Other -0.47 0.0006

SNC CDP-choline Hippocampus Other 0.47 0.0005

SNC Succinic acid Hippocampus Other 0.44 0.0010

SNC MAPK3 Frontal

cortex

Protein -0.47 0.0004

SNC Normalized AVP-NPII

intensity

Pituitary Protein 0.46 0.0009

SNC FYN Thalamus RNA 0.47 0.0004

SNC PIP4K2A* Thalamus RNA 0.51 0.0010

SNC PIP4K2A M NM** Thalamus RNA 0.51 0.0010

rs4388249 5:109036066 MAN2A1 SNC COMPLEX 1 activity Frontal

cortex

Other 0.48 0.0002

SNC NMDA receptor stimula-

tion/unstimulated_NR1

Cingulate

cortex

Other 0.45 0.0007

SNC Trigonelline Hippocampus Other -0.70 0.0006

SNC PHF1 Frontal

cortex

Protein -0.47 0.0004

AC Alpha-1 antitrypsin Frontal

cortex

Protein -0.34 0.0007

SNC GRIA3 Frontal

cortex

RNA 0.45 0.0007

SNC MKP1 Striatum RNA -0.44 0.0009

SNC 24 kDa NDUFV1 Cerebellum RNA -0.46 0.0005

AC TNFRSF6 Orbitofrontal RNA -0.36 0.0004
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The previous GWASs also identified SNPs significantly

associated with schizophrenia and located within or in the

vicinity of several glutamate receptor genes: GRIN2A,

GRIA1, and GRM3. GRIN2A RNA expression has been

measured in four different brain regions of the SNC and is

available in the SNCID (Fig. 2A). Of the 19 datasets, we

found one qPCR dataset for GRIN2A expression that was

significantly lower in BP and DEP than in controls

Table 1 continued

dbSNP_ID Position Genes Tissue

collection

Marker Brain/Region Marker

type

cora P-

value

rs11027857 11:24403620 LUZP2 SNC Homocarnosine Hippocampus Other -0.48 0.0003

rs2514218 11:113392994 DRD2 AC Alpha-fetoprotein Serum Protein -0.36 0.0006

rs9636107 18:53200117 TCF4 SNC 4-Guanidinobutyric acid Frontal

cortex

Other 0.46 0.0005

SNC 4-Guanidinobutyric acid Hippocampus Other 0.52 0.0001

SNC Azelaic acid Hippocampus Other 0.45 0.0010

SNC ADAR1 Cingulate

cortex

RNA 0.44 0.0009

SNC CPLX1 Hippocampus RNA 0.45 0.0008

aCorrelation coefficients between modules associated with schizophrenia and cellular markers. Correlation analysis was performed using the

SNCID tool. P-values\0.001 were considered significant. Correlation coefficients represent only significant correlation between the module and

cellular markers. * Data normalized to geometric mean of 3 housekeeping genes; ** Data normalized to mean of control group. ns, not

significant. SNC; Stanley Neuropathology Consortium, AC; Array Collection.

Fig. 2 Heat maps of the neu-

ropathology markers corre-

sponding to genome-wide risk

loci for schizophrenia. The

color code represents P-values

in non-parametric variance tests

of the neuropathology markers

in the brains of the Stanley

Neuropathology Consortium

(A) and the Array Collection

(B). SCH, schizophrenia; BP,
bipolar disorder; DEP, major

depression; cere, cerebellum;

OC, occipital cortex; PC, pari-

etal cortex; OF, orbitofrontal

cortex.
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(Fig. 2A). GRIA1 RNA expression was measured in three

brain regions of the SNC and is also available in the

database (Fig. 2A). In frontal cortex, GRIA1 expression

was significantly decreased in schizophrenia, whereas in

the striatum it was decreased in all three disorder groups

(Fig. 2A). However, in the thalamus there was no differ-

ence in GRIA1 RNA expression in any disorder group.

There was also no significant difference in GRM3 RNA

expression in frontal cortex of the SNC or AC in any

disorder group (Fig. 2A, B). The glutamatergic system and

dysfunction of N-methyl-D-aspartate (NMDA) receptors

have consistently been implicated in the pathophysiology

of schizophrenia [15]. Our results suggest that a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid and NMDA

receptors are more likely to be involved in the pathophys-

iology of schizophrenia than metabotropic glutamate

receptors. Unfortunately, none of these glutamate-related

SNPs were represented in our SNP array data and therefore

an association analysis between SNPs and related RNA

levels could not be performed.

The SNCID enables researchers to efficiently reanalyze

numerous neuropathology datasets and to test hypotheses

without redoing experiments. However, the results from

these analyses, using tools in the database, should be

interpreted cautiously. The sample size for the neuropathol-

ogy datasets of the SNC is relatively small (N = 60) so the

results may not be sufficiently powered to detect differ-

ences in the neuropathology markers with a small effect

size between diagnostic groups. Thus, we have integrated

the additional datasets from the AC (N = 105) in order to

replicate the results from the SNC data analyses. Repli-

cating the results in the AC data may increase the

reliability of the results derived from SNC data. Further-

more, increasing sample size by pooling data from both

tissue collections can reduce type II errors. The SNCID

provides several statistical analysis tools such as an

omnibus ANOVA and simple correlation analysis. How-

ever, neuropathology markers are often confounded by

demographic and clinical variables. Therefore, we strongly

recommended that users further investigate any interesting

finding by downloading the raw datasets from the repos-

itory and examining them with more sophisticated statis-

tical models. We believe this integrative database will give

researchers a unique opportunity to explore the abnormal

neuropathological markers that occur in the major psychi-

atric disorders and will provide the data and tools necessary

to explore the genes and biological processes associated

with those abnormal markers.
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