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Abstract

Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent 
aging-related diseases associated with significant morbidity and mortality. Some 
findings in human and animal models have linked T2DM to AD-type dementia. 
Despite epidemiological associations between the T2DM and cognitive impairment, 
the interrelational mechanisms are unclear. The preponderance of evidence in lon-
gitudinal studies with autopsy confirmation have indicated that vascular mechanisms, 
rather than classic AD-type pathologies, underlie the cognitive decline often seen 
in self-reported T2DM. T2DM is associated with cardiovascular and cerebrovascular 
disease (CVD), and is associated with increased risk of infarcts and small vessel 
disease in the brain and other organs. Neuropathological examinations of post-
mortem brains demonstrated evidence of cerebrovascular disease and little to no 
correlation between T2DM and β-amyloid deposits or neurofibrillary tangles. Nev-
ertheless, the mechanisms upstream of early AD-specific pathology remain obscure. 
In this regard, there may indeed be overlap between the pathologic mechanisms 
of T2DM/“metabolic syndrome,” and AD. More specifically, cerebral insulin pro-
cessing, glucose metabolism, mitochondrial function, and/or lipid metabolism could 
be altered in patients in early AD and directly influence symptomatology and/or 
neuropathology.

INTRODUCTION
The purpose of this article is to describe potential aspects 
of distinction and commonality between type 2 diabetes 
mellitus (T2DM) and Alzheimer’s disease (AD). T2DM is 
a chronic metabolic disease characterized by hyperglycemia, 
insulin resistance (IR), and loss of pancreatic β-cell function 
(137). The majority of diabetes cases worldwide are T2DM. 
Between 1980 and 2014, the global prevalence was reported 
to have risen from 108 to 422 million (108). T2DM typi-
cally presents with increased thirst, fatigue, frequent urina-
tion, and delayed wound healing (137). Major complications 
of T2DM include retinopathy, kidney failure, heart disease, 
cerebrovascular disease (CVD), neuropathy, and limb ampu-
tation (137).

AD is a neurodegenerative disease with an insidious 
onset and progressive course (23). It is the most common 
form of dementia a contributing factor in approximately 
70% of all dementia cases (23). The neuropathologic hall-
marks of AD are extracellular β-amyloid peptide deposits, 

which are recognized as “amyloid plaques,” and intracel-
lular hyperphosphorylated tau deposition which forms 
neurofibrillary tangles (NFT) when occurring in nerve cells 
(11). The typical course of AD is characterized by impair-
ment of various cognitive domains including memory, 
executive function, and often comorbid psychiatric changes, 
ultimately culminating in death (23). While speed of pro-
gression varies, the average life expectancy after diagnosis 
is approximately nine years (148,185).

In this review, discussion will initially focus on exist-
ing evidence that T2DM related cognitive decline is not 
associated with increased AD-type neuropathology, but 
is instead mediated by cerebrovascular pathology. Next, 
we address the emerging role of glucose, mitochondrial, 
and lipid metabolism abnormalities as upstream compo-
nents of AD clinical and neuropathological features. The 
review will finish by discussing hypothesized causes of 
cognitive decline in T2DM patients, with or without 
comorbid AD.
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T2DM ASSOCIATION WITH CLINICALLY 
AND PATHOLOGICALLY DEFINED AD

T2DM is associated with the clinical features of 
cognitive decline and AD-type dementia

Cognitive dysfunction is a relatively poorly understood 
complication of T2DM; see Figure 1. Multiple epidemio-
logical studies link T2DM to cognitive decline and clini-
cally diagnosed AD (27,117,119,145,187,198,208), however, 
not all studies demonstrate this association (see below). 
While there may be an association between T2DM, cogni-
tive decline, and AD-type dementia, most of these studies 
lack correlation with neuropathology, ie, autopsy confir-
mation. A 2013 systemic review and meta-analysis evalu-
ated published studies to better delineate the relationship 
between T2DM and AD (190). The meta-analysis identified 
15 studies conducted between 1998 and 2012. Nine studies 
found a statistically significant correlation between T2DM 
and AD with risk estimates ranging from 0.83 to 2.45. 
Five of these studies evaluated the interaction between 
T2DM and Apolipoprotein E epsilon 4 allele (APOE ε4), 
and three of these five studies demonstrated significant 
association with odds ranging from 2.4 to 4.99. While 
there is a reported epidemiological risk association between 
T2DM and clinical AD, Vagelatos and Eslick noted that 
this association has a major confounder—cerebral infarcts 
(190). They found that infarcts are more common in patients 
with T2DM and were associated with the development of 
clinical AD. Based on neuropathological examination, the 
authors concluded: (1) cerebral infarcts are more common 
in T2DM than AD neuropathology is; (2) Patients with 

clinical dementia have both infarcts and AD-type neuro-
pathology on post-mortem exam; (3) Cerebral infarcts 
reduce the number of AD-type lesions needed to cause 
clinical dementia but do not necessarily interact syner-
gistically with AD-type pathology. Additionally, a recent 
review evaluated the association between T2DM and clini-
cal AD diagnoses, and highlighted the complexity of the 
related scientific literature (94). The authors examined 
studies since 2015 and included a total of 10 articles. 
According to the authors, only 2 of 10 studies found that 
T2DM was independently related to cognitive decline in 
AD dementia.

From a neuropathological standpoint, T2DM 
cognitive decline is not associated with AD 
lesions

The large majority of autopsy (neuropathologic) studies 
report no association between T2DM and amyloid plaques 
or NFTs (2,10,13,35,67,76,109,110,126,140,176). A recent 
multi-center study evaluated 2365 autopsied patients with 
>1300 patients having available cognitive data (1). The 
authors concluded that T2DM status is associated with 
altered likelihood of being diagnosed during life with clini-
cal “Probable AD”; yet, at autopsy, there was no associa-
tion between T2DM and AD pathology. The authors utilized 
logistic regression modeling to evaluate the association 
between diabetes, CVD pathology, Braak NFT stage, and 
neuritic amyloid plaque score. The presence of T2DM was 
associated with increased odds of brain infarcts (OR = 
1.57), specifically lacunae (OR = 1.71). T2DM with infarcts 
was associated with lower cognitive scores at end of life 

Figure 1.  Relationship between T2DM and AD and cognitive decline. Diabetes, specifically T2DM, has a strong association with CVD that causes 
dementia through generation of subcortical and cortical infarcts. T2DM has been linked with dementia and AD, however, the mechanism(s) are 
uncertain. Amyloid plaques and neurofibrillary tangles have a strong association with cognitive status and to date, T2DM has not been associated 
with increased levels of plaques and tangles. T2DM, type 2 diabetes mellitus; CVD, cerebrovascular disease; AD, Alzheimer’s Disease. 
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relative to T2DM without infarcts. Studies that have arrived 
at the conclusion that T2DM is associated with AD patho-
logical hallmarks are few in number and characterized 
by subgrouping to determine a “positive” association. 
Overall, in dozens of papers, the null hypothesis—T2DM 
is not associated with AD-type pathology—has been tested 
repeatedly, and has been strongly supported.

Cerebrovascular disease contributes to 
cognitive decline in T2DM

T2DM is a known risk factor for CVD (81). T2DM is 
associated with acute cerebral infarcts and increased stroke/
brain infarction risk (44,71). Many clinical–radiological 
studies report that cerebral infarcts are significantly asso-
ciated with increased odds of developing dementia 
(38,189,193). This association may help account for the 
reported epidemiological association between T2DM and 
dementia (181).

Multiple mechanisms underlie CVD in T2DM. In terms 
of large-vessel pathologies, vascular complications of T2DM 
are mediated at least partly through chronic hyperglycemia 
and production of reactive oxygen species (ROS) that 
apparently damage the vessel endothelium, and lead to 
atherosclerosis. Insult to vascular endothelium activates 
thrombotic cascades and recruits T-cells, macrophages, 
and mononuclear leukocytes, impairing vascular integrity 
(211). From autopsy studies, T2DM is associated with 
cortical and subcortical atherosclerosis, and intracranial 
vascular stenosis is more common in those with T2DM 
than those without (8,85,111). Therefore, it is likely that 
T2DM association with cognitive decline is partly medi-
ated through accelerated atherosclerosis in large blood 
vessels.

While microinfarcts are invisible to most radiological 
and gross examination techniques (by definition), they are 
well described in neuropathological literature and are often 
detected during post-mortem microscopic examination. The 
location of microinfarcts (ie, cortical vs subcortical) cor-
relates with disease subtypes. Cortical microinfarcts have 
been associated with cerebral amyloid angiopathy (CAA), 
subcortical microinfarcts with hypertensive encephalopathy, 
and periventricular microinfarcts with normal pressure 
hydrocephalus (3,6,37). Microinfarcts are often located in 
subcortical areas in diabetics; however, cortical infarcts 
and lacunes have also been described (1,10,146,176). T2DM-
associated microinfarcts often coexist with AD neuropatho-
logical changes, however, the number of microinfarcts is 
not necessarily related to the severity of AD neuropathology 
(9,129,165). The typical reported microinfarct size is 0.2 
mm, however, they range from 0.2 to 2.9 mm (9,136). 
Several prospective cohort autopsy-based studies evaluated 
the associative effect(s) of microinfarcts on cognition (9,1
9,60,61,120,129,165,177,180,189,201). According to these stud-
ies, microinfarcts are present in 18%–40% of persons, while 
four studies found that the prevalence of microinfarcts 
was higher in those with dementia than those without 
dementia (9,165,177,180). These studies concluded that micro-
infarcts are independent predictors of dementia.

CLASSIC HALLMARKS OF AD: 
CORRELATION WITH COGNITIVE 
STATUS AND THE QUESTION OF 
“UPSTREAM” FACTORS
Before focusing in on the possible overlapping pathogenetic 
mechanisms of AD and T2DM, an important concept to 
address is the AD-specific lesions themselves—β-amyloid 
plaques and NFTs. There has been some controversy about 
whether β-amyloid and NFTs are deleterious, whether they 
should be considered “disease-defining,” and/or whether 
these lesions are specifically associated with cognitive 
impairment (25,125,173,175). Numerous factors have con-
tributed to this confusion, including the strong influence 
of impactful “mixed” and non-AD pathologies, some of 
which (eg, TDP-43 pathology) were only relatively recently 
discovered (128), and others of which (eg, small vessel 
pathologies) have only recently been appreciated to have 
an association with cognitive impairment independent of 
other brain lesions (74,78,97). There also are notable biases 
in terms of the research volunteers that are drawn from 
dementia clinics (124,164), and limitations associated with 
studying elderly individuals without carefully documented 
antemortem cognitive status. Furthermore, the dichotomous 
approach of “dementia yes/no” (and even the correspond-
ing dichotomous assessment of pathologies) is prone to 
bias as the results are dependent on the application of 
imperfect and arbitrary diagnostic thresholds. Over the 
past several decades, new research contributions have come 
from large community-based autopsy series with a new 
standard of cognitive assessments and longitudinal follow-
up; from biomarker (neuroimaging and body fluid) studies 
in clinical series; and, from genetic studies with large 
sample sizes and carefully assessed phenotypes. These 
approaches have led to an improved appreciation of, and 
insights into, the heterogeneity and complexity of what 
occurs in the aged human brain. The direct “toxicity” of 
β-amyloid and NFTs still remains to be definitively proven, 
and autopsy evaluation is intrinsically cross sectional. 
However, to summarize recent studies: an evolving scientific 
literature has provided strong support for the hypothesis 
that β-amyloid and NFTs are a part of a devastating 
organic disease within the complex milieu of the aged 
human brain, with strong adverse impact on brain func-
tion (125). For these reasons, these classic hallmarks still 
constitute the “gold standard” for disease instantiation 
and severity.

Even if one accepts the concept that β-amyloid and 
NFTs “define” AD, there remain critically important ques-
tions: what occurs upstream of plaques and tangles? Can 
a person have the AD disease “phenotype” even before 
the pathologies are present? Are there common, clinically 
impactful features of AD that are parallel and separate 
from plaques and tangles? These questions get to the criti-
cal issues of causative “upstream” factors. Clearly, there 
is a strong genetic component to AD risk, involving APOE 
and other genes (163), but the exact genotype/phenotype 
mechanisms are still incompletely understood. To date, 
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the association(s) between specific environmental factors 
and AD risk is even more controversial. Developing study 
designs to address those uncertainties in human studies 
is challenging because any influence that negatively impacts 
cognition increases the chance of diagnosis of AD-type 
dementia, whether or not AD pathologies are the factors 
that underlie the symptoms. Here, we attempt to explore 
how the upstream biochemical pathways that contribute 
to AD-type dementia may overlap with T2DM, with the 
important caveat that classical AD pathologic hallmarks 
may be irrelevant to some of these pathways.

GLUCOSE AND METABOLIC 
DYSREGULATION IN AD
While there is a wealth of information about AD patho-
physiology, the initial events upstream of NFT formation 
and β-amyloid deposition are still unclear. Metabolic dys-
regulation has been shown to be a possible contributory 
factor for AD neuropathology. Alterations in cerebral 
glucose metabolism, mitochondrial function, and lipid 
metabolism may be upstream triggers for NFT and 
β-amyloid deposition. The next section will focus on these 
topics and describe the links between metabolism and AD.

AD and glucose metabolism

Studies that used fluorodeoxyglucose (FDG) positron emis-
sion tomography (PET) imaging has been interpreted to 
indicate likely glucose metabolism abnormalities, and/or 
synapse loss, in patients at risk of AD, well before symp-
tom onset. This FDG PET neuroimaging modality has 
indicated that cerebral glucose metabolism may be impaired 
early in the adult life of persons at genetic risk for devel-
oping AD. While the exact mechanism(s) underlying this 
phenomenon are currently unknown, deficits in FDG PET 
tracer uptake begin decades before clinical onset of symp-
toms and—perhaps more importantly—well before the age 
range where abundant plaques and tangles are observed 
(5,155,160,162).

There has been some controversy about the pathophysi-
ologic implications of FDG PET studies. Since the radi-
olabeled FDG is taken up by cells but not metabolized, 
its uptake is largely dependent on its partitioning in the 
blood stream (ie, on blood flow), and hence it does not 
necessarily provide direct information on glucose metabo-
lism per se, except to the extent that that affects blood 
flow. This neuroimaging modality also does not provide 
direct information on synapse loss. There are additional 
technical questions related to the FDG PET modality, 
since the observed phenomena in individuals at risk for 
AD may be attenuated by partial volume correction (73,206). 
Knopman et  al. addressed this concern by increasing the 
power of their study and utilizing a larger patient cohort. 
His group found that there was a modest age-related reduc-
tion in cerebral glucose metabolism, and the presence of 
at least one APOE ε4 allele was associated with lower 
glucose metabolism measured in the posterior cingulate, 

precuneus, and/or lateral parietal regions (87). These results 
are similar to those found by Reiman et  al. as indicated 
above (156).

Complementing the studies of preclinical disease, other 
studies have provided additional evidence that were inter-
preted to indicate that persons with AD-type dementia 
have substantially reduced rates of cerebral glucose metabo-
lism in posterior cingulate, parietal, temporal, and pre-
frontal cortices (112‒114,174). This phenomenon was 
demonstrated in studies conducted by Herholz et  al. and 
Loessner et  al. and was later confirmed by others 
(68,130,155,156). Additional studies found that levels of 
glucose transporters in brain microvessels, frontal cortex, 
hippocampus, caudate nucleus, parietal, and temporal lobes 
were reduced in AD patients when compared with controls 
on autopsy studies (79,170). A recent study using the 
Baltimore Longitudinal Study of Aging autopsy cohort 
provided further evidence supporting the hypothesis that 
glucose metabolism is affected early in AD (5). The authors 
found that higher brain tissue glucose concentrations (neural 
insulin resistance) and lower GLUT3 levels were associated 
with severity of AD neuropathology and AD clinical pres-
entation. From these studies, the possibility emerges that 
glucose dysmetabolism is somehow correlated with AD-type 
pathologies per se, either as a causative factor or otherwise 
as part of the syndrome.

Mitochondrial dysregulation in AD

Alterations of mitochondria in AD were reported as early 
as the 1960s (52); See Figure 2. Subsequently, studies have 
reported that mitochondrial structure was altered, oxygen 
consumption reduced, and mitochondrial-localized enzyme 
activities were affected in AD (51,53,57,77,142,202). 
Furthermore, mitochondrial mass, size, and copy number 
were shown to be reduced in AD brains, and this was 
linked to mitochondrial interaction with β-amyloid peptide 
deposits (12,40). Cardoso et  al. demonstrated that ρ0 cells 
were protected from β-amyloid peptide exposure, support-
ing the hypothesis that β-amyloid peptide is detrimental 
to mitochondrial function (24). Others have shown that 
β-amyloid peptide is capable of interacting with β-amyloid 
peptide-binding alcohol dehydrogenase (ABAD) and cyclo-
phillin D (42,103). Interactions of β-amyloid peptide with 
ABAD deform the enzyme and prevents its interaction 
with nicotinamide adenine dinucleotide (NAD). When 
β-amyloid peptide interacts with cyclophilin D, this causes 
increased mitochondrial membrane permeability. The det-
rimental effects of β-amyloid peptide on the mitochondria 
may cause a compensatory response by increasing mito-
chondrial fission. The actions of mitochondrial-shaping 
proteins (OPA1, MFN1, MFN2, DRP1, FIS1) play a vital 
role in shaping and modifying mitochondrial structure 
during fusion and fission (210). Specifically, mediators of 
mitochondrial fusion (OPA1, MNF1, and MFN2) were 
reduced in degenerating neurons and mediators of mito-
chondrial fission (FIS1, DRP1) were increased (106,195‒197). 
While these studies are important for elucidating the effect 
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of β-amyloid peptide on mitochondrial metabolism and 
dynamics, they do not necessarily imply a reciprocal 
effect—they do not prove that mitochondrial dysfunction 
promotes β-amyloid peptide deposition.

The potential for mitochondrial metabolism to affect 
β-amyloid peptide production was demonstrated when cul-
tured SH-SY5Y cell lines expressed AD- and wt-mtDNA 
(83). These AD-mtDNA “cybrid” cell preparations gener-
ated increased intracellular and extracellular levels of 
β-amyloid peptide relative to controls. This result suggests 
that AD-mtDNA causes functional changes which may 
potentiate Aβ plaque formation. Additionally, another study 
found that when COS cells undergo glucose deprivation, 
levels of α-secretase-derived APP product increase (56). 
This alteration is perhaps relevant because AD patients 
have reduced rates of cerebral glucose metabolism in pos-
terior cingulate, parietal, temporal, and prefrontal cortices 
(112‒114,174), as stated above. These data may indicate 
how reduced glucose metabolism is linked to AD pheno-
type though dysregulation of mitochondria, which, as 
indicated in the prior paragraph, may be a self-propagating 
cycle with increasing β-amyloid peptide production and 
worsening mitochondrial dysfunction.

Mitochondrial autophagy in AD

Both neurodegeneration and diabetes are associated with 
oxidative stress and inflammatory conditions in the CNS 
that may be mediated partly by mitochondria dysfunction. 

Dysfunctional mitochondria may be compromised in the 
production of cellular energy and lose the capacity for 
buffering intracellular Ca2+, and they also can release 
harmful ROS. Uncontrolled oxidative stress triggers the 
discharge of cytochrome C and activates the pro-death 
apoptotic cascade (115). Increased oxidative stress also 
results from an imbalance in production of ROS and cells’ 
ROS scavenging systems from defective mitochondria. The 
inhibition of the clearance of damaged mitochondria, 
accompanied by the concurrent oxidative stress and inflam-
matory condition, may synergistically affect the health of 
neurons in AD and other conditions.

In healthy cells, mitochondria are turned over—dam-
aged mitochondria are selectively identified, ubiquitinated, 
and degraded via an autophagy pathway termed 
“mitophagy.” This pathway is particularly important in 
long-lived (post-mitotic) cells such as neurons. Mitophagy 
selectively sequesters abnormal mitochondria to form 
autophagosomes and subsequently deliver the cargo to 
lysosomes for degradation. Mitophagy plays a key role in 
mitochondrial quality control and is an essential mecha-
nism in tissue maintenance and cellular homeostasis, and 
the literature that pertains to autophagic dysregulation in 
AD may also be germane to mitophagy. Dysregulation 
of autophagy has been associated with AD pathogenesis. 
Nixon et  al. reported the accumulation of immature 
autophagic vacuoles (AVs) in dystrophic neurites of AD 
brains (133). Later reports conflicted on how autophagy 
flux was affected in AD and what specific stages were 

Figure 2.  Mitochondrial autophagy in AD. Mitochondrial dysfunction could play key roles in AD pathogenesis. Damaged mitochondria not only 
compromise the production of cellular energy and lose the capacity for Ca2+ buffering, they also release harmful ROS and cytochrome C resulted in 
activation of destructive pathways. Mitophagy is a mechanism for removing aged or damaged mitochondria, however, this mechanism is impaired in 
AD. Functionally defective mitochondria and insufficient clearance of the damaged organelles and macromolecules may synergistically intensify the 
detrimental pathways of AD. ATP, adenosine triphosphosphate; ROS, reactive oxygen species.
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dysregulated in human brains (134). Recently, Bordi et  al. 
assessed the autophagy pathways and autophagy flux by 
performing microarray and immunochemical analyses of 
hippocampal CA1 neurons in post-mortem tissue samples 
from AD subjects at different stages of disease (18). This 
study revealed that autophagy is upregulated and lysosomal 
biogenesis is increased in the early stage of AD (~10 years 
before clinical AD diagnosis). Additionally, autophagic flux 
was obstructed due to the impairment in the clearance 
of autophagic substrates. These studies indicate that the 
regulation of mitophagy plays important roles in mito-
chondrial homeostasis, however, how those molecular 
pathways interact with β-amyloid and pTau remains mostly 
unknown.

Lipid metabolism dysfunction in AD

Lipid dysmetabolism is a component of the metabolic 
syndrome that occurs in many T2D patients, and multiple 
lines of evidence have implicated perturbations in lipid 
biochemistry in AD. The brain is one of the most lipid-
enriched organs and is partly composed of a variety of 
lipids such as glycerophospholipids (GPs), sphingolipids, 
and cholesterol (17). The involvement of lipid metabolism 
in the pathogenesis of AD was suspected when brains of 
AD patients were examined post-mortem and found to 
contain “adipose inclusions” or “lipid granules” (48). Alois 

Alzheimer originally described this finding in his milestone 
study of the brain of Auguste Deter (4).

After the discovery that APOE ε4 allele is the strongest 
genetic risk factor for late onset AD, interest in lipid 
metabolism gained added momentum (15,32). One copy 
of the APOE ε4 allele increases the risk of developing 
AD by 2–3 fold, but two copies of APOE ε4 alleles increase 
the risk to ~12 fold (14,158). The APOE protein regulates 
cholesterol metabolism and mediates uptake of lipoprotein 
particles via low-density lipoprotein (LDL) receptor related 
protein (LRP) (22). The APOE E4 isoform at least some-
what selectively binds β-amyloid peptide, modulating its 
aggregation and clearance (22). The ε4 allele is associated 
with higher cholesterol levels (47,99).

Studies demonstrated that cholesterol modulates β-amyloid 
peptide levels by affecting secretase function (100). 
Additionally, the involvement of cholesterol has been impli-
cated in pathogenesis of AD in epidemiological studies (22,84). 
When membrane cholesterol levels are decreased, the activi-
ties of β-secretase (BACE1) and γ-secretase are reduced, 
leading to lower β-amyloid production (46,169,194,207) (Figure 
3A). In addition, the inhibition of cholesterol synthesis 
enzymes (3-hydroxy-3-methylglutaryl-CoA-reductase and 
7-dehydro-cholesterol-reductase) is able to reduce intracellular 
and extracellular β-amyloid levels (46,153,169).

Under normal conditions, free intracellular cholesterol 
is esterified to form cholesteryl-esters by sterol 

Figure 3.  Lipid metabolism dysfunction in Alzheimer’s Disease. A. Inhibition of cholesterol synthesis enzymes decreases plasma membrane 
cholesterol levels, β-secretase and γ-secretase activities, and β-amyloid production. B. Cholesterol can be converted to 24-(S)-hydroxycholesterol or 
cholesteryl ester by CYP461A or ACAT-1, respectively. Increased ACAT-1 activity causes production of cholesteryl esters and increased β-amyloid 
levels. Inhibition of ACAT-1 by CP-113,818 reduces β-amyloid. C. Glycerophospholipids (GP) stabilize plasma membrane proteins such as ion channels 
and affect plasma membrane fluidity. Lower levels of GP are found in AD as evidenced by increased levels of GP degradation products, which are 
proinflammatory. Recruited astrocytes and microglia release IL1β, IL6, and TNFα and cause subsequent neuroinflammation. CYP461A, 24-hydroxylase; 
ACAT-1, sterol O-acyltransferase 1; GP glycerophospholipids; AD, Alzheimer’s Disease; IL1β, interleukin-1β; IL6, interleukin-6; TNFα tumor necrosis 
factor alpha. 
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O-acyltransferase 1 (ACAT1) (Figure 3B). In cultured cells, 
it was demonstrated that when cholesteryl ester concentra-
tion was increased, there was a proportional rise in 
β-amyloid levels (147). When ACAT1 activity was inhibited, 
there was a significant reduction in β-amyloid peptide (72). 
Genetic deletion of ACAT1 has been shown to reduce 
β-amyloid peptide and cognitive impairment in AD mouse 
models, supporting its role in AD pathology (21). In addi-
tion to formation of cholesteryl-esters by ACAT1, cholesterol 
can be metabolized by the brain-specific enzyme, 24-hydrox-
ylase (CYP46A1), into 24-(S)-hydroxycholesterol (cerebro-
sterol) that can cross the blood–brain barrier (21). When 
ACAT1 activity is reduced (either genetically deleted or 
antagonized using a small molecular inhibitor), levels of 
24-(S)-hydroxycholesterol are increased and β-amyloid 
pathology in the brain is decreased (21). Studies have found 
that persons with early stage AD have higher levels of 
24-(S)-hydroxycholesterol in peripheral circulation and CSF 
relative to normal controls (88,104). This increase in 
24-(S)-hydroxycholesterol suggests that cholesterol metabo-
lism is affected early in AD and 24-(S)-hydroxycholesterol 
is produced as a byproduct or as part of a compensatory 
mechanism. Furthermore, peripheral levels of 
24-(S)-hydroxycholesterol could be used as a blood bio-
marker for detection of early AD (82,104). Collectively, 
these studies suggest that the balance between free cho-
lesterol and cholesteryl-esters can alter amyloidogenesis in 
AD.

Lipids other than cholesterol—GPs and sphingolipids—
have been implicated in AD pathogenesis. Normally, GPs 
interact and bind to membrane proteins and ion channels, 
helping them maintain correct position in the plasma 
membrane (139) (Figure 3C). When GPs are reduced in 
cell plasma membranes, the membranes become more fluid 
and permeable (69). Interestingly, lower levels of GPs have 
been reported in AD (64,143). Further, higher levels of 
GP degradation products were found in the brains of AD 
patients (121). GP degradation products are pro-inflam-
matory, and may act as signals to activate astrocytes and 
microglia (45). This leads to additional release of 
interleukin-1β, interleukin-6, and TNFα, producing a cas-
cade of additional neuroinflammation (64,143), which can 
result in local tissue damage and neuron cell death.

Sphingolipids make up the largest structural lipid com-
ponent of CNS membranes and are highly expressed in 
the myelin sheath. There are different subtypes of sphi-
nolipids, for example, ceramides are the simplest, while 
sphingomyelins and glycosphingolipids (eg, cerebrosides, 
sulfatides, and gangliosides) are more complex (101). 
Sulfatides play important roles in the nervous system and 
are abundant in the myelin sheath and in oligodendrocytes 
(183). In AD brains, sulfatide levels are reduced and when 
sulfatides are degraded, ceramide byproducts are formed 
(65). Sulfatides were shown to be depleted up to 93% in 
gray matter and up to 58% in white matter of AD brains, 
while other major classes of lipids were not affected (65). 
Also, ceramide levels were increased more than three fold 
in AD brains (36,65,66). Low levels of sulfatides are spe-
cific for AD and do not occur in patients with Parkinson’s 

disease, Lewy body dementia, frontotemporal dementia, 
or multiple sclerosis (29,101). The exact mechanism of sul-
fatide deficiency or how the loss of sulfatides contributes 
to AD neuropathology is currently unknown; however, it 
has been suggested that it is unlikely to be mediated 
directly by β-amyloid peptide accumulation (29). A later 
study by the same group was inconclusive in elucidating 
a mechanism of sulfatide deficiency in AD (28); however, 
they proposed several explanations for the relationship 
between sulfatides and AD pathology. It was suggested 
that APOE mediates sulfatide depletion, sulfatides enhance 
β-amyloid binding to APOE, and sulfatides enhance uptake 
of β-amyloid peptides into the cell, leading to abnormal 
β-amyloid accumulation in lysosomes (63). We conclude 
from the prior literature on lipid neurochemistry in AD 
that the findings are complex and, as far as we know, 
the various experimental “story lines” have not been rec-
onciled together nor tied directly to T2DM. However, there 
appears to be compelling data in support of the hypothesis 
that changes in lipid biochemistry occurs early in the 
course of AD pathogenesis.

T2DM-RELATED PATHWAYS THAT MAY 
AFFECT THE BRAIN
While CVD is a likely pathologic substrate of cognitive 
decline in T2DM, evidence exists for other mechanisms 
that may contribute in parallel or separately. The follow-
ing section will discuss the impact of hyperglycemia, insulin 
resistance, inflammation, hypercorticolism, and amyloid 
accumulation as non-mutually exclusive mechanisms that 
cause or exacerbate cognitive decline in T2DM and AD.

Hyperglycemia and cognitive decline

The relationship between blood glucose levels and degree 
of cognitive dysfunction in T2DM patients has been exten-
sively evaluated. Yaffe and colleagues studied a population 
of 1,983 women and found that participants with HbA1c 
levels >7.0% had a four-fold increase in probability of 
developing cognitive impairment (203). Intriguingly, this 
study only included “non-diabetic” women. These findings 
again support the hypothesis that glucose dysregulation 
is associated with cognitive impairment. Other studies also 
found an inverse relationship between HbA1c and working 
memory, executive function, learning, and/or psychomotor 
performance in T2DM patients (123,141,152,159). While 
impaired glucose control in the context of T2DM is asso-
ciated with declining cognitive function, studies have found 
that impaired glucose tolerance without a formal diagnosis 
of diabetes (“pre-diabetes”) is also a risk factor for cogni-
tive dysfunction (35,80,90,191). Despite the strong evidence 
that supports the link between impaired glucose regulation 
with cognitive dysfunction, it is important to note that 
not all studies to date demonstrate this relationship 
(49,89,98,167).

Many of the prior studies that directly connect hyper-
glycemia with AD-relevant pathways were performed in 
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animal models. The direct relevance of these studies to 
the human conditions (T2DM and AD) is not firmly estab-
lished. In some of these studies, hyperglycemia causes 
tissue damage and alters cellular function through increas-
ing polyol pathway activation, which causes the formation 
of advanced glycation end products (AGEs), and protein 
kinase C (PKC) activation (16,20,86,188). For example, 
streptozotocin-treated rats were found to have increased 
sorbitol in cranial nerves, cerebrum, and retina. When 
animals were subsequently treated with tolerstat, an aldose 
reductase inhibitor, the accumulation was reduced (178). 
Another study found that when sorbinil, an aldose reduc-
tase inhibitor, was given to streptozotocin-treated rats, it 
reduced brain levels of sorbitol and corrected cognitive 
dysfunction. However, more information is needed to 
definitively state whether this pathway contributes to cog-
nitive decline in humans with T2DM.

Another potential mechanism of cognitive decline due 
to hyperglycemia is the formation of AGEs and receptors 
for AGE (RAGEs). While there may be an association 
between AGEs, RAGEs, and cognitive decline in T2DM, 
currently there is not enough evidence to support this 
mechanism. While animal studies demonstrated increased 
RAGE expression and damage to white matter and myelin, 
human studies on this topic produced conflicting results 
(188,205). Several studies using human tissue demonstrated 
that patients with diabetes and AD have increased 
N-carboxymethyllysine (a type of AGE) staining on post-
mortem analysis (58). However, another study failed to 
replicate this association (67). Little firm evidence exists 
for the role of PKC in relation to T2DM and cognitive 
decline. While some animal studies have found that PKC 
is highly expressed and has increased activity in diabetic 
animal models, other studies did not support this data 
(151,168).

Some animal studies have elucidated molecular changes 
that occur in hippocampal neurons in response to hyper-
glycemia. For example, in streptozotocin-induced diabetic 
rats, the NMDA currents and NMDA protein levels were 
reduced in the hippocampus (54). Furthermore, CA3 neu-
rons underwent remodeling in response to hyperglycemia. 
This remodeling includes apical dendrite retraction and 
simplification. There is also an associated decrease in 
presynaptic vesicles (105). Another study using the strep-
tozotocin-induced diabetic model found evidence of apop-
tosis in hippocampal neurons. Cognitive deficits were 
associated with DNA fragmentation, positive TUNEL 
staining, and increased caspase-3 levels (95).

Insulin resistance, inflammation, 
hypercorticolism, and amyloid accumulation

There is a growing body of evidence linking IR, a com-
ponent of T2DM, to the pathogenesis of AD (116,118,127). 
Several studies have reported that the incidence of clini-
cally diagnosed AD is 1.2–1.7-fold greater in patients with 
T2DM and IR (34,35,90,93,138,140,203). Also, IR is reported 
to occur more frequently in patients with AD (76). IR 

has been found to impair central cholinergic activity, and 
diabetic animal models have reduced production and release 
of acetylcholine (ACh) (199,200). Remarkably, the admin-
istration of intranasal insulin rescued memory deficits in 
a subset of research volunteers with clinical AD 
(7,33,135,154).

Exactly how IR exerts its effects on cognitive function 
is not clear. However, several mechanisms have been pro-
posed to help explain how IR contributes to cognitive 
decline in T2DM. The first mechanism is based on inflam-
matory markers, such as C-reactive protein (CRP) and 
IL-6 that are increased in T2DM and metabolic syndrome 
and are associated with reduced cognitive function (26,102). 
Further, inflammatory reactants and proinflammatory 
cytokines have been found in CSF and β-amyloid plaques 
(43,62,75). A study conducted by Singh-Manoux et  al. 
evaluated IL-6 and CRP in 5,217 people and found that 
elevated IL-6 in midlife can predict subsequent cognitive 
decline (171). The authors concluded that pro-inflammatory 
molecules can influence cognition by inducing a prothrombic 
state. For example, inflammatory signals can trigger local 
thrombotic vascular events leading to brain infarction. 
Other studies have also demonstrated that persons with 
metabolic syndrome and elevated inflammatory markers 
have impaired cognitive function (107,203).

Another hypothesized mechanism by which IR could 
contribute to cognitive impairment in T2DM involves 
dysregulation of the HPA axis, leading to higher cortisol 
levels. Humans and animals with T2DM have increased 
serum cortisol levels (92,157,186) and several studies found 
that high serum cortisol is associated with cognitive decline 
and dementia, an effect independent of APOE genotype. 
There is experimental evidence supporting the detrimental 
effects of cortisol on cognitive performance (131,132). For 
instance, healthy individuals treated with dexamethasone, 
corticosterone, or hydrocortisone performed worse on 
memory tests, and, additionally, patients with active 
Cushing’s disease (and thus high blood cortisol levels) 
also demonstrate decreased performance on working 
memory, reasoning, and attention tests relative to controls 
(50,150,184). However, not all studies agree on the associa-
tion between increased levels of cortisol and cognitive 
impairment (30,91,166).

CONCLUSION
T2DM is a risk factor for cognitive decline, although the 
exact mechanism(s) mediating this relationship are unclear. 
Multiple studies have found that CVD is more common 
in patients with T2DM than in non-diabetics. CVD is a 
rather broad term, encompassing a combination of mac-
roscopic and microscopic vascular lesions, which together 
contribute to cognitive impairment by impairing blood 
flow.

Alterations in glucose metabolism, mitochondrial meta-
bolic dysfunction, mitochondrial autophagy, and alterations 
in lipid metabolism are all additional potential contributing 
factors to cognitive decline in T2DM. The mechanisms 
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and processes that are occurring in aged brains still remain 
imperfectly characterized, and may involve the polyol 
pathway, formation of AGEs, PKC activation, IR, inflam-
mation, and dysregulation of HPA axis.

Upstream events responsible for eventual β-amyloid pep-
tide deposition and NFT formation are also still not well 
understood. However, recent literature has found that 
metabolic dysregulation is linked with clinical and patho-
logical AD. Abnormalities in cerebral glucose metabolism, 
mitochondrial function, and lipid metabolism have been 
reported in persons at risk for developing AD. Deeper 
understanding of how metabolic perturbations contribute 
to AD-type pathology may help in developing new pre-
ventative and/or treatment strategies.
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