Skip to main content
. 2019 Mar 20;9:4908. doi: 10.1038/s41598-019-41399-4

Figure 4.

Figure 4

Dietary supplementation with Sargassum fusiforme reduces cognitive decline and Aβ plaque load in APPswePS1ΔE9 mice. (a,b) Cognitive functioning was determined using the object recognition task. The interval between first and second trial was set at 1 hour (1 h ITI) or 24 hours (24 h ITI). D2 value is calculated as the ratio between exploration time spent at the new object and the familiar object in the second trial, with d2 value > 0 indicating intact object memory. At 1 h ITI the object memory was found to be intact in WT animals on control diet (t(9) = 4.71, p = 0.0011, one sample t-test), in WT animals on Sargassum fusiforme-supplemented diet (t(9) = 2.166, p = 0.0585, one sample t-test), and in AD animals on Sargassum fusiforme-supplemented diet (t(8) = 2.77, p = 0.0243, one sample t-test). Bars represent mean ± SEM from two independent experiments (n ≥ 9 per treatment). (ce) Aβ plaque load was quantified in cortex (d) and hippocampus (e) of APPswePS1ΔE9 mice using immunohistochemistry (n ≥ 5 per treatment). Aβ load is calculated as percentage of surface coverage, and was found to be decreased in AD animals fed Sargassum fusiforme-enriched chow in cortex (F (3, 24) = 25.79, p < 0.0001, ANOVA; Tukey’s post-hoc for diet effect in AD genotype: p = 0.0005) and hippocampus (F (3, 24) = 32.13, p < 0.0001, ANOVA; Tukey’s post-hoc for diet effect in AD genotype: p < 0.0001). Representative IHC staining of all groups is shown (e). (f,g) Sargassum fusiforme treated APPswePS1ΔE9 mice show a significant decrease in Aβ40 ((f); U = 6, nctrl = 11, nextract = 5, p = 0.0133, Mann-Whitney) but not Aβ42 levels (g). (h) Sargassum fusiforme treated APPswePS1ΔE9 mice show a significant decrease in the mRNA expression of APP (U = 0, nctrl = 8, nextract = 4, p = 0.0040, Mann-Whitney).