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Knock‑down the expression of TaH2B‑7D 
using virus‑induced gene silencing reduces 
wheat drought tolerance
Xinbo Wang1,2,3†, Yongzhe Ren1,2,3*†, Jingjing Li1,2,3, Zhiqiang Wang1,2,3, Zeyu Xin1,2,3 and Tongbao Lin1,2,3* 

Abstract 

Background:  Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of 
drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have 
shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family 
genes are involved in drought stress response remains unclear.

Methods:  Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated 
under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the 
function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the 
TaH2B-7D knock-down plants.

Results:  In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content 
significantly increased, while relative water content (RWC) and proline content significantly decreased compared 
with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited 
severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down 
plants, suggesting that the former were more sensitive to drought stress.

Conclusion:  These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in 
wheat.
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Background
Drought stress is the principal abiotic factor limiting 
wheat (Triticum aestivum L.) productivity in arid and 
semi-arid areas [1]. More than 50% of the wheat grow-
ing areas in the world are impacted by drought stress 
[2]. A large number of studies have been carried out on 
the physiological changes of wheat plants under drought 
stress and their molecular mechanisms in response to 
drought stress [3–10]. However, although significant 
progress has been made [11, 12], the mechanisms of 

drought tolerance in hexaploid wheat have not been fully 
explored. Further exploration of drought-tolerant genes 
is of vital importance for the genetic improvement of 
wheat drought tolerance.

Studies have shown that the histones are involved in 
multiple stress responses in plants. Histone proteins con-
tain large amounts of basic amino acids such as arginine 
and lysine, which are up to about 1/4 of all amino acid 
residues. The histones proteins bind to the negatively 
charged double helix DNA to form a chromatin com-
plex [13, 14]. According to the composition of amino 
acid and molecular weight, histones can be divided into 
five major families: H1, H2A, H2B, H3, H4 [15, 16]. Alter-
ing the activity or level of histone variants has been dem-
onstrated to be associated with abiotic stress responses 
[17]. Epigenetic modifications of histone proteins such as 
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deacetylation [18], methylation [19, 20] and ubiquitina-
tion [21] are involved in plant drought response. Moreo-
ver, knock-down the drought-inducible H1-S variant of 
tomato by antisense technology promotes stomatal clo-
sure and enhances drought tolerance [17]. The H2A.Z 
variant of Arabidopsis is involved in the response to phos-
phate deficiency [22] as well as in the perception of ambi-
ent temperature [23]. Overexpression one of the TaH2A 
variant TaH2A.7 in Arabidopsis significantly lowered 
water loss rate, and promoted ABA-induced stomatal 
closure and enhanced drought tolerance in Arabidopsis 
[24]. Histone H2B is one of the four main histone pro-
teins involved in the structure formation of nucleosomes 
of chromatin in eukaryotic cells [25]. However, whether 
H2B proteins are involve in the drought stress response 
is unclear.

Virus-induced gene silencing (VIGS) is an efficient 
post-transcriptional gene silencing (PTGS)-based tech-
nique for gene functional study [26]. It employs the natu-
ral defense mechanisms used by plants to protect against 
invading viruses [27]. Viruses that do not have or have 
only weak gene silencing suppressors are modified to 
VIGS systems to induce PTGS-mediated degradation of 
target plant mRNAs [28–30]. So far, several VIGS sys-
tems have been established for monocots [30, 31]. Barley 
stripe mosaic virus (BSMV) is a tripartite RNA virus that 
can infect many agronomical important crops like barley, 
wheat, rice, maize and oat, and the BSMV-derived VIGS 
system has been widely used among monocots [32]. 
Similarly, Brome mosaic virus (BMV) is another RNA 
virus that has been adopted for VIGS in barley, rice, and 
maize [33]. The VIGS system developed from the Rice 
tungro bacilliform virus (RTBV) is a convenient and effi-
cient method using agroinoculation, which can reduce 
the expression levels of target genes by more than 90%. 
In important horticultural specie orchids, a VIGS vector 
system has also been successful established employing 
the symptom free Cymbidium mosaic virus (CymMV) 
[30, 33]. In this study, we identified a drought-responsive 
histone H2B family gene on chromosome 7D, TaH2B-
7D, which was significantly up-regulated under drought 
stress conditions. As the BSMV-derived VIGS system 
has been widely used for identification of stress respon-
sive genes in hexaploid wheat [34–38], it was used here 
to further investigate the function of the drought respon-
sive gene TaH2B-7D. The phenotypic and physiological 
changes were examined in the VIGS-based TaH2B-7D 
gene knock-down plants. Our results demonstrate that 
relative electrolyte leakage rate and malonaldehyde 
(MDA) content significantly increased, while the relative 
water content (RWC) and proline content significantly 
decreased in the TaH2B-7D knock-down plants under 
drought stress conditions. Moreover, the TaH2B-7D 

knock-down plants were more sensitive to drought stress. 
This work shows that TaH2B-7D potentially plays a vital 
role in conferring drought tolerance in common wheat.

Methods
Plant material and growth conditions
An elite drought-tolerant wheat variety in China, XN979, 
was used for in vitro transcribed RNA inoculation in the 
VIGS trial [39]. Pot culture was employed in the trial. 
Firstly, seeds were germinated for 16  h at 22  °C; then, 
twelve germinated seeds were sown in each pot with a 
soil water content of 90% field capacity (FC). The incuba-
tor temperature was set at 21 ± 1  °C in the daytime and 
19 ± 1 °C at night (15 h light/9 h dark). Wheat plants were 
thinned to nine plants per pot after emergence. Sixteen 
days after sowing, wheat seedling plants (Zadoks growth 
scale 12) were used for in vitro transcribed RNA inocula-
tion in the VIGS trial. The procedure for vector construc-
tion and in  vitro transcribed RNA inoculation will be 
described in detail later. After the inoculation, the pots 
were divided into two groups and the following two treat-
ments were performed separately: (1) non-stress condi-
tions (NS, maintained the soil water content at 80–90% 
FC), and (2) drought stress conditions (DS, no watering 
after sowing). Sixteen days after the inoculation (about 
44% FC under DS conditions), the leaves of each pot were 
collected for measurement of proline and MDA con-
tent, RWC and rate of relative electrolyte leakage. In the 
meanwhile, another trial comprising low nitrogen treat-
ment  (LN), salt stress treatment  (SS) and non-stressed 
control were carried out according to previous literatures 
[40, 41].

Vector construction and in vitro transcribed RNA 
inoculation
Vectors for VIGS trial were constructed as previously 
described [42]. Firstly, a 135  bp-fragment of TaH2B-7D 
cDNA coding region was cloned and then inserted into 
the γ vector (forward primer containing the Pac I restric-
tion site and two protective bases (CC) at 5 prime end: 
5′CCTTA​ATT​AAGAC​AAG​AAG​AAG​AAG​AAG​GC3′; 
reverse primer containing the Not I restriction site and 
three protective bases (TAT) at 5 prime end: 5′TAT​
GCG​GCC​GCGTC​GTT​GAT​GAA​GGA​GTT​C3′). The 
BSMV0 derived from the original empty pSL038-1 vec-
tor and acted as a negative control. BSMVPDS was used 
as a positive control to monitor the time course of VIGS 
[35, 39]. Then, the constructs were linearized and used 
to synthesize α, β, γ RNAs of the BSMV genome using 
Ribo MAX TM Large Scale RNA Production System-T7 
(Promega, Madison) [43]. The α, β, γ RNAs were mixed 
in equal amounts and diluted with an equal volume of 
RNAase-free water and added to FES buffer [34]. Each 
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of the constructs consisted of BSMV α, β, and γ with the 
TaH2B-7D gene fragment (BSMVTaH2B-7D) or phytoene 
desaturase (GenBank: FJ517553.1, BSMVPDS) or null 
insertion (BSMV0). The inoculation of each viral con-
struct was performed according to previously described 
procedures [35]. The incubator temperature was set 
at 23 ± 1  °C, with darkness for 24  h, followed by a 15  h 
light/9 h dark photoperiod [39].

Real‑time PCR analysis
Leaf total RNA was extracted using Trizol reagent 
according to the product instructions (Trizol; Invit-
rogen). Two-Step Prime-Script™ RT reagent Kit with 
gDNA Eraser (Perfect Real Time; TaKaRa) was used for 
the cDNA synthesis. The temperature procedure was set 
as follows: 2 min at 42 °C, 15 min at 37 °C, 5 s at 85 °C, 
and then 4 °C. The primers used for real-time PCR were 
designed using Primer 5.0 software (forward primer: 
5′GAC​AAG​AAG​AAG​AAG​AAG​GC3′; reverse primer: 
5′GTC​GTT​GAT​GAA​GGA​GTT​C3′). Real-time PCR was 
performed on a Bio-Rad IQ5 Real-Time PCR Detection 
System. Each reaction contained 0.4  μmol of forward 
and reverse primers respectively, 12.5 μl of SYBR Premix 
Ex Taq (Tli RNaseH Plus), 4 μl diluted cDNA templates. 
The reaction volume was added to 25  μl with nuclease-
free water. The temperature procedure was set as follows: 
95  °C for 5 min followed by 40 cycles of 95  °C for 15 s, 
60 °C for 15 s, and 72 °C for 15 s. The internal reference 
gene TaActin (forward primer: 5′ ACC​TTC​AGT​TGC​
CCA​GCA​AT 3′; reverse primer: 5′ CAG​AGT​CGA​GCA​
CAA​TAC​CAG​TTG​ 3′) and TaGAPDH (forward primer: 
5′ TGT​CTG​TGG​TGT​CAA​TGA​GAA​GGA​ 3′; reverse 
primer: 5′ GCA​AGA​GGA​GCA​AGG​CAG​TTAGT 3′) 
were used to normalize the expression level of TaH2B-
7D. Three biological replicates were performed. Rela-
tive gene expression levels of TaH2B-7D were calculated 
using 2−∆∆CT method.

Measurement of physiological indices
The RWC was measured according to Flexas et  al with 
minor modifications [44]. In brief, fresh leaves were 
sampled and weighted for fresh weight (FW). Then, the 
leaves were floated on deionized water for several hours 
until constant weight to determine their turgid weight 
(TW). Dry weight (DW) was determined by drying the 
fully turgid leaves in an oven at 80 °C for several hours 
until constant weight. The RWC was calculated by 
using the following formula: RWC (%) = [(FW − DW)/
(TW − DW)] × 100. Three independent biological repli-
cates were performed for each measurement.

Electrolyte leakage was measured as described by Yan 
et al. [45]. Fresh leaves were cut into 10 cm segments and 
washed three times with ultrapure water. The segments 

were incubated in a tube containing 10  ml of ultrapure 
water at room temperature for 24 h. Then, conductivity 
(C 1) was recorded using a conductivity meter (DDS-
307A, China). Subsequently, the tubes were incubated at 
100 °C for 20 min. After the solution was cooled to room 
temperature, conductivity (C 2) was recorded again. Elec-
trolyte leakage was calculated by using the following for-
mula: Electrolyte leakage (%) = C 1/C 2 × 100.

Proline was extracted and determined according to 
the method of Bates et al. with minor modifications [46]. 
Firstly, 0.5  g fresh leaves were homogenized in 5  ml 3% 
(w/v) aqueous sulfosalicylic acid. After centrifuged at 
3000×g for 15 min at 4  °C, the supernatant was treated 
with equal volume of acid ninhydrin and glacial ace-
tic acid, and boiled at 100 °C for 20 min, then placed on 
ice for 10 min. The absorbance of reaction mixture was 
recorded at 520 nm. Proline content was determined by 
a standard curve and calculated based on fresh weight 
(μg g FW−1).

MDA content was measured according to the method 
of Hodges et al. with minor modifications [47]. In brief, 
0.5 g fresh leaves were sampled and fast-frozen in liquid 
nitrogen. Then the samples were fully grinded using a tis-
sue grinder. 5 ml of 5% (w/v) trichloroacetic acid (TCA) 
was added to each sample and mixed thoroughly. The 
mixture was centrifuged at 4 °C, 4000×g for 20 min, and 
1 ml of supernatant was transfer to equal volume of 0.5% 
(v/v) TBA in 20% TCA. The mixture was boiled at 100 
°C for 30 min, and then placed on ice for 30 min. After 
centrifuged at 4000×g for 10 min at 4 °C, the absorbance 
of 2  ml supernatant was recorded at 450  nm, 532  nm 
and 600  nm, respectively. MDA content was calculated 
by using the following formula: MDA content (μmol  g 
FW−1) = (6.45 (OD532 − OD600) − 0.56 OD450) × V/W. In 
the formula, V represents the volume of extracts (5 ml) 
and W represents the fresh weight of sample (0.5 g).

Results
The expression of TaH2B‑7D under NS and DS conditions
Firstly, we examined the expression of TaH2B-7D under 
non-stress (NS) and drought stress (DS) conditions. 
Result shows that the expression of TaH2B-7D in XN979 
was significantly up-regulated by drought stress (Fig. 1a, 
b). Since previous studies have shown that histones are 
involved in multiple stress responses, we examined the 
expression of TaH2B-7D under low nitrogen and salt 
stress conditions. Results show that TaH2B-7D was also 
significantly up-regulated by low nitrogen stress and 
salt stress (Fig. 1c–f). To check the effect of VIGS in our 
study, the expression level of TaH2B-7D was investi-
gated in four independent BSMVTaH2B-7D-infected plants 
(BSMVTaH2B-7D-1, BSMVTaH2B-7D-2, BSMVTaH2B-7D-3 and 
BSMVTaH2B-7D-4) and controls. Results show that the 
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expression of TaH2B-7D were significantly down-reg-
ulated in the BSMVTaH2B-7D-infected plants compared 
with that in the non-infected and BSMV0-infected plants 
(negative control) under DS conditions (Fig.  2), indicat-
ing that the expression levels of TaH2B-7D have been 
successfully knocked-down in the BSMVTaH2B-7D-infected 
individuals.

Phenotypic changes in the TaH2B‑7D knock‑down plants
In the VIGS trial, 10  days after inoculation, all the 
BSMV constructs-infected plants exhibited slight 
chlorosis owing to the plant immunity to virus. The 

BSMVPDS-infected plants emerged visible bleached leaves 
(Fig.  3a), indicating the success of the viral inoculation 
[39]. Twenty days after inoculation, there were no obvi-
ous phenotypic changes of BSMVTaH2B-7D-infected plants 
under NS conditions compared with the non-infected 
and BSMV0-infected plants (Fig.  3b). However, severe 
leave sagging, wilting and slow growth (dwarf ) were pre-
sented in the BSMVTaH2B-7D-infected plants under DS 
conditions (Fig. 3c).

Physiological changes of the TaH2B‑7D knock‑down plants
We also checked physiological changes in the TaH2B-
7D knock-down plants. Under DS conditions, leaf RWC 
in the non-infected plants and BSMV0-infected plants 
only decreased by 16.4% and 14.5%, respectively, com-
pared with that in the NS non-infected plants. However, 
leaf RWC in the BSMVTaH2B-7D-infected plants under DS 
conditions reduced by 67.0% compared with that in the 
NS non-infected plants (Fig. 4a). At the same time, rela-
tive electrolyte leakage rate in the BSMVTaH2B-7D-infected 
plants increased by 446.2% under DS conditions com-
pared with that in the NS non-infected plants, which 
was significantly higher than that in the non-infected 
(173.5%) and BSMV0-infected (159.6%) plants under 
DS conditions (Fig.  4b). Moreover, MDA content in 
the BSMVTaH2B-7D-infected plants increased by 410.4% 
under DS conditions compared with that in the NS non-
infected plants, which was also significantly higher than 
that in the non-infected and BSMV0-infected individu-
als (negative controls) under DS conditions (Fig.  4c). In 
addition, proline content of the BSMVTaH2B-7D-infected 
plants under DS conditions increased by 93% compared 
with that in the NS non-infected plants, which is obvious 
lower than was the case in both non-infected (211.8%) 
and BSMV0-infected (196.9%) individuals (Fig. 4d).

Discussion
Plants inevitably come across complicated environmen-
tal changes during their life cycle. Drought is one of the 
major limiting factors for plant growth and productivity 
[48, 49]. Identification of drought tolerance-related genes 
is very important for the genetic improvement of plant 
drought tolerance. Currently, many drought-responsive 
genes/proteins have been identified in different spe-
cies such as wheat, maize, rice, peanut and soybean in 
previous studies [50–55]. These results are of great sig-
nificance for exploring the molecular mechanisms and 
genetic improvement of wheat drought tolerance [56, 
57]. However, most of these genes/proteins have not 
been functionally verified, especially in hexaploid wheat. 
Gene functional verification by genetic transformation 
in wheat is time-consuming and high-cost. Verification 
the functions of the large number of drought responsive 
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Fig. 1  Relative expression level of TaH2B-7D under drought stress, 
low nitrogen and salt stress conditions. a, b drought stress; c, d 
low nitrogen stress; e, f salt stress. a, c, e Real-time PCR analysis of 
TaH2B-7D using TaActin as reference gene. b, d, f Real-time PCR 
analysis of TaH2B-7D using TaActin as reference gene. NS non-stress; 
DS drought stress; LN low nitrogen; SS salt stress. Each bar shows 
the mean ± standard errors (SE). Double asterisk indicate significant 
differences at P ≤ 0.01 levels
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Fig. 3  The phenotypes of TaH2B-7D-knock down plants. a Leaf; b, c whole plants; b non-stress treatment (NS); c drought stress treatment (DS). 
BSMV0 represents the negative control of VIGS system; BSMVPDS represents the positive control monitoring time course of VIGS; BSMVTaH2B-7D 
represents TaH2B-7D-knock down plants
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genes/proteins is a big challenge in hexaploid wheat. 
VIGS technology is an alternative approach for prelimi-
nary functional analysis of these genes/proteins because 
of its rapidity and high efficiency [34–38]. In this study, 
VIGS was used to further analysis the function of a 
drought stress up-regulated histone H2B family gene, 
TaH2B-7D.

Histone proteins have been proved to be involved in 
multiple stress response [17]. For example, some histone 
protein variants are involved in the response to low phos-
phate and drought stress response, and temperature per-
ception [17, 22, 23]. Moreover, deacetylation, methylation 
and ubiquitination of histone proteins are also involved in 
plant drought response [18–21]. A recent study showed 
that overexpression Arabidopsis AtHUB2 gene in cotton 
increases the global H2B monoubiquitination (H2Bub1) 
level through a direct interaction with GhH2B1 and 
up-regulates the expression of drought-related genes 

in transgenic cotton plants [21]. Coincidentally, the 
expression level of TaH2B-7D was also up-regulated by 
drought stress in wheat (Fig. 1a, b). The evidences indi-
cate that H2B proteins may play a role in plant drought 
stress response. Since the expression of TaH2B-7D was 
significantly up-regulated by DS (Figs.  1, 2), VIGS as a 
post-transcriptional gene silencing technology, is suitable 
for the functional study of this gene In the VIGS trial, we 
observed a significant decrease of TaH2B-7D expression 
level in all the four independent BSMVTaH2B-7D-infected 
lines, indicating that the expression level  of TaH2B-7D 
was efficiently knocked-down (Fig.  2). Conventionally, 
the degree of leaf drooping is less, and leaves can main-
tain a relatively higher RWC in drought-tolerance plants 
than drought-sensitive individuals under DS conditions 
[58, 59]. Thus, the RWC of plant leaves can be used to 
at least partially assess the drought tolerance of a plant. 
In the TaH2B-7D knocked-down plants, leaf RWC 
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significantly decreased compared with that in the nega-
tive control (BSMV0-infected plants) under DS condi-
tions (Fig.  4a). This result indicates that TaH2B-7D 
knock-down plants are more sensitive to drought stress. 
MDA content is an important marker of structural dam-
age of the membrane [60]. Previous studies have shown 
that when plants are subjected to severe drought stress, 
the membrane is easily broken, membrane proteins are 
damaged, and the relative conductivity and MDA are 
significantly increased [61, 62]. In this study, the relative 
electrolyte leakage rate and MDA content in the TaH2B-
7D knocked-down plants were both significantly higher 
than those in the non-infected and BSMV0-infected 
plants under DS conditions (Fig. 4b, c). Moreover, com-
pared with the NS plants, the increased ratio of proline 
content in the BSMVTaH2B-7D-infected plants was signifi-
cantly lower than that in the non-infected control and 
BSMV0-infected plants under DS conditions. Proline is 
an important osmoregulatory substance that exists in 
plant cells. Previous studies have shown that the accu-
mulation of proline favors osmotic adjustment and 
cell membrane stabilization under DS conditions [63, 
64]. Taken together, these physiological results further 
confirm that TaH2B-7D knock-down plants are more 
sensitive to drought stress, indicating that TaH2B-7D 
potentially plays a vital role in conferring drought toler-
ance in hexaploid wheat.

In this study, we did not find any significant pheno-
typic change of TaH2B-7D knock-down plants under NS 
conditions. This result is beyond our previous expecta-
tion. After all, histones are essential components of chro-
matin. However, we had repeated this experiment two 
more times and got similar results. One possible reason 
to explain this result is that different members of H2B 
family genes may have a more meticulous functional dif-
ferentiation. Some of them are essential components of 
chromatin under normal growth conditions, while oth-
ers may play roles when plants encounter various envi-
ronmental stresses. Interestingly, the expression level of 
TaH2B-7D was up-regulated not only by drought stress, 
but also by low nitrogen and salt stresses (Fig. 1). These 
results indicate that TaH2B-7D may play important roles 
in responding to multiple abiotic stresses. In this study, 
although the gene-specific primers of TaH2B-7D were 
designed and the sequence of the inserted cDNA frag-
ment was confirmed by Sanger sequence when con-
structing the VIGS vectors, the possibility of knocking 
down some homologous genes of TaH2B-7D could not 
be completely ruled out. Therefore, further studies are 
needed to generate transgenic lines that overexpress and/
or underexpress TaH2B-7D to better understand the 
function of this gene.

Conclusion
Knock-down the expression level of TaH2B-7D in 
wheat plants significantly increased leaf relative elec-
trolyte leakage rate and MDA content, decreased leaf 
RWC and proline accumulation, and reduced wheat 
drought tolerance. Therefore, TaH2B-7D potentially 
plays a vital role in conferring drought tolerance in 
hexaploid wheat.
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