Skip to main content
. 2019 Mar 1;19(5):1050. doi: 10.3390/s19051050
Algorithm 1 RGB-D SLAM with MFE Using Orientation Relevance

Input: RGB-D sequences

Output: Trajectory of RGB-D sensor and reconstructed environment.

  • Step 1. Extract planes from the RGB image using edge detection and triangulation of end points of detected edges.

  • Step 2. Estimate Manhattan Frame using orientation relevance with dominant planes determined by cross validation on depth information and planes extracted from RGB image.

  • Step 3. Determine whether the MFE is available. If it’s available, compute the pairwise spatial transformation with MFE and GICP, and then jump to Step 5. Otherwise, go to Step4.

  • Step 4. Compute the pairwise spatial transformation following the routine of the original RGB-D SLAM.

  • Step 5. Optimize the trajectory.

  • Step 6. Registrate 3D point clouds.

  • Step 7. Voxelize the registrated 3D point clouds.

  • Step 8. Reconstruct the 3D map.

  • return Trajectory and 3D map.