Table 4.
Performance of different feature groups.
Feature type | Feature Dimension | Measurements | Dice | PPV | Sensitivity | Specificity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ROI | Complete | Core | Enhancing | Complete | Core | Enhancing | Complete | Core | Enhancing | Complete | Core | Enhancing | ||
Gradient2D | 12 | HGG&LGG | 0.89 | 0.54 | 0.41 | 0.87 | 0.47 | 0.49 | 0.90 | 0.63 | 0.35 | 0.50 | 0.56 | 0.92 |
HGG | 0.89 | 0.55 | 0.40 | 0.88 | 0.48 | 0.49 | 0.90 | 0.64 | 0.34 | 0.51 | 0.57 | 0.91 | ||
LGG | 0.85 | 0.54 | – | 0.84 | 0.48 | – | 0.87 | 0.62 | – | 0.47 | 0.62 | – | ||
Gradient3D | 34 | HGG&LGG | 0.90 | 0.61 | 0.60 | 0.92 | 0.60 | 0.63 | 0.89 | 0.62 | 0.57 | 0.71 | 0.75 | 0.92 |
HGG | 0.91 | 0.62 | 0.60 | 0.93 | 0.61 | 0.63 | 0.90 | 0.63 | 0.57 | 0.72 | 0.76 | 0.91 | ||
LGG | 0.85 | 0.51 | – | 0.88 | 0.50 | – | 0.83 | 0.55 | – | 0.62 | 0.55 | – | ||
Context-sensitive | 4 | HGG&LGG | 0.86 | 0.51 | 0.14 | 0.87 | 0.44 | 0.23 | 0.85 | 0.60 | 0.11 | 0.51 | 0.48 | 0.91 |
HGG | 0.87 | 0.51 | 0.16 | 0.87 | 0.44 | 0.24 | 0.86 | 0.60 | 0.12 | 0.51 | 0.47 | 0.90 | ||
LGG | 0.79 | 0.45 | – | 0.83 | 0.43 | – | 0.76 | 0.47 | – | 0.52 | 0.47 | – | ||
CCS | 12 | HGG&LGG | 0.86 | 0.54 | 0.13 | 0.89 | 0.47 | 0.25 | 0.84 | 0.62 | 0.09 | 0.62 | 0.57 | 0.94 |
HGG | 0.87 | 0.53 | 0.16 | 0.90 | 0.48 | 0.27 | 0.85 | 0.61 | 0.11 | 0.62 | 0.56 | 0.92 | ||
LGG | 0.80 | 0.48 | – | 0.86 | 0.47 | – | 0.75 | 0.48 | – | 0.64 | 0.48 | – |