Table 2.
Model Name | RMSE | SRMSE | R-sq.(adj) | Deviance Explained | Δ AIC |
---|---|---|---|---|---|
A: Seasonal Naïve | 10.22 | 0.62 | 0.16 | 0.16 | 0 |
B: Meteorology Optimal | 8.83 | 0.54 | 0.28 | 0.32 | -492.64 |
C: Optimal Lag Surveillance Model | 7.32 | 0.45 | 0.49 | 0.49 | -2420.39 |
D: Optimal Met and Lag Surveillance Model | 6.30 | 0.39 | 0.62 | 0.64 | -2725.62 |
E: Optimal Representation Model | 6.12 | 0.37 | 0.64 | 0.66 | -2718.90 |
F: Social-economic data Included | 6.10 | 0.37 | 0.64 | 0.73 | -2713.86 |
The performance is measured on different metrics. The best model should have the lowest errors (RMSE, SRMSE) and have the best fit (measured in R-sq.(adj).), high deviance and low Δ AIC