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Abstract

Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 

degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to 

annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false 

discovery rates, data sets containing an order of magnitude more features than analytes, and an 

inefficient use of resources during data analysis. Although software has been introduced to 

annotate spectral degeneracy, current approaches are unable to represent several important classes 

of peak relationships. These include heterodimers and higher complex adducts, distal fragments, 

relationships between peaks in different polarities, and complex adducts between features and 

background peaks. Here we outline sources of peak degeneracy in mass spectra that are not 

annotated by current approaches and introduce a software package called mz.unity to detect these 

relationships in accurate mass data. Using mz.unity, we find that data sets contain many more 

complex relationships than we anticipated. Examples include the adduct of glutamate and 

nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite 

polarities, and the adduct of glutamate and a background peak. Further, the complex relationships 

we identify show that several assumptions commonly made when interpreting mass spectral 

degeneracy do not hold in general. These contributions provide new tools and insight to aid in the 

annotation of complex spectral relationships and provide a foundation for improved data set 

identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-

mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/.

Graphical Abstract

* gjpattij@wustl.edu. 

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.6b01702.

HHS Public Access
Author manuscript
Anal Chem. Author manuscript; available in PMC 2019 March 21.

Published in final edited form as:
Anal Chem. 2016 September 20; 88(18): 9037–9046. doi:10.1021/acs.analchem.6b01702.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nathaniel-mahieu/mz.unity%C2%A0as
https://github.com/nathaniel-mahieu/mz.unity%C2%A0as
http://pattilab.wustl.edu/software/


Adduction, fragmentation, and the natural abundance of heavy isotopes can cause a single 

analyte to generate more than 100 spectral peaks in mass spectrometry-based data sets. This 

is referred to as peak degeneracy, and it is a major source of the complexity that confounds 

data interpretation. Spectral peak degeneracy is challenging to annotate, and its complexity 

can exceed the ability of manual annotation in many cases. More recently, automated 

solutions have been developed to aid in the annotation of mass spectral data.(1–6) However, 

current annotation approaches fail to account for the full gamut of possible peak 

relationships. Further, several common assumptions made in these annotation approaches do 

not hold in general. Here we present mz-sum, a complete framework for describing complex 

peak relationships in mass spectrometry data, and mz.unity, an R package that enables the 

search and exploration of these relationships.

Sources of Degeneracy

The exact conditions under which a mass spectrum is collected have a strong influence on 

the peaks and types of peak relationships observed. The majority of spectral degeneracy is 

generated during ionization, which is the process by which analytes are converted from bulk-

phase, neutral species to gas-phase ions. Electrospray ionization (ESI) is one commonly 

employed ionization technique. Here we focus on the peak relationships associated with ESI 

for clarity, but these approaches can be tailored to any ionization technique.

During ESI, analytes undergo various transformations before being detected as mass spectral 

peaks (Figure 1). The set of possible transformations provide the scope of the peak 

annotation problem. ESI involves the spray of analyte solution through a charged needle 

generating gas-phase droplets that evaporate until charged gas-phase compounds remain.(7) 

Two general types of analyte transformations are produced in this process, adduction and 

fragmentation.

Multiple chemical species that remain noncovalently bound after droplet evaporation are 

called an adduct. The adduct is a single gas-phase ion and will give rise to a single peak, but 

its formula is the combination of multiple distinct species. In the simplest case, the second 

chemical species is a proton, but other species such as sodium and solvent molecules can 
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also form adducts. In general, any species present during ionization can adduct with any 

other species (this includes other analytes), see Figure 1 and the Glutamate NAD adduct.

In contrast, fragmentation is the breakage of bonds prior to MS detection. Often only one of 

the portions liberated during a single bond cleavage event is detected, but in some cases both 

are present in the resulting mass spectrum.(8) Bond cleavages can occur at various locations 

in a molecule, and therefore, a single structure can generate many fragment species.

An important contrast between the annotation of adducts and fragments is the constraint on 

possible relationships. For adduction, the space of possible relationships is limited by the 

species present at the time of ionization. Because a mass spectrum provides an exceptional 

record of present species, we can reasonably limit our search to those species. In contrast, 

fragment relationships are limited only to subformula of the parent and are therefore more 

challenging to annotate.(9, 10) In this work, we use mz.unity to putatively annotate two 

specific subsets of fragments discussed below.

Isotopes are a third source of degeneracy that are independent of the ionization process. 

Elements such as carbon are found in nature with varying numbers of neutrons (e.g., 12C and 
13C). This natural abundance of heavy isotopes causes a single chemical formula to give rise 

to multiple masses, each corresponding to various numbers of heavy elements. Each of these 

heavy forms will be detected as a distinct mass peak.

Definitions:

Analyte, the chemical species which is of interest in the analysis, often a metabolite species 

but can include other molecules such as environmental exposures (e.g., pesticides); peak, a 

mass-to-charge ratio and intensity pair found in a mass spectrum; feature, a peak which has a 

Gaussian-like shape (a signal which rises and falls smoothly around a local maximum) in the 

chromatographic time domain; background peak, a peak which does not have a Gaussian-

like shape in the chromatographic time domain; mer, an adduct between two analytes—

includes homodimers, heterodimers, and higher n-mers; distal fragment, a fragment whose 

corresponding neutral loss also appears as a peak in the mass spectrum; granular-mz, mass 

and charge pairs supplied by the user to the mz.unity algorithm—these represent specific 

analyte transformations that combine to make peak relationships; complex relationships, 

mass spectral peak relationships between three or more detected peaks or relationships 

between peaks having multiple polarities (i.e., positive ions, negative ions, or neutral 

masses).

Motivation

Interpretation of a mass spectrum necessitates the annotation of relationships between 

degenerate peaks such as isotopes, adducts, and fragments. Critical to the field of 

metabolomics in particular is the annotation and removal of these degenerate peaks while 

preserving those that correspond to unique metabolites. Annotation has many benefits for 

metabolomics: (i) redundant features can be removed, reducing the size of the data set by 

more than an order of magnitude; (ii) the concomitant reduction in statistical tests performed 

allows for a less stringent multiple hypothesis testing correction; (iii) confidence in the 
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validity of a detected peak is increased when degenerate peaks are also detected; (iv) 

annotated relationships can inform metabolite identification steps; (v) investigative efforts 

can be directed to unique analytes. Although we will focus on examples of peak degeneracy 

in metabolite mass spectra in this work, we point out that annotation is also important to 

other fields in addition to metabolomics. In proteomics, for example, annotation prior to 

selection of ions for MS/MS may reduce instrument cycles spent on degenerate peaks and 

therefore increase proteome coverage.(11–13) In trace impurity analysis, annotation can 

explain unknown peaks. In approaches that rely on feature counting, such as the evaluation 

of organic compound diversity on meteorites, annotation is critical to obtain realistic 

estimates of the total number of unique analytes detected.(14)

Current annotation tools utilize rule tables to describe possible peak relationships.(1, 15) A 

rule table is a list of transformations that neutral analytes may undergo prior to detection. 

Rules are applied to spectral peaks, and a relationship is asserted if two rule-peak pairs 

predict the same neutral mass. Unfortunately, this approach can only represent a subset of 

peak relationships. Limitations arise because many spectral peaks do not correspond to a 

single, underlying neutral mass. Thus, relationships between three or more peaks (as is the 

case for fragments and multiple-analyte-adducts) cannot be expressed or searched. Current 

rule tables are also not charge-aware and therefore can only annotate relationships of the 

same polarity. The limited scope of rule tables precludes the annotation of many putative 

peak relationships and, therefore, invites a more comprehensive approach to annotation.

To enable comprehensive spectral annotation, we detail two contributions here: mz-sum and 

mz.unity. Mz-sum is the simple concept that all peak relationships can be described as gain 

and/or loss of charged formulas. Mz.unity builds on this concept to enumerate all possible 

peak relationships in a charge-aware manner. Mz.unity is a software package implementing 

the peak relationship search and tools to plot and explore putative annotations. Together, mz-

sum and mz.unity enable the detection of additional complex relationships that are not 

annotated by current approaches. The purpose of mz.unity is to find and return all putative 

peak relationships within a specified mass error. For example, the adduct of glutamate and 

nicotinamide adenine dinucleotide (NAD), fragments of NAD, and peaks detected in 

different polarities. While mz.unity is a functional tool for exploring spectra and 

programmatically evaluating relationships within them, we note that it is not an automated 

annotation solution and assessment of confidence in any specific peak relationship requires 

information beyond mass and charge. However, this contribution provides the groundwork 

necessary to enable automated annotation solutions to be developed in the future.

Experimental Methods

Notation and the Mz-sum Framework

Chemical species having mass “m” and charge “z” are denoted [m]z. For clarity, a mass can 

be referred to by a chemical formula or a compound name. When names are used the 

neutral, monoisotopic mass is implied. Thus, the following are equivalent: [146.0459]1–, 

[C5H8NO4]1–, and [glutamate – H]1–. Brackets are used to denote chemical species and can 

represent either detected mass spectral peaks or any additional formulas. Each set of 

brackets represents a distinct species. Conversions may be noted within brackets that 
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describe the nature of the species. In the case of [Glu – H2O – H]1−, we are referring to a 

glutamate species after water loss and deprotonation.

Annotation seeks to find relationships between detected mass and charge species (peaks). 

Relationships are represented by equations of brackets that balance the mass and charge on 

each side. These equations anchor one or more [m]z peaks in the context of other detected 

peaks and gained and lost mass and charge. From the gained masses and charges, specific 

transformations can be inferred. For example, the description of a glutamate–acetate adduct 

can be written as the following equation: [C5H8NO4 – H]1– + [CH4CO2 – H]1– + [H]1+ = 

[C6H12NO6 – H]1–. Mz-sum is the basic assertion that any valid peak relationship will 

satisfy mass and charge balance and can be represented by such an equation. With this 

groundwork in place, it is now possible to define a search for all peak relationships.

Description of the Mz.unity Algorithm

Given a list of species with masses and charges [m]z, mz.unity searches for combinations of 

peaks that satisfy mass and charge balance (a description of the search problem can be found 

in Supporting Information Supplement S1). Additional parameters specify the combinatorial 

depth with which to search the supplied [m]z and the acceptable mass error. As follows from 

the discussion of mz-sum above, this search pattern is general enough to find any type of 

peak relationship. Below are examples of the general relationship types detected by 

mz.unity. Notably, each of these lies beyond the scope of previous annotation software. 

Though compound names are written for clarity, the actual search is performed by using 

accurate mass.

Complex adducts:

[ glutamate − H]1 − + [NAD − H]1 − + [H]1 + = [glutamate + NAD − H]1 −

Distal fragments:

[fragment123.0453]1 + + [fragment540.0536]1 − − [H]1 + = [NAD − H]1 −

Isotopes:

[glutamate − H]1 − − 14N 0 + 15N 0 = 15N1 − glutamate − H 1 −

The mz.unity search can be tailored to a specific set of relationships by supplying “granular-

mz” to the search. These user-supplied granular-mz represent undetected species which 

relate spectral peaks. In the case of adduction, many species present in solution will not be 

represented in the mass spectrum. This is because spectra have low and high mass cutoffs 

and only record ionizable species. Such granular-mz in the case of adduction would include 

small ions such as [H]1+, additives such as [acetate]0, and solvents such as [acetonitrile]0. In 

the adduction and fragmentation examples above, [H]1+ was a supplied granular-mz.
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The most general relationship search would include granular-mz corresponding to the atoms 

C, H, N, O, P, and S, as well as an electron. This set of species would be sufficient to link 

every peak to every other peak, but in almost all cases these relationships would be arbitrary, 

linking unrelated analytes. By limiting the set of granular-mz, the mz.unity search can be 

limited to a specific condition or relationship type. In the case of ESI spectra, we seek to 

relate peaks that are degenerate. This leads to the use of granular-mz that represent 

transformations occurring during the analysis process.

Many fragments cannot be annotated by mz.unity because fragmentation is unique to each 

analyte and challenging to predict. There are two cases in which mz.unity can detect 

fragments. When a molecule has two distal charge sites and fragmentation occurs between 

them, both portions of the molecule will be detected. This is especially true when spectra 

from both polarities are included as demonstrated in the Fragment Annotations section. In 

this case, the relationship can be detected by mz.unity, even across polarities (see the distal 

fragment example above). The second set of detectable fragments are those which occur 

often under the experimental conditions employed (i.e., common fragments). Common 

fragments can be supplied as granular-mz and searched like any other relationship.

Output of the Mz.unity Algorithm

The output of an mz.unity search is a matrix (Table 1). Cells reference the supplied [m]z 

pairs involved in the relationship. Each row represents a relationship. Within each row, 

columns prefixed with “B.” and “M.” correspond to the peaks and granular-mz that sum to 

the peak referenced in column “A”. The mass error associated with each relationship is also 

reported. A convenient visualization of this output is a graph structure (Figure 2). In this 

representation, nodes are peaks and edges are the detected relationships.

Availability and Implementation

The mz.unity project is written in R and is available at http://github.com/nathaniel-mahieu/

mz.unityas well as our laboratory Web site http://pattilab.wustl.edu/software/. Installation 

instructions, usage examples, data, and analyses presented in this paper can be found in the 

repository.

Limitations of Mz-sum and Mz.unity

Two limitations of mass- and charge-based annotation are mass measurement error and 

relationships that have multiple interpretations. Overcoming these limitations requires 

additional information beyond mass and charge.

Imperfect Mass Information

As described above, the search for appropriately summing masses and charges is a proxy for 

finding sets of peaks that represent equivalent formulas. Ideally, this search would be 

performed by using a peak’s underlying formula, but in practice this is not possible. All 

empirical mass measurements are made with imperfect accuracy, preventing a one-to-one 

mapping of mass to formula.(16) Thus, a single mass can represent many possible formulas, 

and this leads to relationships implied by formula mass that do not actually have equivalent 

formulas. As mass error increases, the number of false positive relationships will also 
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increase. Similarly, the number of combinations of peaks increases rapidly as the number of 

peaks increases. The combinatorial explosion can quickly overwhelm the specificity offered 

by accurate masses. This limitation makes annotation of direct infusion data and spectra 

with over 5000 peaks challenging.(17, 18)

Relationship Ambiguity

Even with perfect formula information, some peak relationships have multiple 

interpretations that cannot be resolved without additional information. Common neutral 

losses such as a [H2O]0 loss could relate either a fragment analyte pair or two distinct 

analytes. Consider the following two interpretations of a relationship between peaks 

[133.0142]1– and [115.0037]1–. 

[malate − H]‐‐ [H2O]0 = [malate ‐ H2O]‐ (A) [malate ‐ H]‐‐ [H2O]0 = [fumarate ‐ H]‐ (B)

In case A, the smaller peak is a fragment and the two peaks are degenerate, while in case B 

both peaks are distinct analytes. The two interpretations of this relationship are identical in 

terms of mass and charge, and additional information is required to determine which is true.

Similarly, fragment vs adduct is challenging to discriminate on the basis of mass and charge 

alone. In both cases, two formulas sum to a third. Consider tyrosine and coumaric acid, 

[163.0401]1– + [NH3]0 = [180.0666]1–. This could represent a fragment of tyrosine, in 

which case the [180.0666]1–peak would be the relevant ion. Alternatively, this could be an 

ammonium adduct of coumaric acid, in which case the [163.0401]1– peak would be the 

relevant ion. This ambiguity is true of all distal fragment and mer relationships. The two 

competing interpretations imply the relevance of different peaks: fragmentation events imply 

the heavier peak’s relevance, while mer relationships imply the relevance of the two lighter 

peaks.

Data Set Generation

For evaluation of mz.unity, we experimentally generated spectra in positive and negative 

polarity by using the Q-Exactive Plus mass spectrometer and the HESI-II ion source coupled 

to an Agilent 1260 capillary flow liquid chromatography system. Spectra were collected 

with the following settings: aux gas, 15; sheath gas, 30; counter gas, 0; capillary 

temperature, 310 °C; sheath gas temperature, 200 °C; spray voltage, 3.2 kV; needle 

diameter, 34 gauge; s-lens, 65 V; mass range, 85–1165 Da; resolution, 140 000; microscans, 

1; max injection time; 200 ms; automatic gain control target, 3 × 106. Hydrophilic 

interaction liquid chromatography (HILIC) was performed as described previously with the 

Phenomenex Luna NH2 column (1.0 mm × 150 mm, 3 um) and a flow rate of 50 μL/min.

(19) Spectra were collected in negative and positive ion mode during two different 

injections. Solvents were the following: A, 95% water + 20 mM ammonium hydroxide + 20 

mM ammonium acetate; B, 100% acetonitrile. An injection volume of 1 μL was used with a 

linear gradient of (minutes, %A) 0, 5; 40, 100; 50, 100; 50.5, 40; 54.5, 15; 55, 5; 65, 5.

Spectra were taken from a data set of Escherichia coli (E. coli) strain K12, MG1655 

metabolic extract. This design allowed us to inspect real-world data, including coelution and 

background ions. Metabolic extract was generated as described previously.(20) Briefly, 
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cultures of E. coli were harvested by pelleting 10 mL of culture at OD600 = 1.0. Pellets were 

extracted by using 1 mL of 2:2:1 methanol/acetonitrile/water, and reconstituted in 100 μL of 

1:1 acetonitrile/water.

Liquid chromatography/mass spectrometry (LC/MS)-based techniques generate a series of 

mass spectra. Peaks that appear in several sequential spectra with a Gaussian-like profile are 

termed features (peaks whose intensity rises and falls around a regional maximum over 

chromatographic time). Chromatographic feature detection was performed on the data set by 

using the centWave algorithm.(21) Features eluting from 21 to 22 min were used as a test set 

(FG). This included features from both positive and negative analyses. The set of 

background peaks (BG) was obtained by retaining all mass spectral peaks appearing in 80% 

of the scans within this range, regardless of peak shape. Peak lists used for annotation can be 

found in Supporting Information Supplements S2–S6, and a spectrum can be found in 

Supporting Information Supplement S7.

Standards of glutamate and NAD were then analyzed by direct infusion to validate the 

detected relationships. A solution of NAD and glutamate (both at 50 μg/mL in buffer A) was 

infused at 10 μL/min, and spectra were collected at a resolving power of 280 000 in both 

positive and negative mode.

Data Set Annotation

Mass spectra from an LC/MS analysis of E. coli metabolic extract were searched for 

relationships by using mz.unity. Several mz.unity searches were performed, each for 

different relationship types. In brief, the following relationships were searched by altering 

the supplied granular formulas and search depth: isotopes, charge carriers, neutral gains, 

cross-polarity, common fragments, distal fragments, and mers. Isotopes were detected and 

omitted from later searches. Charge states were assumed to be to 1 unless carbon isotope 

support for a higher charge state existed. Searches were performed with a ppm error limit of 

2 ppm per observed mass. Exact parameters for each search, including supplied granular 

formulas and search depth, can be found in Supporting Information Supplements S7 and S8. 

Putative relationships detected by mz.unity were visualized as graphs and spectral graphs 

(Figure 3) by using built-in plotting functionality. The graph of relationships was parsed to 

reveal sets of peaks generated by a single analyte. From the relationship graph, fine isotopic 

patterns were extracted.

Results and Discussion

Annotation of a Spectrum Containing Glutamate and NAD

We demonstrate mz.unity, our charge-aware framework for detecting and exploring peak 

relationships, with a set of peaks observed from the LC/ESI/MS analysis of an E. coli 
extract. The extract was a complex mixture of small molecule analytes that gave rise to 

approximately 46 000 total features when analyzed in both positive and negative polarities. 

The spectrum used to evaluate mz.unity was a composite taken from the time range of 21–22 

min consisting of 454 features (peaks with a Gaussian-like shape in the chromatographic 
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domain) and 2212 background peaks. This spectrum was annotated with incremental 

relationship searches covering various relationship types.

Two groups of peaks were considered, features and background peaks. In LC/MS 

techniques, all detected analytes of interest appear as features and therefore annotation 

typically seeks to remove redundancy from the set of peaks that are features. Still, to fully 

annotate the features, background peaks must be considered as participants in adduct 

formation. The chromatographic domain was used only to classify mass peaks as features or 

background peaks, and mz.unity analysis relied only on the mass and charge of the classified 

peaks.

We consider three general types of relationships in this discussion of results. Simple 

annotations relate two detected peaks through supplied, granular-mz. Distal fragment and 

mer relationships relate three or more detected peaks and some number of granular-mz. 

Finally, background relationships are mers formed between features and the background 

peaks. All relationships were searched, combining both positive and negative polarities.

Simple Annotations

Isotope searches detected 64 monoisotopic features having isotopic support. This isotopic 

support consisted of 101 isotopic features identified in 141 relationships. The remaining 289 

features lacked isotopes, indicating low abundance or various types of detector noise. Fine 

isotopic structure of analytes could be annotated below ~300 Da where resolution permitted.

Charge-aware search, as implemented in mz.unity, allowed for relationships between 

positive and negative mode ions to be detected simply. These included relationships like 

[Glu – 2H + K]1– + [2H]2+ = [Glu + K]1+. The charge-aware search also enabled the 

inclusion of a neutral mass, [glutamate]0, in the search and easy retrieval of all 

transformations of this specific mass. In targeted mining approaches, the annotation search 

can be seeded with relevant analyte neutral masses for simple compound spectra generation. 

Charge carrier searches between the 64 monoisotopic features with isotopic support detected 

104 relationships, 52 of which were cross-polarity relationships (Figure 3A).

Ambiguous relationships have two interpretations that are indistinguishable by mass and 

charge alone. These relationships can be drawn between two distinct analytes as well as 

analyte–fragment or analyte–adduct pairs. We detected 91 ambiguous neutral losses 

corresponding to loss of [NH3]0 and [H2O]0. Manual review of these ambiguous 

relationships suggested that each of these were true neutral losses and not distinct analytes. 

Review consisted of evaluating chromatographic peak shape and the elution time of the 

possible derivative analytes as well as fragmentation spectra of the putative parent. An 

example confirmation was the relationship [Glu – H]1– – [H2O]0 = [128.0351]1–, which was 

confirmed by using the fragmentation spectrum of a glutamate standard as seen in 

Supporting Information Supplement S10. The automated resolution of ambiguous 

relationships is one of the challenges that remains to be addressed by an automated 

annotation solution.
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Unambiguous simple relationships included additional neutral losses and several adducts 

common to this chromatography such as [CH3CN]0 and [SiO3H2]0. These relationships are 

unambiguous as the fragments are rare and the related formulas are unlikely to coelute. 

Within the 454 features, 193 additional neutral relationships were detected. A breakdown of 

these neutral relationships can be found in Table 2. This annotation of simple relationships 

reduced the 64 isotopically supported features to 34 feature groups.

Annotation thus far is similar to annotations provided by traditional rule tables. The only 

extension we have provided at this point is the inclusion of charge awareness that enabled 

the linkage of analytes from positive and negative mode as well as neutrals. We extend 

annotation beyond the traditional annotation scope in the next section.

Mer and Distal Fragment Annotations

A novel set of annotated relationships included mers and distal fragments. Both of these 

relationship types follow the pattern of relating three or more detected features (i.e., 

represent complex relationships). This contrasts with approaches based on rule tables that 

are limited to two detected features. The distinction between mer and distal fragment is in 

the interpretation; distal fragments imply that the heavier feature is the original analyte while 

mers imply that the lighter features are the original analyte. In the absence of tools to 

classify relationships as mers or fragments, we have presented summaries of these searches.

Searching for analyte–analyte complex relationships asserted 420 relationships between 263 

analyte peaks (analyte peaks include peaks from features and background). When these were 

examined, examples of both distal fragmentation and analyte–analyte adduction were seen. 

For example, a distal fragment pair of NAD was found: [123.0553]1+ + [540.0536]1– – [H]1+ 

= [NAD – H]1– and confirmed by MS/MS as per the section on Fragment Annotations. The 

analyte–analyte adduct [glutamate – H]1– + [NAD – H]1– + [H]1+ = [glutamate + NAD – 

H]1– was also detected (Figure 3B). The reduction of complex relationships into analyte 

groups relies on classification of the relationship as mer or distal fragment. Accordingly, we 

cannot present known analyte groups.

As described above, mass measurement error contributes to false positive peak relationships. 

Combinatorial searching for peak relationships can rapidly exceed the specificity offered by 

the mass accuracy of the technique. Ultimately, a solution to probabilistically evaluate each 

putative relationship is needed for automated annotation. In the absence of this solution, we 

have manually evaluated a portion of putative relationships to control for the possibility of 

false positives. Known constituents of the spectrum were checked for incorrect relationships. 

If the search produced a significant number of false positive relationships, we expected to 

find these peaks implicated in incorrect relationships. The peaks corresponding to glutamate 

and NAD had no false positive relationships, indicating that in general these results are 

valid.

Similarly, mers between analytes and background peaks were searched. Ideally, this search 

should exclude the possibility of fragment relationships because fragments would appear as 

features. In practice, some fragment features are detected but not recorded as features and 

thus enter the background pool. For this reason, we again omit the generation of analyte 
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groups. A search of relationships with background peaks resulted in 474 relationships 

between 373 peaks. Of those 373 peaks, 129 were background peaks and 244 were features. 

We show an example of a background mer relationship later in the section on the 

Application to 2-Hydroxyglutarate Metabolism. A summary of the detected relationships is 

shown in Table 3.

Fragment Annotations

To examine the ability of mz.unity to detect fragments, we collected the targeted 

fragmentation spectrum of a neat NAD standard (Supporting Information Supplement S9). 

This obviates the possibility of mer formation because only the NAD precursor m/z was 

experimentally selected by the quadrupole for fragmentation. Fragment annotation is 

enabled by mz.unity’s charge-aware complex relationship searches. Spectra from a variety 

of collision energies and both positive and negative polarity were deisotoped and combined 

into a composite spectrum consisting of 283 peaks (two of which were the protonated and 

deprotonated parent peaks). Fragment relationships were detected within this composite 

spectrum.

Mz.unity detected 404 pairs of fragmentation relationships (Figure 4, parts A and B). These 

are pairs of detected fragments that correspond to the two liberated portions of the parent ion 

(Figure 4A). Interestingly, mz.unity’s charge-aware annotation is a major advantage for this 

type of search. In 250 of the detected fragment relationships, one fragment portion was 

detected in positive mode while the second fragment portion was detected in negative mode 

(Figure 4C). We also evaluated how intensity impacted the probability of finding both 

fragment halves. As expected, more intense fragments were more likely to result in a 

detected pair (Figure 4D). This implies that the number of annotated fragments will be 

dependent on the sensitivity of the instrument.

We supplemented the distal fragment search with several common fragments that were 

unable to be detected on our mass spectrometer due to their low mass. In their neutral form, 

these were [H2O]0, [NH3]0, [CO2]0, and [CO]0. The possibility of ambiguous relationships 

was excluded because this was a targeted MS/MS experiment omitting other analyte species. 

These common neutral losses resulted in the annotation of 86 additional fragmentation 

relationships.

Of the original 283 peaks in the fragmentation spectrum of NAD, a combination of common 

neutral loss and distal fragment annotation included 171 peaks (60% of all detected 

fragments). The remaining fragments were both not in our list of common fragments and 

lacked a detectable distal second half. Annotation of this type of fragment remains an open 

challenge to future annotation techniques.

Annotation Summary

This work represents the most thorough annotation of a complex LC/ESI/MS spectrum to 

date and has important implications for the analysis of metabolomic data. We show that 

commonly occurring complex spectral relationships lie beyond the scope of previous 

annotation approaches. Consequently, the amount of spectral degeneracy in mass 

spectrometry-based data sets has been underestimated. The two analytes in this spectrum 
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provide a somewhat contrasting picture of this degeneracy. Both glutamate and NAD were 

of relatively high abundance with intensities of 1 × 109and 3 × 108, respectively. Although 

they were present at similar intensities, glutamate produced 98 peaks and NAD only 

produced 23. The results presented here underscore the need for thorough analysis of 

metabolomic data sets to ensure that the myriad of redundant peaks and noise sources do not 

obscure relevant analytes.

Application to 2-Hydroxyglutarate Metabolism

Although additional work is required to implement mz.unity as an automated annotation 

solution on a comprehensive scale, even in its current form mz.unity provides a powerful 

resource for interpreting LC/MS-based untargeted metabolomic data. In this section, we 

provide one brief example application to highlight the utility of our mz.unity software 

package in processing untargeted metabolomic results.

The metabolite 2-hydroxyglutarate (2HG) is known to accumulate in several types of cancer 

due to gain-of-function mutations in isocitrate dehydrogenase 1 and 2.(22–24) However, the 

biochemical effects of 2HG accumulation are incompletely understood. We were interested 

in testing the hypothesis that cancer pathogenesis might be at least partially mediated by the 

downstream metabolism of 2HG.

We first needed to determine if 2HG is transformed into downstream products in cells. This 

was accomplished by comprehensively tracking the transformation of uniformly labeled 13C 

2HG (U-13C 2HG) into downstream metabolites.(25, 26) From the thousands of features we 

screened by untargeted metabolomics, we found 10 features that were greater than 5-fold 

enriched with 13C carbon compared to natural-abundance samples.

To investigate the identity of these 10 enriched features, we first analyzed the data with the 

rule-table based annotation package CAMERA.(1) CAMERA indicated that 6 of the 10 

features were adducts of 2HG, leaving 4 of the 10 features to represent biochemical 

transformations of 2HG. Importantly, this result seemed to support the metabolism of 2HG 

into downstream products. Therefore, we applied the conventional untargeted metabolomic 

workflow to identify these features as unique metabolites. When the accurate mass and MS2 

data did not match those in databases, we began to explore the exciting possibility that these 

features might represent novel “unknown” metabolites. Fortunately, before committing to 

this path, we further analyzed the data with mz.unity to search for complex relationships and 

fragments. With mz.unity, we discovered that the remaining four features were indeed 

complex adducts and fragments of 2HG (Supporting Information Figure S11). The mz.unity 

result fundamentally altered the conclusion of our experiment, showing that 2HG is not 

readily metabolized in the cells we tested. This brief example illustrates how the mz.unity 

software package can be used in untargeted metabolomic workflows to analyze and refine 

lists of potentially interesting features.

Observed Failures of Current Annotation Assumptions

In-depth analysis of the aforementioned data sets revealed several assumptions made by 

current annotation approaches that do not hold in practice. The application of these 

assumptions therefore prevents the annotation of several relationships in our data sets.
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EIC Correlation

Analytes detected by LC/MS techniques elute over sequential spectra with a Gaussian-like 

profile. A common assumption made by current annotation approaches is that related 

features will have similar peak shapes. This similarity is commonly measured as the Pearson 

product moment correlation (Pearson’s r) between the extracted ion chromatograms (EICs) 

of the two peaks.(10)Two risks exist: high correlation and assertion of a relationship 

between unrelated peaks, and low correlation and segregation of related peaks. We find both 

of these cases to be common in our data sets. We present two cases in which related peaks 

exhibit low correlation.

Figure 5A shows three salt adducts of glutamate (Glu) that were annotated by mz.unity in 

our data set: [Glu – H]1–, [Glu – 2H + Na]1–, and [Glu – 2H + K]1– corresponding to m/z 
146.0455, 168.0276, and 184.0015, respectively. The EIC of the deprotonated form exhibits 

a smooth peak shape typical of our chromatography, but the EICs of both salt adducts 

exhibit a strikingly different profile. Each initially rise in tandem with the elution of the 

deprotonated form but quickly plateau. It is clear that each of these salt adducts is related to 

the [Glu – H]1– peak, yet their correlation is far below useful cutoffs (r of 0.59 and 0.53, 

respectively).(27)

A second example of poor EIC correlation between related peaks occurs when two 

adducting species elute at different times. This is the case in the adduction of glutamate and 

NAD to form the GluNAD adduct. As can be seen in Figure 5B, glutamate and NAD have a 

very low correlation (rof 0.09), yet these two ions are related through the glutamate–NAD 

mer (GluNAD). The heterodimer GluNAD also does not correlate well with either of its 

parent species (r of 0.34 and 0.78, respectively). Interestingly, the convolution of the 

glutamate and NAD EIC traces exhibits strong correlation with that of the mer (r of 0.97), 

suggesting a possible improvement to this test. Importantly, when EIC correlation is used to 

group detected features prior to relationship detection, the identification of relationships 

such as these is precluded.

Background Ions

Peaks lacking a chromatographic peak shape (i.e., background peaks) represent chemical 

species that can be involved in the ionization process. Current annotation approaches 

consider only ions displaying a chromatographic peak shape, and in doing so they fail to 

annotate relationships that involve background ions. Background ions have various sources 

including column bleed, previously eluted compounds washing off the column, solvent 

impurities, and other contaminants. It is important to emphasize that background ions 

contribute to detected features with chromatographic peak shapes. As shown in Figure 5C, 

the adduction of a bona fide feature with a background ion results in a feature with a peak 

shape. With current annotation approaches, this background-derived artifact would be 

confused as an additional analyte during later processing. Annotation of this feature is only 

possible when background peaks are considered during the annotation process.

The adducts in Figure 5A and the background ion in Figure 5C demonstrate characteristics 

of ion suppression. This general term refers to the reduction in the intensity of a signal due 
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to the presence of other species. It is interesting to note that reduction in the signal of the 

background ion may not necessarily be due to the mechanisms conventionally thought to 

underlie ion suppression. Rather than competition for charge or alteration of droplet 

dynamics, an additional source of “suppression” could be the scavenging of the monomer 

signal by other adduct signals. The result being that the same number of species are ionized 

and detected, but the distribution of signal among masses is altered. This is visible in the 

background trace in which the signal of the dimer necessarily takes signal from the 

background peak; notably this phenomena may also contribute to non-linearity as peaks 

reach high intensities. The complexity of this type of ion suppression is further indicated by 

the adducts in Figure 5A. Adduct formation during droplet shrinkage is a dynamic chemical 

process involving multiple species. As concentrations change over the course of analyte 

elution, rates and equilibria will also be altered. In the case of the salt adducts above, it is 

possible that glutamate sequestered all available salt or alternatively dimer formation 

became more favorable than the monomer production. The link between adduct formation 

and ion suppression warrants further study.

Charge States Assignment

A mass spectral peak is generally taken to represent a single species. Figure 5D 

demonstrates that this is not true in general, but rather, it is possible to detect a single m/z 
peak which corresponds to two distinct formulas. This is common in the case of multiply 

charged dimers. In the spectrum of NAD found in Figure 5D, two distinct isotopic envelopes 

can be seen. The major pattern is the result of [NAD – H]1–. The second pattern has spacing 

of (13C – 12C)/2, representing a compound of charge state 2–. This pattern is produced by 

the ion [2NAD – 2H]2–. The m/z of these two ions is identical, 662.1020, but both species 

have a different charge state, different formulas, and therefore different mass. The 

assignment of a single charge state can only explain one of the isotopic envelopes. Full 

annotation requires the consideration of multiple charge states.

Future Directions

Increases in the mass accuracy and resolving power of mass spectrometers have enabled 

more thorough analyses of metabolomic data sets. The tools described here, mz-sum and 

mz.unity, leverage these advances to provide a comprehensive list of possible spectral 

relationships. Still, several relationship classes require information beyond mass and charge 

to make definitive annotation assignments. Both ambiguous relationships and fragment/mer 

relationships have multiple interpretations that cannot be distinguished based on mass and 

charge alone.

We see four distinct challenges remaining for an automated annotation solution: (i) 

discrimination between distal fragments and adducts; (ii) discrimination between fragments 

and distinct analytes; (iii) annotation of rare, nondistal fragments; (iv) evaluation of 

confidence in each asserted relationship. Metabolomic data sets offer many rich sources of 

information to tackle these challenges. Peak intensity, chromatographic profile, mass 

decomposition, isotope pattern, convolution of adduct-constitutent’s isotopic patterns, and 

the web of putative relationships are all expected to offer predictive power in the context of 

these problems. Network-based optimization problems and probabilistic assessments have 
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addressed similar problems like fragmentation tree calculation and analyte identification 

with much success.(2, 9, 28)

A challenge distinct from annotation is the prediction of underlying neutral masses that give 

rise to the spectrum. The web of annotated relationships and additional information sources 

can be combined to assert the masses and identities of the untransformed analytes. These 

untransformed masses are of interest for metabolite identification and data interpretation in 

the context of biochemistry. Ultimately, an automated annotation solution will allow faster 

and more robust metabolomic data analysis while also enabling reliable analyte 

identification.

Conclusions

Current approaches fail to annotate a significant fraction of relationships in mass 

spectrometry-based data sets. We have shown that metabolites such as glutamate produce 

100 or more spectral peaks, yet current approaches annotate only a fraction of these. This 

resulting peak degeneracy is a major challenge to the further analysis of MS data, requiring 

time-intensive manual curation and increasing the number of false positive and misleading 

hits. Here we have presented mz-sum and mz.unity, which provide a novel framework for 

assessing these complex mass spectral relationships and enable identification of degenerate 

peaks that would not be found with current annotation approaches.

Referring to relationships as mz-sums accurately represents any possible analyte 

transformation, including complex and cross-polarity relationships. Consideration of all 

possible analyte transformations is critical to building thorough and robust data set 

annotation tools for several fields, including metabolomics.(14) Here we have expanded 

upon the relationship approaches based on rule tables by developing the mz.unity R 

package. While current annotation approaches are based on common and universal 

transformations, the true set of possible relationships searched for by mz.unity is much 

broader, encompassing both complex adducts and distal fragments. Mz.unity is both a 

convenient tool for manual annotation and interpretation of mass spectra as well as a step 

toward automated annotation of omic scale data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustaration of analyte transformations resulting in the detection of degenerate spectral 

peaks. Only two analytes are present, but they contribute to a total of six peaks.
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Figure 2. 
(A) Output of mz.unity represented as a graph structure. Edges represent peak relationships. 

(B) The modification relating the peaks is noted as text on each edge..Nodes represent 

detected m/z peaks. (C) The identity of each is noted with gray text by each node. Nodes are 

colored by polarity: positive (green) (D) and negative (red) Edges are colored by relationship 

type: charge carrier (yellow), cross-polarity (gray), (E) self-mer (purple), isotopic (green) 

and heterometer (red) (B) The graph structure in panel A superimposed on (F) the mass 
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spectrum of the relevant peaks. Intensity in this graph is scaled as /0.3 so that the small 

peaks are visible.
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Figure 3: 
Visualizing peak relationships from the analytes, glutamate and NAD. (A) Annotation of 

simple relationships between NAD and glutamate. Each node is an m/z peak, and each edge 

is a detected relationship. (B) Visualization showing the result of the annotation of complex 

relationships. Peaks derived from the Glu-NAD heteromer are shown in the blue area. This 

plot includes isotopes, heteromers, homomers, charge carriers, and neutral losses but omits 

fragments and background mers. (C) The spectral graph of the results is shown in panel B
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Figure 4: 
Distal fragment searches. (A) Schematic of NAD fragmentation resulting in two distal 

fragments. (B) The fragmentation spectrum of NAD and the pairs of distal fragments that 

sum to the positive and negative molecular ions. (C) The number of fragment pairs detected 

in each polarity. Most fragments were detected by combining positive and negative 

polarities. (D) The portion of peaks with detected distal fragments at varying intensity.

Mahieu et al. Page 22

Anal Chem. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Surprising annotation examples. (A) The sodium (middle) and potassium (bottom) adducts 

of glutamate exhibit different peak shapes than the deprotonated form (top) (Pearson’s r of 

0.59 and 0.53). (B) Overlapping peaks glutamate and NAD (top) adduct to form a glutamate-

NAD mer (bottom). (C) An artifactual peak (bottom) is formed from the adduction of 

glutamate (top) and a background peak that lacks a chromatographic peak shape (middle). 

(D) A single m/z peak with two charge states and two formulas. The base peak at 662 is 

composed of [NAD - H]- and [2NAD - 2H]2-, as evidenced by the annotated isotopic packet. 

Masses, intensities, and retention times can be found in Supporting Information, Figure S12.
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Table 1.

Output of Mz. Unity
a

A B.1 .. B.n M.1 ... M.n ppm

12 1 1 - 11 - - 0.52

1 29 - - 11 17 - 0.59

… … … … … … … …

a
Row 1 contains the column headers. Cells contain references to supplied mz values: 1 = glutamate; 11 = a proton; 12 = glutamate dimer; 29 = 

sodium. Row 2 represents a dimer relationship, this is the adduction of two glutamate monomers (1 ) and a proton (11 ) to result in the dimer (12). 
Row 3 represents glutamate’s (1 ) loss of sodium (29) and gain of a proton (11) to produce (29).
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Table 2.

Distribution of Common Neutral Losses Detected

formula count

- H2O 50

- CO2 19

- NH3 41

+ HCOOH 20

+ CH3COOH 15

+ CH3CN 47

+ CH3OH 32

- CO 43

+ H3PO4 3

+ SiO3H2 6

+ SiO4H4 4

+ SiC2H6O 4
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Table 3.

Distribution of the Types of Relationships Detected

relationship type count

background mer 474

cross-polarity mer/fragment 137

single-polarity mer/fragment 283

neutral loss 284

cross-polarity 52

charge carrier 52
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