Skip to main content
. 2019 Mar 14;13:144. doi: 10.3389/fnins.2019.00144

Table 4.

Performance of different feature groups.

Feature type Feature Dimension Measurements Dice PPV Sensitivity Specificity
ROI Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing
Gradient2D 12 HGG&LGG 0.89 0.54 0.41 0.87 0.47 0.49 0.90 0.63 0.35 0.50 0.56 0.92
HGG 0.89 0.55 0.40 0.88 0.48 0.49 0.90 0.64 0.34 0.51 0.57 0.91
LGG 0.85 0.54 0.84 0.48 0.87 0.62 0.47 0.62
Gradient3D 34 HGG&LGG 0.90 0.61 0.60 0.92 0.60 0.63 0.89 0.62 0.57 0.71 0.75 0.92
HGG 0.91 0.62 0.60 0.93 0.61 0.63 0.90 0.63 0.57 0.72 0.76 0.91
LGG 0.85 0.51 0.88 0.50 0.83 0.55 0.62 0.55
Context-sensitive 4 HGG&LGG 0.86 0.51 0.14 0.87 0.44 0.23 0.85 0.60 0.11 0.51 0.48 0.91
HGG 0.87 0.51 0.16 0.87 0.44 0.24 0.86 0.60 0.12 0.51 0.47 0.90
LGG 0.79 0.45 0.83 0.43 0.76 0.47 0.52 0.47
CCS 12 HGG&LGG 0.86 0.54 0.13 0.89 0.47 0.25 0.84 0.62 0.09 0.62 0.57 0.94
HGG 0.87 0.53 0.16 0.90 0.48 0.27 0.85 0.61 0.11 0.62 0.56 0.92
LGG 0.80 0.48 0.86 0.47 0.75 0.48 0.64 0.48