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ABSTRACT

Background. Current environmental pollution factors, particularly the distribution
and diffusion of heavy metals in soil and water, are a high risk to local environments
and humans. Despite striking advances in methods to detect contaminants by a variety
of chemical and physical solutions, these methods have inherent limitations such as
small dimensions and very low coverage. Therefore, identifying novel contaminant
biomarkers are urgently needed.

Methods. To better track heavy metal contaminations in soil and water, integrated
bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd,
Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy
metal pollutants. Subsequently, the accuracy and stability of the results screened were
experimentally validated by quantitative PCR experiment.

Results. We obtained 168 differentially expressed genes (DEGs) which contained 59
up-regulated genes and 109 down-regulated genes through comparative bioinformatics
analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively.
GO analyses found that these DEGs were mainly related to responses to chemicals,
responses to stimulus, responses to stress, responses to abiotic stimulus, and so on.
KEGG pathway analyses of DEGs were mainly involved in the protein degradation
process and other biologic process, such as the phenylpropanoid biosynthesis pathways
and nitrogen metabolism. Moreover, we also speculated that nine candidate core
biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NRI,
EAPI and MYBI5) might be tightly correlated with the response or transport of heavy
metals. Finally, experimental results displayed that these genes had the same expression
trend response to different stresses as mentioned above (Cd, Pb and Cu) and no
mentioned above (Zn and Cr).

Conclusion. In general, the identified biomarker genes could help us understand the
potential molecular mechanisms or signaling pathways responsive to heavy metal stress

How to cite this article Niu C, Jiang M, Li N, Cao J, Hou M, Ni D, Chu Z. 2019. Integrated bioinformatics analysis of As, Au, Cd, Pb and
Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. Peer] 7:¢6495 http://doi.org/10.7717/peerj.6495


https://peerj.com
mailto:dani@sit.edu.cn
mailto:zqchu@sibs.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.6495

Peer

in plants, and could be applied as marker genes to track heavy metal pollution in soil
and water through detecting their expression in plants growing in those environments.

Subjects Molecular Biology, Plant Science, Data Mining and Machine Learning, Environmental
Contamination and Remediation

Keywords GEO data, Biomarker, Differentially expressed genes, Integrated bioinformatics
analysis, Heavy metal

INTRODUCTION

There are naturally low concentrations of heavy metals in soil, but human activities such as
mining, agriculture, sewage treatment and the metal industry have caused a sharp growth
in their concentration in the environment, resulting in toxic effects on animals and plants
(Socha et al., 2015). Therefore, heavy metal pollution is considered a source of significant
environmental damage and a cause of increasing concern by the public and researchers.
Many heavy metals are essential micronutrients for normal plant growth in trace amounts,
such as iron (Fe), manganese (Mn), molybdenum (Mo), copper (Cu), zinc (Zn) and so on.
However, excessive amounts can be toxic to plants, subsequently, the rest of the food chain.
In addition, the accumulation of other heavy metals, such as cadmium (Cd), chromium
(Cr), mercury (Hg), plumbum (Pb), aluminium (Al) etc., in plants can induce damage
and toxicity (Peralta-Videa et al., 2009). The heavy metal is absorbed by the plant from
the soil solution and transported to above-ground edible parts. It afterwards enters the
animal or human body through the food chain, becoming a health threat (Khan et al.,
2013). The key to controlling and repairing heavy metal pollution is the rapid and accurate
detection of ones in order to determine the nature and extent of pollution. Many physical
and chemical methods have been applied to estimate the concentration of heavy metals.
For example, the prompt gamma ray neutron activation analysis (PGNAA) detection
system has a minimum detectable concentration widely used for the determination of
heavy metals by using a *! Am-Be neutron source and BGO detector (Hei et al., 2016).
However, these solutions are not convenient nor efficient (Bounakhla et al., 2012). In
addition, although optical and electrochemical detection are the two most widely used
inspection methods in different fields, the accuracy of the former is lower than that of the
traditional laboratory method, and the instrument is costly. The latter has more obvious
inferiority on complicated sample pretreatment which may cause secondary pollution,
overlapping interference of various heavy metals detection. Hence, our research’s intention
is to improve the techniques using higher sensitivity, a wider range of application and
stronger specificity.

Indeed, many studies have reported that special genes can respond or transport to
one or more heavy metals. For instance, it has been reported that six genes from three
gene clusters czcCBAI, cadA2R and colRS, were involved with cadmium resistance in
Pseudomonas putida CD2 (Hu ¢ Zhao, 2007). While metal-responsive transcription factor
1 (MTF1) over-expression cells showed significantly delayed apoptosis, MTF1 null cells
were susceptible to apoptosis in the presence of Zn?* or Cd**, which was augmented after
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exposure to Cr®* (Majumder et al., 2003). OsNramp5 that belongs to natural resistance-
associated macrophage protein (Nramp) families of metal transporters was a transporter
for Mn acquisition and was the major pathway for Cd entry into rice roots (Sasaki et al.,
2012). Another study for rice response to Cd stress using quantitative phosphoproteome
yielded 2,454 phosphosites, associated with 1,244 proteins involved with signaling, stress
tolerance, the neutralization of reactive oxygen species (ROS) and transcription factors
(TFs) (Zhong et al., 2017). Over-expression of TFWRKY7 can improve plant tolerance in
Tamarix hispida (Yang et al., 2016) and ZmWRKY4 plays a vital role in regulating maize
antioxidant defense under Cd stress (Hong et al., 2017). In addition, rice ASR1 and ASR5
act as transcription factors in concert and complementarily to regulate Al responsive genes
(Arenhart et al., 2016). Moreover, co-application of 24-epibrassinolide (EBL) and salicylic
acid (SA) resulted in the improvement of root and shoot lengths and chlorophyll content,
which can regulate anti-oxidative defense responses and gene expression in Brassica
juncea L. seedlings under Pb stress (Kohli et al., 2018). Metallothioneins (MTs) that are
cysteine-rich, of low molecular weight, metal-binding proteins can enhance tolerance to
heavy metals through differential responses in sweet potato (Kim et al., 2014), which may
be strongly associated with Cd uptake, but not related to Cd transport from root to leaf,
nor Cd enrichment in shoots (Li ef al., 2018). Despite striking advances in gene function
research involved with response or transport heavy metals, identifying novel accurate
biomarkers to detect environmental pollutants is urgently needed.

The development of microarrays and high-throughput sequencing technologies has
provided an integrated bioinformatics analysis method which could overcome the
disadvantages of single traditional studies in deciphering critical genetic or physiological
alternations and discovering promising biomarkers in screening for DEGs (Vogelstein et
al., 2013). This approach would make it possible to analyze the associated pathways and
interaction networks of the identified DEGs which have applied to predict the adverse
drug reactions (ADRs) with the Library of Integrated Network-based Cellular Signatures
(LINCS ) L1000 data (Duan et al., 2014; Wang, Clark & Ma’ayan, 2016; Subramanian et
al., 2017). Therefore, this approach has been applied extensively to the diagnosis and
treatment of human cancers. For example, researchers believed that GNAI1, NCAPH,
MMP9, AURKA and EZH2I were identified as the key molecules in patients with serous
ovarian cancer resistant to carboplatin using integrated bioinformatics analysis (Zhan,
Liu & Hua, 2018). COL1A2 as a diagnostic biomarker was highly tissue specific and was
expressed in human gastric cancer by integrating bioinformatics and meta-analysis (Rong et
al., 2018). In addition, a recent study has reported that 20 candidates were identified from
658 potential dehalogenases for exploration of protein functional diversity by integrating
bioinformatics with expression analysis and biochemical characterization (Vanacek et al.,
2018).

The identification of novel biomarkers is currently an efficient approach for large-scale
screening and diagnosis (Liu et al., 2018; Zhan, Liu ¢ Hua, 2018). Therefore, we performed
analysis of 11 original microarray data to identify DEG response to different heavy metals
in the present study. Additionally, functional enrichment analysis was further proposed
to analyze the main biological functions and protein—protein interaction (PPI) networks
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that were constructed to screen the crucial genes in response or transport heavy metals. At
last, the expression trend between experimental validation and the microarray mentioned
above was surveyed. Overall, these results suggested that highlighted key genes and pathways
might be used as a biomarker to detect and further reduce heavy metal pollutants.

MATERIAL AND METHODS

Retrieval of gene expression profile data

Microarray data about heavy metal stresses on gene expression (GSE49037, GSE31977,
GSE46958, GSE55436, GSE94314, GSE19245, GSE90701, GSE22114, GSE13114,
GSE104916 and GSE65333) were downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbinlm.nih.gov/geo/). It is reported that the size of the sample determines
the reliability of the DEGs in microarray analysis and recent comprehensive bioinformatics
research (Moradifard et al., 2018). Therefore, in order to obtain more complete available
data, we have only chosen five kinds of heavy metal experiments which contained at least six
samples, including arsenic (As), aurum (Au), Cd, Cu and Pb. The specific information of
these experiment methods was explained in Table S1. For example, 8-days-old A. thaliana
Col-0 plants were treated in 10 pM Cu and then harvested for further analyses after for
treatment 24 h (Table S1). There are a total of 139 samples in present study, including
65 control samples and 74 heavy metal treatment samples (Table S1). Platform and series
matrix file(s) were downloaded as TXT files. The dataset detailed information is shown in
Table S1. The R software package (R Core Team, 2018) was used to process the downloaded
files and to convert and reject the unqualified data. The data was calibrated, standardized,
and log, transformed.

Identification of DEGs

The downloaded platform and series of matrix file(s) were converted using the R software
package. The ID corresponding to the probe name was converted into the standard name
as a gene symbol and saved in a TXT file. The limma package (Ritchie et al., 2015) in the
bio-conductor package (http://www.bioconductor.org/) was performed to screen DEGs.
The related operating instruction codes were put into R, and the DEGs in heavy metal
treatment and control samples of every GEO datasets were analyzed. Genes with a corrected
P-value < 0.05 and |log,fold change (FC)|> 1 were considered DEGs. The results were
preserved as TXT files for subsequent analysis.

Integration of data from different experiments

The list of DEGs from all series of heavy metal experiments was obtained by different
expression gene analysis. Gene integration for the DEGs identified from the eleven datasets
was executed using a robust rank aggregation (RRA) software package (Kolde et al., 2012).
Based on the null hypothesis of irrelevant inputs, the RRA method filters out genes that
are better aligned than expected. A list of genes obtained from the RRA approach that
were up-or down-regulated in 20 raw data which were downloaded from GEO datasets
as unqualified data that was usually used as source for Quantile normalization in R for
subsequent analysis. The RRA algorithm detects genes that are ranked consistently better
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than expected under null hypothesis of uncorrelated inputs and assigns a significance score
for each gene. The RRA method is based on the hypothesis that each gene is randomly
ordered in each experiment. If a gene ranked high in all experiments, then the smaller its
P-value is, the greater the likelihood of differential gene expression. The RRA approach is
openly available in the comprehensive R Network (http://cran.r.project.org/).

Functional enrichment analyses of DEGs

In order to expound the underlying biological processes, molecular functions and
cellular components connected with the overlapping DEGs identified above, GO
enrichment analysis was executed using the GOATOOLS database for annotation
(https://github.com/tanghaibao/goatools) (Klopfenstein et al., 2018). GOATOOLS was
performed on the integrated DEGs using Fisher’s accurate test. To ensure the minimum
false positive rate, multiplex test methods such as Holm, Sidak and false discovery rate
were used to correct the P-value. Once the corrected P-value < 0.05, the GO function
was considered to have significant enrichment. Moreover, the KEGG pathway enrichment
analysis of the overlapping DEGs was performed using the KOBAS online analysis database
(http://kobas.cbi.pku.edu.cn) (Xie et al., 2011). The KOBAS analysis was based on the
hypergeometric test/Fisher’s exact test. Likewise, the corrected P-value < 0.05 was regarded
as a statistically significant difference.

PPI network integration based on STRING database

In order to better explore the physical contacts among protein molecules, the potential
interactions among the overlapping DEGs were performed to identify the PPI network
using the STRING database (http://string.db.org/) (Szklarczyk et al., 2017). PPIs were
further imported to Cytoscape software for constructing the PPI network of overlapping
DEGs (Shannon et al., 2003). Each node is a gene, protein, or molecule, and the connections
between nodes represent the interaction of these biological molecules, which can be used for
identifying interactions and pathway relationships between the DEGs about heavy metals.
The corresponding proteins in the central node may be core proteins or key candidate
genes which likely have vital physiological functions.

Experimental validation

To better assess the veracity for the results identified above, we performed quantitative
expression analysis of 20 candidate genes under different heavy metal stresses mentioned
above (Cd, Pb and Cu) and not mentioned above (Zn and Cr) which can better explain the
results’ reliability. The real time quantitative PCR (RT-qPCR) experiments on RNA were
collected from different time points (6 h, 12 h and 24 h) of 2 week-old A. thaliana Col-0
plants under 100 uM ZnSO4, 100 M PbCl,, 100 uM CrCls, 100 uM CuSO4 and 100 uM
CdCl, treatments, respectively. The primer-sets were listed in Table S2.

RESULTS

GEO data information and identification of DEGs
The detailed information for the eleven GEO datasets contained in the current study
is shown (Table 1, Table S1). In order to integrate different experiments and different
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Table 1 Detailed information about GEO data were showed in this study.

Dataset Heavy Platform Number of Ecotype Tissue
metals samples
(Treatment/
Control)
GSE49037 As GPL198, 15(9/6) Col-0 Roots
GPL13970
GSE31977 As GPL198 15(9/6) Col-0, Ws-2 Roots
GSE46958 Au GPL198 6(3/3) Col-0 Roots
GSE55436 Au GPL17416, 12(6/6) Col-0 Roots
GPL18349
GSE94314 Cd GPL198 8(4/4) Col-0, Bur-0 Roots
GSE19245 Cd GPL198 24(12/12) Col-0 Roots, Shoots
GSE90701 Cd GPL14727 8(4/4) Col-0 Seedings
GSE22114 Cd GPL198 6(3/3) Col-0 Roots
GSE13114 Cu GPL1775 12(6/6) Col-0 Seedings
GSE104916 Cu GPL13222 21(12/9) Col-0 Roots, Rosettes
GSE65333 Pb GPL12621 12(6/6) Col-0 Roots, Shoots

sequencing platforms, the data need to be processed and standardized. Therefore, the
eleven GEO datasets were standardized (Fig. 1, Fig. S1). Then, these datasets were screened
by the limma package with the condition, including the corrected P-value < 0.05 and
[logoFC| > 1. The results showed that there are 1,916, 2,555 and 1,147 DEGs identified
from different As content treatments of GSE31977, respectively (Fig. 2A). While 2,030
and 776 DEGs were obtained from GSE49037 which contains As treatment with different
content as well, respectively (Fig. S2). In addition, we screened 3,166 DEGs in GSE46958
with Au treatments (Fig. 2B), while 592 and 726 DEGs were obtained from different Au
content treatments in GSE55436 (Fig. S2). As for the Cd treatments, we also obtained
1,832 and 972 DEGs in GSE94314; 486, 176, 410 and 377 DEGs in GSE19245; 124 and
154 DEGs in GSE90701, and 158 DEGs in GSE22114, respectively (Fig. 2C, Fig. 52). For
Cu treatments, there were 110 and 91 DEGs in GSE13114; and 691, 495 and 485 DEGs in
GSE104916 were obtained, respectively (Fig. 2D, Fig. 52). We also acquired 3,453 and 23
DEGs from GSE65333 with different Pb content treatments (Fig. 2E). Then, the cluster
heat-map figure of the top 200 DEGs identified from each experiment was displayed by
Multi-Experiment Viewer (MEV), respectively (Fig. 3, Fig. S3). Many gene expression
levels showed significant difference in each treatment verse control (Fig. 3, Fig. 53).

Identification of DEGs using integrated bioinformatics

The DEGs mentioned above have been screened by the limma package, and then
were analyzed and extracted by RRA method according to the standard with the
corrected P-value < 0.05 and [log;FC| > 1. It is noteworthy that the RRA method
is based on the hypothesis that each gene is randomly ordered in each experiment.
That is, if a gene ranked high in all experiments, then the smaller its P-value was, and
the greater the likelihood of differential gene expression. Our rank analysis results
showed that a total of 168 DEGs comprising 109 down-regulated and 59 up-regulated
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Figure 1 Standardization for all samples included GEO datasets. (A—B) The standardization of
GSE31977 data; (C-D) The standardization of GSE46958 data; (E-F) The standardization of GSE19245
data; (G-H) The standardization of GSE104916 data; (I-J) The standardization of GSE65333 data. The
blue bar represents the data before normalization, and the red bar represents the normalized data.
Full-size &l DOI: 10.7717/peer;j.6495/fig-1
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genes were obtained (Table 2, Tables S3 and S4). The top 20 most significantly
up-regulated genes were AT3G46270, ATCSLB05, AT3G19030, COL9, BCAT4, ELF4,
CYP83A1, AT1G76800, AT1G61740, CLE6, AT4G01440, AT1G72200, MOT1, AT5G52790,
AT4G40070, AT4G25250, EXGE-AI, NRI1, AT5G19970 and CYP735A2 (Table 2).
Additionally, the top 20 most significantly down-regulated genes were DIN2, WRKY?75,
AT4G15120, CYP81F2, AT1G73480, AT1G72900, PGPS1, AT5G06730, AT1G35910,
CYP81DS8, AT3G12320, ATERF6, AT1G12200, AT5G25450, AT4G28460, NILR1, HSP70,
APRRY, FesIA and AT3G02800 (Table 2). Moreover, the heatmap figure of the top 20 up-
and down-regulated genes was performed using R-heatmap software (Fig. 4). For instance,
PGPS1 and WRKY?75 were all down-regulated in five treatments, while CYP83A1 and NRI
showed up expression trend in several conditions (Fig. 4).

GO term enrichment analysis of DEGs

To illuminate the potential biological functions of DEGs, GO annotation of the integrated
DEGs mentioned above was executed by the GOATOOLS and GO functional enrichments
of up- and down-regulated genes with the standard of corrected P-value < 0.05 (Table S5).
These results exhibited that they were significantly enriched in multiple biological processes:
physiological process (GO: 0008150), cellular physiological process (GO: 0009987),
physiological response to stimulus (GO: 0050896), response to biotic/abiotic stress
(GO: 0006950) and so on (Fig. 5A). Meanwhile, the cellular component exhibited a
close correlation with the cellular (GO: 0005575) and extracellular components (GO:
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0005576) (Fig. 5A). As for the 59 up-regulated genes, they showed a close correlation
with membrane, such as the membrane part (GO: 0044425), intrinsic component of
membrane (GO: 0031224), membrane (GO: 0016020), integral component of membrane
(GO: 0016021) and so on (Table 3). In terms of the 109 down-regulated genes, they were
significantly enriched in multiple biological processes related to environment stress; for
example, in response to stimulus (GO: 0050896), in response to stress (GO: 0006950),
in response to chemicals (GO: 0042221) and so on (Table 3). Moreover, the GO term
enrichments of integrated DEGs were mainly enriched in response to chemicals, abiotic
stimulus, oxygen-containing compounds, organic substances, external stimulus and so on,
all of which are involved with plant functions in response to stress (Fig. 5B).

KEGG pathway analysis of DEGs

To better understand the function enrichment of the identified DEGs, the KOBAS
online analysis database was used. The results exhibited that the most significantly
enriched pathways of the DEGs are mainly involved with protein degradation, such as
bisphenol degradation, polycyclic aromatic hydrocarbon degradation, limonene and pinene

Niu et al. (2019), PeerJ, DOI 10.7717/peerj.6495 9/25


https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31977
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46958
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19245
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13114
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65333
https://doi.org/10.7717/peerj.6495/fig-3
http://dx.doi.org/10.7717/peerj.6495

Peer

Table2 Screening DEGs in A. thaliana treated with heavy metal by integrated GEO data.

DEGs Gene names

Up-regulated AT3G46270 ATCSLB05 AT3G19030 COL9 BCAT4 ELF4
CYP83A1 AT1G76800 AT1G61740 CLE6 AT4G01440
AT1G72200 MOT1 AT5G52790 AT4G40070 AT4G25250
EXGT-A1 NR1 AT5G19970 CYP735A2 AT3G59370
AT3G25790 PIP2;4 AT4G16447 AT1G22500 NIR1
AT5G06610 CER4 AT1G12080 AT4G31910 LAX3
AT1G33340 LCR69 UCC1 ENODLS GA30X1 AT4G39070
CYP93D1 AT1G21440 AT4G01140 CKX4 AT3G12900
RVE2 AT3G20015 AT1G09750 AT2G40900 AT3G23880
PIP1;5 AGP4 AT3G32040 AT2G01900 AT1G51820 AIR1
AT5G04730 AT5G42860 BT2 CYP71B2 AT5G26280
AT1G24800 AT1G24881 AT1G25055 AT1G25150
AT1G25211

Down-regulated DIN2 WRKY75 AT4G15120 CYP81F2 AT1G73480
AT1G72900 PGPS1 AT5G06730 AT1G35910 CYP81D8
AT3G12320 ATERF6 AT1G12200 AT5G25450 AT4G28460
NILR1 HSP70 APRRY Fes1A AT3G02800 AT2G23270
CRK11 AT3G07090 AT5G26220 AT5G05220 ATSDI1
ATGSTU4 AT1G61340 ERF2 AT5G64510 ATHSP23.6-
MITO BCS1 MBF1C ATGSTF6 AT3G62550 AT3G09440
ZIFL1 AT1G12030 AT5G05340 PXMT1 AT5G02230
AT5G02490 ACS6 GLIP1 AT4G16260 AT5G13200
AT2G18670 AT2G18680 AT5G39110 AT5G39120
AT5G39150 AT5G39180 AT5G20820 AT5G64170
AT4G28350 AT3G47540 AT2G19310 CSLE1 CYP710A1
WRKY45 AT3G59080 CYP706A2 AT4G19810 AT4G04330
AT2G21640 ATHSFA2 AT1G72940 AT2G35730
AT4G37290 MYB51 AT1G60750 AT5G20910 AT1G72060
AR781 ATBCB ABA1 ORG1 YLS9 AT4G15420 AT3G09405
AT5G06760 AT5G53970 ICL AT5G51440 BCA3 SBT3.5
AT4G39830 MYB15 AT5G52750 AAC3 AT3G48510
HSP17.4 AT5G42830 AT5G48000 AT1G71140 AtPP2-
A11 WRKY33 SULTR1;1 AT3G50910 AT2G36460
AT2G48090 CEJ1 CHI AT1G14550 PAP20 AT5G14730
NAPRT2 CRK10 GRX480 AT5G39580 DMP1 AT3G12510
AT3G48450

degradation, aminobenzoate degradation and so on (Table S6 and Fig. 6). Moreover, KEGG
pathway analysis demonstrated that the DEGs were significantly enriched in the estrogen
signaling pathway, zeatin biosynthesis, measles, antigen processing and presentation,
MAPK signaling pathway and nitrogen metabolism (Table S6 and Fig. 6).

PPI network and modules analysis

In order to further investigate the interactions and networks of these DEGs, the PPI
network was identified using the STRING database and constructed using Cytoscape
software, which consisted of 111 nodes and 402 interactions (Fig. 7, Tables S7 and S8).
Identification of candidate hub nodes generally are needed to calculate the topological
features, including degree (Williams ¢» Del Genio, 2014) and betweenness (Agryzkov et al.,
2014). The importance degree of a gene is proportional to the size of the two quantitative
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values in this network. Therefore, 9 candidate hub nodes were preliminary selected,
namely nematode-induced LRR-RLK 1 (NILR1I), 3-phosphatidyl-1’-glycerol-3'-phosphate
synthase 1 (PGPSI1), WRKY DNA-binding protein 33 (WRKY33), cytochrome bc1 synthase
1 (BCS1I), pheromone receptor-like protein (AR781), “cytochrome P450, family 81,
subfamily D, polypeptide 8 (CYP81D8), nitrate reductase 1 (NRI), eukaryotic aspartyl
protease 1 (EAP1) and MYB domain protein 15 (MYB15) (Fig. 7 and Table S8).

Expression analysis of screened key genes under Cd, Pb, Cu, Zn and
Cr heavy metal stresses

In order to better calculate the reliability of the preliminary selected results, the RT-qPCR
analysis of 20 candidate genes under different heavy metal stresses containing those
mentioned above (Cd, Pb and Cu) and not mentioned above (Zn and Cr) was performed.
As expected, these genes showed up- or down-regulated trends in one or several heavy metal
treatments (Fig. 8). Specially, most genes have obvious high expression levels under Cu
condition, while moderate down-regulated under Pb and Cr treatments (Fig. 8). Moreover,
several genes exhibited distinct down-regulated under most situation, for example, HSP70,
AT5G52750, BCS1 and MYB15 (Fig. 8). Our results indicated that these genes selected
above should respond to heavy metal stress in plants and it is possible to use them as
biomarker.

DISCUSSION
Uptake and analyses of DEGs from GEO datasets

Microarray analysis of gene expression profiles is widely used in distinguishing disease-
related genes and biological pathways. However, such studies on heavy metal stresses
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have been scarce to date. Thus, in the present study, we identified 168 overlapping DEGs,
including 109 down-regulated and 59 up-regulated genes, in the eleven microarray datasets
involving heavy metal stresses (Table 2). Moreover, the GO analysis results suggested
that the overlapping genes were mostly involved in the physiological process, cellular
physiological process, response to biotic/abiotic stress and physiological response to
stimulus at the levels of biological processes (Fig. 5A). For the up-regulated genes, their
functions are mainly associated with the membrane, including the membrane part, intrinsic
component of membrane, membrane, integral component of membrane and so on (Table
3). In terms of the down-regulated genes, they mainly play important roles in various
responses to environmental stresses, including response to stimulus, response to stress,
and response to chemicals (Table 3). Furthermore, KEGG pathway enrichment analysis
showed that the overlapping DEGs were enriched significantly within protein degradation,
including bisphenol degradation, polycyclic aromatic hydrocarbon degradation, limonene
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Table 3 GO analysis of DEGs associated with A. thaliana treated by heavy metal.

DEGs Term Description Count  P-value

Up-regulated GO:0044425  membrane part 23 1.58E-05
GO:0031224  intrinsic component of membrane 22 9.67E-06
G0O:0050896 response to stimulus 22 0.00316
GO0:0016020  membrane 19 0.0367
GO0:0016021  integral component of membrane 17 0.00135
GO:0046872  metal ion binding 17 0.00487
GO:0043169  cation binding 17 0.00499
GO:0042221 response to chemical 15 0.000519
GO:0046914  transition metal ion binding 14 9.27E-05
GO:0016491 oxidoreductase activity 12 0.000621
GO:1901700 response to oxygen-containing compound 11 0.000636
GO:0010033 response to organic substance 11 0.00147
GO:0009628  response to abiotic stimulus 11 0.0153
GO:0009725 response to hormone 10 0.000345
GO:0009719  response to endogenous stimulus 10 0.000398
GO:0065008  regulation of biological quality 10 0.000906
GO:0009605  response to external stimulus 9 0.00866

Down-regulated ~ GO:0009987  cellular process 69 0.00696
GO:0008152  metabolic process 68 0.00512
GO:0050896 response to stimulus 67 1.03E-06
GO0:0044237  cellular metabolic process 55 0.024
GO:0006950 response to stress 54 7.77E-07
GO:0042221 response to chemical 48 6.03E-07
GO:0043231 intracellular membrane-bounded organelle 45 0.0385
GO:0065007  biological regulation 38 0.0279
GO:1901363  heterocyclic compound binding 38 0.0493
GO0:0097159  organic cyclic compound binding 38 0.0495
GO:0009628  response to abiotic stimulus 37 1.04E-06
GO0:0050789  regulation of biological process 35 0.0207
GO:1901700 response to oxygen-containing compound 34 3.87E-07
GO0:0050794  regulation of cellular process 32 0.0234
GO:0009058  biosynthetic process 32 0.0316
GO:0010033 response to organic substance 31 5.54E-07
GO:0009605  response to external stimulus 30 5.16E-07
GO:1901576  organic substance biosynthetic process 30 0.0398
GO:0009607  response to biotic stimulus 24 3.55E-07
GO:0043207  response to external biotic stimulus 24 9.29E-07

and pinene degradation, and aminobenzoate degradation, which indicated these gene

might be important in detoxication and transport of heavy metals (Table S6 and Fig. 6).

Additionally, the estrogen signaling pathway, zeatin biosynthesis, MAPK signaling pathway,

nitrogen metabolism, phenylpropanoid biosynthesis were analyzed as the major pathways

of the important modules of overlapping DEGs. A recent study has shown that proteins
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associated with oxygen metabolism, phenylpropanoid biosynthesis, and redox reaction were
resistant to stresses such as high temperature, chilling, light and wounding (Vogz, 2010).
Likewise, many plant MKK genes are induced by abiotic stresses, including wounding,
drought, genotoxicity, cold, osmosis, high salinity, heat, and oxidative and UV-B treatment
(Jiang & Chu, 2018). Another study has shown that plants can respond to heavy metal
stress by induction of several different MAPK pathways, and that excessive copper and
cadmium ions lead to distinct cellular signaling mechanisms in roots (Jonak, Nakagami ¢
Hirt, 2004). These enriched pathways provide insights into the molecular mechanism of
heavy metal uptake, transport and metabolism. Therefore, it can help in the development

of new biological detection strategies.

Identification of candidate core genes under heavy metal stresses

We also identified nine major hub genes according to the PPI network and our experimental
validation, namely NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAPI and
MYBI5 (Figs. 7 and 8). As is all known, plant activators are chemicals that induce
plant defense responses to a broad spectrum of pathogens. NILRI, a new potential
plant activator (PPA) with high expression levels after PPA treatment, enhanced plant
defense ability against pathogen invasion through the plant redox system (Matsushima &
Miyashita, 2012). Moreover, NILRI, a Leu-rich repeat transmembrane receptor protein
kinase (LRR-RLK), was found recently in human mitochondria (Heazlewood et al., 2004).
Furthermore, over-expression of PGPSI can enhance tolerance to oxidative stress in
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transgenic Arabidopsis plants (Luhua et al., 2008) and plays a role in early transcriptional
defense responses and reactive oxygen species (ROS) production in Arabidopsis cell
suspension culture under high-light conditions (Gonzalez-Perez et al., 2011). While ROS
function as signal transduction molecules in the acclimation process of plants when
exposed to abiotic stress factors, such as drought, heat, salinity and high light (Choudhury
etal., 2017). It is known to all that LRR-RLK genes are often the first to perceive external
environmental changes through general ROS production, Ca?t signature, etc., while the
toxic effects of heavy metals usually cause ROS production. Hence, it could be understood
that NILRI and PGPSI responds to environmental stress, especially heavy metal stresses.
Over-expression of WRKY33 can increase tolerance to NaCl in Arabidopsis, while
increasing sensitivity to ABA (Jiang ¢» Deyholos, 2009). In addition, WRKY33 negatively
regulated ABA signaling in response to pathogenic bacteria (Liu ef al., 2015). Furthermore,
WRKY33 that is induced by pathogen infection, salicylate signaling or the paraquat
herbicide that generates activated oxygen species in exposed cells, is an important
transcription factor that plays a critical role in response to necrotrophic pathogens through
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interaction with ATG18a (Zheng et al., 2006; Lai et al., 2011). BCS1 is re-annotated as
ATPase OM66 (Outer Mitochondrial membrane protein of 66 kDa) because it harbors the
outer mitochondrial membrane and lacks the BCS1 domain. AtOM66 over-expression in
transgenetic plants leads to more tolerance to drought stress, accelerated cell death rates,
increased SA content and more susceptibility to the necrotrophic fungus (Zhang et al.,
2014). It is interesting that AtOM66 and AtWRKY33 are involved with the transcriptional
response to MV (methyl viologen) which is triggered by chloroplast-generated superoxide
signaling (Van Aken et al., 2016), and had an interaction in the PPI network (Fig. 7).
Moreover, they are also involved in the transcriptional innate immune response to flg22
(Navarro et al., 2004). AR781 is involved in the early elicitor signaling events which occur
within minutes and include ion fluxes across the plasma membrane, activation of MPKs
and the formation of ROS related to PGPSI and WRKY33 mentioned above (Benschop et
al., 2007). CYP81D8 is located in the ER (Dunkley et al., 2006), which is consistent with the
results of KEGG enriched analysis (Table 56 and Fig. 6). Additionally, CYP81D8, which are
KARI (Karrikins) up-regulated genes, are enriched for light-responsive transcripts during
germination and seedling development in A. thaliana (Nelson et al., 2010).
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NR1 (also called NIA1) that mediates NO synthesis in plants are critical to abscisic
acid (ABA)-induced stomatal closure of guard cells (Desikan et al., 2002). Specifically, NR1
and NR2 control stomatal closure by altering genes of core ABA signaling components to
regulate KT in currents and ABA-enhanced slow anion currents in Arabidopsis (Zhao et al.,
2016). Moreover, the activity of NR1 can be dramatically increased by being sumoylated
by the E3 SUMO ligase AtSIZ1 (Park, Song ¢ Seo, 2011), while its nitrate-responsive
expression was controlled by its regulatory region, including the 3’-untranslated region,
and 5 -and 3'-flanking sequences (Konishi ¢ Yanagisawa, 2011). EAP1 that has aspartic-type
endopeptidase activity evolved in response to their environments and ecosystems through
an investigated proteome-wide binary protein-protein interaction network (Braun et al.,
2011). MYB proteins are a superfamily of transcription factors that play important roles
in many physiological processes and defense responses, such as salt stress, ethylene, auxin,
jasmonic acid, chitin and so on (Chen et al., 2006). MYB15 is phosphorylated by MPK6,
negatively regulating the expression of CBF (C-repeat-binding factor) genes which are
required for freezing tolerance in Arabidopsis (Kim et al., 2017). MYB15, SIZ1, HOSI (a
RING-type ubiquitin E3 ligase) and ICE1 (MYC-like basic helix-loop-helix transcription
factor) form a dynamic regulation network in response to freezing stress in Arabidopsis
(Miura et al., 2007). In addition, over-expression of MYB15 confers drought and salt
tolerance in Arabidopsis, which is possibly performed by enhancing the expression levels of
the ABA biosynthesis and signaling related genes and those stress-protective proteins (Ding
et al., 2009). Furthermore, MYB15 also controls defense-induced basal immunity and
lignifications that are used in the conserved basal defense mechanism in the plant innate
immune response (Chezem et al., 2017) and regulates stilbene biosynthesis involvement
with MYB14 in grapevines whose key enzymes responsible for resveratrol biosynthesis are
stilbene synthases (STSs) (Holl et al., 2013).

Comparison with other existing related high-throughput methods

To date, a variety of high-throughput methods for identifying key signaling or pathways
have been developed by investigators. They all can accurately detect only based on different
models or systems. For example, drug-induced adverse events prediction combining
chemical structure (CS) and gene expression (GE) features which is from the Library of
Integrated Network-based Cellular Signatures (LINCS) L1000 dataset has been proposed
and validated (Wang, Clark ¢ Ma’ayan, 2016). Such as, WRKY, MYB, NR1 and NILR
have been found in this database, which indicated that the results identified were reliable
(Fig. 7). Quantitative structure activity relationship (QSAR) models together with the
state-of-the-art machine learning techniques is faster and cheaper than large-scale virtual
screening methods to identify the chemical compounds (Soufan et al., 2018). Another
novel multi-label classification (MLC) technique using Bayesian active learning to mine
large high-throughput screening assays has been proposed (Soufan et al., 2016). Moreover,
a reduced transcriptome approach to monitor potential effects by environmental toxicants
at genome-scale using zebrafish embryo test was also developed, whose reliability was
assessed by RNA-ampliseq technology to identify DEGs (Wang et al., 2018). Furthermore,
previous study have usually focused on the aspects of cancer diagnosis and treatment using
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integrated bioinformatics analyses, with only a few other related research studies (Cao et
al., 2018; Zhan, Liu ¢ Hua, 2018), while we also propose a novel computational method
to identify hub genes based on the same DEGs under different status at genome-scale.
Subsequently, we verified the feasibility of our method through quantitative analysis of key
gene expression (Fig. 8). As expected, almost all genes showed differently expression under
one or several heavy metal stresses (Fig. 8). The analysis results indicated that our method
is feasible for screening hub genes, and can be used as an effective supplementary tool for
future ecological restoration research using traditional methods.

CONCLUSION

A total of 168 overlapping DEGs were screened from 11 GEO datasets using integrated
bioinformatics analysis approaches, including 59 up-regulated genes and 109 down-
regulated genes. GO and KEGG pathway enrichment analysis revealed that DEGs were
mainly enriched in nitrogen metabolism, polycyclic aromatic hydrocarbon degradation,
antigen processing and presentation, MAPK signaling pathway and phenylpropanoid
biosynthesis in plant responses to stress, which can provide a theoretical basis for studying
the biological processes of heavy metals. Moreover, we successfully constructed a PPI
network of DEGs underlying heavy metals and identified nine core genes (NILRI, PGPSI,
WRKY33, BCS1, AR781, CYP81D8, NRI, EAPI and MYB15) which might be involved in
the response to abiotic stress factors, particularly heavy metals and experimental validation
were obtained the similar expression profiles under several heavy metal treatments, even
no mentioned above (Cr and Zn). These findings should provide some clues for the future
detection of heavy metal pollutants in water and soil. However, further molecular biological
experimental studies are urgently required to validate the functions of candidate hub genes
associated with heavy metals because our study was only performed based on data analysis.
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