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Transition of brain networks from an interictal to a preictal state
preceding a seizure revealed by scalp EEG network analysis
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Abstract
Epilepsy is a neurological disorder in the brain that is characterized by unprovoked seizures. Epileptic seizures are

attributed to abnormal synchronous neuronal activity in the brain. To detect the seizure as early as possible, the identi-

fication of specific electroencephalogram (EEG) dynamics is of great importance in investigating the transition of brain

activity as the epileptic seizure approaches. In this study, we investigated the transition of brain activity from interictal to

preictal states preceding a seizure by combining EEG network and clustering analyses together in different frequency

bands. The findings of this study demonstrated the best clustering performance of k-medoids in the beta band; in addition,

compared to the interictal state, the preictal state experienced increased synchronization of EEG network connectivity,

characterized by relatively higher network properties. These findings can provide helpful insight into the mechanism of

epilepsy, which can also be used in the prediction of epileptic seizures and subsequent intervention.
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Introduction

Epilepsy is a neurological disorder characterized by the

paroxysmal occurrence of seizures (Burns et al. 2014).

Neurologically, an epileptic seizure is attributed to abnor-

mal synchronous neuronal activity in the brain (Fisher et al.

2005, 2014). Although substantial progress has been made

in understanding the neurological pathogenesis of epileptic

seizures (Hussain 2018; Mateos et al. 2018), patients still

bear excruciating pressures. The repeatability of epileptic

seizures damages the central neural system in patients, as

well as disrupts their behavior and cognition (Blumenfeld

2012; Cheung et al. 2006; Hommet et al. 2006); mean-

while, compared to healthy individuals, patients also

experience a greater possibility of suffering from

psychosis.

To detect the epileptic seizure as early as possible, the

identification of early changes in electroencephalogram

(EEG) dynamics has the potential capacity to provide

valuable insight (Myers and Kozma 2018; Wang et al.

2011; Zhang et al. 2011). Since related spectrum power and

chaoticity are found to dynamically fluctuate before, dur-

ing, and after a seizure in patients (Blanco et al. 2013;

Iasemidis et al. 1990), these EEG dynamics can be used to
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anticipate epileptic seizures (Mateos et al. 2018) and can

also be used to identify different epileptic states, such as

interictal and preictal states (Raghu et al. 2017). As pre-

viously demonstrated, the transition of epileptic states

usually occurs within several minutes to hours before a

seizure, which can herald the occurrence of a seizure

(Chavez et al. 2003; Le Van Quyen et al. 2001). To date,

substantial progress has been made (Blanco et al. 2013;

Drury et al. 2003). In contrast to those attempts that failed

to detect specific and sustained fluctuations preceding a

seizure (Qu and Gotman 1995; Rogowski et al. 1981) by

visually inspecting the multiple-channel EEG, studies

based on chaotic dynamics have shown a reliable capability

of seizure prediction using scalp or intracranial EEG

(Drury et al. 2003; Hussain 2018; Mormann et al. 2006;

van Drongelen et al. 2003). For example, by estimating the

Lyapunov exponent of electrocorticograms before, during,

and after a seizure in epileptic patients, Iasemidis and

colleagues found the lowest Lyapunov exponent corre-

sponded to the epileptic seizure (Iasemidis et al. 1990).

The human brain is one of the most complex systems

and works as a large-scale network. Information is com-

monly processed between spatially distributed but func-

tionally linked brain areas with coherent temporal

dynamics (Dasdemir et al. 2017; Fields and Glazebrook

2017; Li et al. 2016; Sun et al. 2012). Despite the EEG

chaoticity, the EEG network seems to be of great impor-

tance when investigating the pathogenesis of epilepsy

(Epstein et al. 2014; Gao et al. 2017; Myers and Kozma

2018). By using spectral Granger causality in epileptic

children, Protopapa and colleagues found the causal con-

nectivity disrupted in the alpha band and highest in the beta

band during the Go condition in an experimental task but

the opposite for the NoGo condition, which achieved an

accuracy of 87.6% when classifying the subjects in the

epileptic and control groups (Protopapa et al. 2016). In

addition, by using an adaptive directed transfer function,

our previous study demonstrated dynamic EEG network

architectures originating from the epileptogenic zone in the

interictal EEG state (Zhang et al. 2017). Herein, the

investigation of the EEG network in epileptic patients can

provide helpful insight into the mechanisms of epilepsy

and potentially raise a biomarker for the anticipation of

epileptic seizures and clinical intervention.

A preictal state is established several minutes to an hour

before the epileptic seizure (Bou Assi et al. 2017; Le et al.

2001; Schwartz et al. 2011), and along with signaling the

approaching seizure, the brain activity becomes progres-

sively less chaotic. Inspired by that, a smooth transition

gradually develops over time toward the onset of the sei-

zure (Chavez et al. 2003). In this study, we first analyzed

the dynamic networks of 1-h intervals of EEG signals

preceding seizures in different frequency bands. Clustering

analysis was then applied to the EEG networks to capture

the transition of brain activity from the interictal to preictal

state, as well as the dynamics of EEG network connectivity

preceding seizures.

Materials and methods

Participants

The protocol was approved by the Medical Ethics Com-

mittee of Sichuan Academy of Medical Sciences and

Sichuan Provincial People’s Hospital, and this study was

carried out in accordance with the recommendations of

Medical Ethics Committee of Sichuan Academy of Medi-

cal Sciences and Sichuan Provincial People’s Hospital.

Before 24-h EEG monitoring, all patients were required to

read the written informed consent and then sign their name

on it. Thirteen epileptic patients (7 females, 6 males, age

ranged from 8 to 58 years) were diagnosed by doctors at

the Sichuan Academy of Medical Sciences and Sichuan

Provincial People’s Hospital and encouraged to participate

in this study. Detailed clinical information of the 13

patients is provided in Table 1. In this study, to eliminate

the effects of antiepileptic drugs, all patients were required

to not take antiepileptic drugs before 24-h EEG monitoring

was initiated.

Twenty-four hour EEG recording

The 24-h EEG data sets were collected using the Australia-

based Compumedics Grael series of digital video EEG with

a sampling rate of 256 Hz. Sixteen Ag/AgCl electrodes

(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,

T5, and T6) were positioned on the scalp in compliance

with the international 10–20 system. Additionally, the

electrocardiogram and electromyogram were separately

recorded by two extra electrodes. Meanwhile, during the

24-h EEG recording, a single or dual cameras were

simultaneously used to monitor the clinical behaviors of

the epileptic patients.

EEG data analysis

In this study, EEG data sets with a 1-h duration preceding

the seizure were used. Since 29 epileptic seizures were

recorded in the 13 patients, 29 1-h EEG data sets were

extracted. Meanwhile, to reduce the effect of the last sei-

zure on subsequent analyses, a standard was considered in

which two adjacent seizures should be separated by at least

40 min. In this study, we confirmed that between any two

adjacent seizures, a time interval of at least 2 h was found

for the 29 data sets.
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In addition, before constructing the EEG network, all

data sets were preprocessed with procedures including

averaging reference, bandpass filtering to extract the

1–45 Hz signal offline, and segmenting the data into 10-s

epochs. In data segmenting, EEG epochs of 10 s were

extracted; thus, each 1-h EEG data set was divided into 360

10-s segments. Afterwards, we excluded those segments

with absolute amplitude exceeding 100 lV that were

considered to be artifacts (Li et al. 2018). Aiming to

guarantee the reliability of our results, if the remaining

number of 10-s segments was relatively low (i.e., less than

70), we would have excluded this 1-h EEG data set. In this

study, the remaining numbers of 10-s segments were

228.2 ± 83.4.

Afterwards, to investigate the transition of epileptic

states preceding a seizure, the EEG networks were con-

structed by using coherence. Coherence is a commonly

used method when analyzing synchrony-defined assem-

blies at a specific frequency between two signals (Li et al.

2015; Salant et al. 1998; Zhang et al. 2015). Here, con-

sidering the two variables, x(t) and y(t), in each segment,

let Pxx(f) and Pyy(f) be the autospectral densities of x(t) and

y(t) at the frequency f, respectively, and Pxy(f) is the cor-

responding cross-spectral density; coherence was then

formulated as follows:

Cxyðf Þ ¼
Pxyðf Þ
�
�

�
�

Pxx fð ÞPyy fð Þ ; ð1Þ

where Cxy(f) was the frequency-dependent measure of

synchrony between x(t) and y(t) at frequency f. Since

multiple studies have validated the EEG dynamics of

epileptic seizures in different frequency bands (Chavez

et al. 2003; Protopapa et al. 2016), we then constructed the

related EEG networks in five frequency bands, i.e., delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and low gamma (30–45 Hz) (Dasdemir et al.

2017; Mumtaz et al. 2017). For each specific band, the

EEG network was obtained by averaging the Cxy within its

frequency range, which led to the final weighted EEG

network per 10-s segment. In this coherence definition, the

corresponding spectral densities Pxx(f), Pyy(f) and Pxy(f) are

essentially calculated from the fast Fourier transform (FFT)

instead of the wavelet transform.

Four weighted network properties, i.e., clustering coef-

ficient (CC), characteristic path length (CPL), local effi-

ciency (LE), and global efficiency (GE), corresponding to

the weighted network were adopted to quantitatively

evaluate the dynamics of EEG network synchronization

toward the seizure. In this study, these four weighted net-

work properties were formulated in the following defini-

tions and further calculated by using the brain connectivity

toolbox (BCT, http://www.nitrc.org/projects/bct/) (Rubi-

nov and Sporns 2010):

CC ¼ 1

n

X
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P
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Table 1 Detailed clinical information for the 13 patients

Subject Gender (female = F; male = M) Age Epileptic type (generalized = G; focal = F) Epileptogenic zone

Sub01 F 13 Clonic seizures (F) –

Sub02 F 23 Tonic–clonic seizures (G) –

Sub03 F 15 Bilateral tonic–clonic seizures (F) Left hippocampal

Sub04 M 14 Tonic–clonic seizures (unknown) Temporal lobe

Sub05 M 47 Bilateral tonic–clonic seizures (F) Right basal ganglia

Sub06 F 24 Tonic–clonic seizures (G) Frontal lobe

Sub07 M 58 Tonic–clonic seizures (G) Bilateral frontal–parietal lobe

Sub08 F 8 Tonic–clonic seizures (G) –

Sub09 F 8 Tonic–clonic seizures (G) –

Sub10 M 15 Tonic–clonic seizures (G) –

Sub11 F 24 Tonic–clonic seizures (G) –

Sub12 M 25 Bilateral tonic–clonic seizures (F) Bilateral parietal–occipital lobe

Sub13 M 10 Tonic–clonic seizures (F) –
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where wij and dwij denote the connection weight estimated

by coherence and shortest weighted path length between

nodes i and j, respectively, W denotes the set of all nodes in

the network, and n denotes the number of nodes.

Clustering analysis is an unsupervised machine learning

method, which does not need prior knowledge of the data

sets. Clustering analysis can automatically divide all

objects into distinct clusters by inferring the data similarity,

which guarantees high similarities within the same cluster

but large intercluster differences between distinct clusters.

Because no prior information was provided when investi-

gating the transition of epileptic states toward the seizure,

the investigation could only depend on the EEG dynamics

derived from the time series. Therefore, based on the EEG

networks in each band, for each 1-h length of EEG data,

four clustering methods, including k-medoids, k-means,

fuzzy C-means (FCM), and hierarchical, were used. Since

both interictal and preictal states preceding epileptic sei-

zure were reported (Chavez et al. 2003; Drury et al. 2003)

in this study, two clusters were considered. To guarantee

reliable performance, each method was repeated 1000

times; the data would only be considered clustered data if

at least 900 out of 1000 times (i.e., 90%), the clustering

divided the 1-h data set into two clusters.

After clustering, there might exist some isolated points

(Fig. 1a) that affected further results. In essence, adaptive

median filtering adapts to automatically estimate the size of

the filtering window based on noise density. Adaptive

median filtering can not only suppress noise but also pre-

serve details; thus, it is widely used in noise elimination

(Chen and Hong Ren 2001). In this study, to filter out

isolated points, we adopted adaptive median filtering fol-

lowing the clustering analysis. Eventually, we investigated

the clustering performances of different methods and then

compared the differences of weighted network properties

between interictal and preictal states.

Results

As illustrated in Fig. 1, the continuity of EEG networks

that belong to either ‘‘cluster 1’’ or ‘‘cluster 2’’ was

revealed. Specifically, in the interictal state, the related

EEG networks were clustered into ‘‘cluster 1’’, which las-

ted for several minutes; however, as the epileptic seizure

approached in time, the EEG networks were then clustered

into ‘‘cluster 2’’ (i.e., preictal state).

Table 2 quantitatively shows the number of 1-h EEG

data sets that were discriminated using the four clustering

methods for five frequency bands. Compared to other

bands, the beta band consistently displayed a larger number

of 1-h data sets that were clustered (k-medoids: 20;

k-means: 14; FCM: 18; hierarchical: 16); meanwhile,

among four methods, the k-medoids in the beta band had

the best performance since 20 out of 29 1-h EEG data sets

were clustered into interictal and preictal states.

Fig. 1 Temporal clustering of EEG networks in the interictal and

preictal states. a Clustering before adaptive median filtering and

b clustering after adaptive median filtering. On the x-axis, each point

over the 1-h interval denotes a brain network constructed for each

10-s EEG segment. On the y-axis, two clusters (i.e., interictal and

preictal) are presented. Both blue and red dots denote the EEG

networks constructed of different durations; in particular, red dots in

subfigure (a) denote the isolated network points. (Color figure online)

Table 2 The number of 1-h EEG data sets that were discriminated

into clusters using the four clustering methods in five frequency bands

k-medoids k-means FCM hierarchical

Delta 7 8 5 9

Theta 9 9 5 6

Alpha 12 10 12 13

Beta 20 14 18 16

Low gamma 14 10 14 11
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As displayed in Table 2, the k-medoids in the beta band

showed the largest number of clustered 1-h EEG data sets.

We then investigated the differences in the weighted net-

work properties between the interictal and preictal states

only in the beta band and only using k-medoids. The

comparison of network properties between the two states

displayed in Fig. 3 further demonstrated the significantly

shorter (p\ 0.05) CPL and higher CC, GE, and LE in the

preictal state compared to the interictal state.

In addition, we calculated the time duration underlying

the transition from ‘‘cluster 1’’ to ‘‘cluster 2’’ for each

clustered 1-h EEG data set (20 total) in the beta band,

which is depicted in Fig. 2. Specifically, durations that

varied from 4.52 to 47.80 min were demonstrated; in other

words, after a mean of 24.78 ± 14.00 min, the brain would

transition from an interictal to a preictal state, which her-

alded the onset of the epileptic seizure.

Fig. 2 The various durations

before the transition of epileptic

states from an interictal to a

preictal state for the clustered

1-h EEG data sets (20 in total

and shown on the x-axis). The

black solid line and gray

shadow area denote the mean

and standard deviation of the

time duration across the 20 data

sets, respectively. (Color

figure online)

Fig. 3 The weighted network

properties between interictal

and preictal states. The blue and

red solid bars denote the

weighted network properties

corresponding to interictal and

preictal states, respectively, and

* denotes p\ 0.05. (Color

figure online)
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Discussion

Studies that have attempted to detect the preictal state preced-

ing a seizure have provided meaningful findings (Gadhoumi

et al. 2016; Le et al. 2001; Lehnertz et al. 2001;Mormann et al.

2007). For example, Blanco and colleagues showed increased

entropy in the high band (32–128 Hz) in the moments pre-

ceding the attack (Blanco et al. 2013); meanwhile, the spa-

tiotemporal organization of preictal activity was also found

several minutes (sometimes longer than 30 min) before a sei-

zure (Chavez et al. 2003). In essence, early changes in EEG

dynamics in the time preceding the seizure in different bands

helped to herald the epileptic seizure in patients. In this study,

we combined EEG network and clustering analyses to capture

the transition of brain activity from interictal to preictal states

(Fig. 1) and to investigate the corresponding dynamics of EEG

network connectivity synchronization.

The relatively high chaoticity and low synchronization

were demonstrated within several minutes to hours before

seizure; however, as the seizure gradually approached in time,

decreased chaoticity and increased synchronization occurred,

followed by the epileptic seizure along with the highest syn-

chronization and lowest chaoticity. The brain is one of the

most complex systems, and the transition from interictal to

preictal states usually occurs from several minutes to hours

before the seizure, which can be indexed by the decreased

brain network complexity (Lehnertz et al. 2001). For instance,

the 6-s EEG signal prior to the seizure showed a high simi-

larity in the frequency range that experienced the largest

coherence values with that in epileptic seizure (Salant et al.

1998). Iasemidis and colleagues estimated the Lyapunov

exponent of electrocorticograms before, during, and after a

seizure, and revealed the lowest Lyapunov exponent in the

epileptic seizure (Iasemidis et al. 1990). In this study, we

investigated the EEG networks in five bands to uncover the

transition of epileptic states from the interictal to preictal state.

As shown in Table 2, 20 out of 29 1-h EEG data sets were

discriminated into ‘‘cluster 1’’ (interictal) and ‘‘cluster 2’’

(preictal) in the beta band. In addition, the varied durations

(4.52–47.80 min) were also demonstrated in Fig. 2, when the

brain transitioned from an interictal to a preictal state, which

preceded the epileptic seizure.

Theoretically, coherence measures the synchrony-de-

fined neuronal assemblies at a specific frequency between

two EEG signals (Salant et al. 1998); the high synchro-

nization of EEG network connectivity corresponds to

higher network properties (i.e., high CC, GE, LE, and

shorter CPL) (Xu et al. 2013; Zhang et al. 2013). Elec-

trophysiologically, the epileptic seizure occurs in the form

of abnormal neuronal activity (Fisher et al. 2005; Staley

et al. 2005). By investigating the KIV model, whose

architecture was represented by the areas of the limbic

system, Myers and Kozma simulated epileptogenesis;

when the external weights that join the three networks

increased, seizure activity then entrained the entire system

(Myers and Kozma 2018). Our previous study also

demonstrated the contributions of distributed brain regions

to the synchronized activity in the interictal state (Zhang

et al. 2017). When the brain transitioned to the preictal

state (24.78 ± 14.00 min before the seizure), the results

shown in Fig. 3 were consistent with previous studies that

investigated the EEG dynamics preceding seizure (Blanco

et al. 2013; Salant et al. 1998); indeed, there was an

increased synchronization of network connectivity in the

beta band since relatively higher CC, GE, LE and shorter

CPL were demonstrated in the preictal state than in the

interictal state.

In conclusion, these results that were derived from the

combination of EEG network and clustering analyses val-

idated the similar tendency that the smooth transition of

epileptic states towards the seizure gradually developed

over time, which was demonstrated by the increased syn-

chronization of network connectivity. Moreover, the EEG

network properties could quantitatively reveal the related

EEG dynamics across the transitional process.
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