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Abstract

Pain management is a crucial part in Sickle Cell Disease treatment. Accurate pain assessment is 

the first stage in pain management. However, pain is a subjective response and hard to assess via 

objective approaches. In this paper, we proposed a system to map objective physiological 

measures to subjective self-reported pain scores using machine learning techniques. Using 

Multinomial Logistic Regression and data from 40 patients, we were able to predict patients’ pain 

scores on an 11-point rating scale with an average accuracy of 0.578 at the intra-individual level, 

and an accuracy of 0.429 at the inter-individual level. With a condensed 4-point rating scale, the 

accuracy at the inter-individual level was further improved to 0.681. Overall, we presented a 

preliminary machine learning model that can predict pain scores in SCD patients with promising 

results. To our knowledge, such a system has not been proposed earlier within the SCD or pain 

domains by exploiting machine learning concepts within the clinical framework.
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1. Introduction

Sickle Cell Disease (SCD) is an inherited blood disorder that affects one in 396 African 

Americans and one in 1,200 Hispanic Americans in the United States (US) (Lorey et al., 

1996). Although medical treatment for SCD has improved dramatically, median survival age 

for SCD patients is 61 years (Elmariah et al., 2014), significantly lower than for African-

Americans without SCD. In SCD, red blood cells (RBCs) become adherent and dehydrated, 

as well as sickle-shaped when deoxygenated which decreases blood flow and leads to 

frequent vasoocclusive painful episodes and chronic organ damage (Schnog et al., 2004). 

Currently, there is no standard treatment available for pain and patients currently attempt to 
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manage their pain symptoms to avoid hospitalization. Moreover, their pain levels are 

reported during intermittent clinic visits and often difficult to manage due to the subjective 

nature of pain.

Pain caused by SCD is not only an excruciating experience, but also could be the precursor 

of a serious complication in some patients (Ballas, 2005). Therefore, an improved 

understanding of pain as well as an effective pain management approach is critical in SCD 

treatment. Although accurate pain assessment is the cornerstone of pain management, there 

is currently no gold standard for comparison. While pain is a highly subjective experience, 

its assessment and management are difficult. In clinical practice, medical providers use 

additional objective indicators, such as vital signs and non-verbal cues to improve their 

assessment of pain and create a balance between pain tolerance and medication dosage.

Physiological measurements of patients are potential objective indicators for patients’ pain 

levels. Current clinical guidelines recommend frequent vital signs during assessment and 

treatment of painful episodes. These physiologic measurements include: blood pressure, 

respiratory rate, oxygen saturations, temperature and pulse (Rees et al., 2003). It has also 

been previously reported that acute pain leads to changes in vital signs such as heart rate, 

blood pressure and respiratory rate (Macintyre et al., 2010). Therefore, the goal of this study 

is to develop an objective pain assessment model based on physiological measurements 

using machine learning techniques. Specifically, we take the novel approach of using real 

patient data from 40 patients admitted for pain to build pain prediction models using 

objective physiological measures as features at both the intra- and inter-individual levels 

based on a 11-point numeric rating scale (NRS) (Downie et al., 1978). We further create 

pain prediction models to assess different ways of establishing the pain scale, with a goal of 

finding the optimum pain scale for future usage. To our knowledge, such a system has not 

been rigorously analyzed in the SCD or pain population so far. To this end, our study 

proposes to address the following key research questions:

RQ1. How do these physiological features relate to one another?

RQ2. How well do the features predict pain levels in individual patient models?

RQ3. How well do the features predict pain levels in generalized (or inter-individual) 

patient models?

RQ4. How does the system performance change for different pain scales?

RQ5. Finally, how does a pain change detector perform using the same features?

Using the research questions posed above, we try to address the main research hypothesis of 

our study: Can physiological measures be indicators of pain in sickle cell disease (SCD) 

patients?

2. Related work

There is a growing trend of applying machine learning techniques in various clinical and 

medical areas. Physiological measurements, especially vital signs, are widely used in these 

studies as indicators for certain phenomena. Forkan et al. (2015) developed a fuzzy-rule 
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based model to detect behavioral and health-related abnormality of patients by monitoring 

their daily activities, location routine behaviors, and vital signs (e.g. blood pressure, heart 

rate, temperature) with wearable sensors. The system achieved a high accuracy of 95.10% in 

detecting four types of abnormal changes. Churpek et al. (2014) described a multinomial 

logistic regression model to forecast cardiac arrests (CAs) and intensive care unit (ICU) 

transfers using Electronic Health Record (EHR) data. Vital sign, demographic, location, and 

laboratory data were extracted from the EHR data and utilized as potential predictors. The 

performance of the model was evaluated by area under the receiver operating characteristic 

curve (AUC). A receiver operating characteristic curve (ROC curve) is a plot of the true 

positive rate (TPR) against the false positive rate (FPR) at various decision threshold settings 

(Bradley, 1997). AUC is the metric used to summarize the ROC curve in one number, which 

can be used to represent the discrimination ability of a model between classes. An AUC of 

1.0 represents a prediction model with perfect discrimination, while an AUC of 0.5 

represents a prediction model with random guessing. In the paper of Churpek et al., AUC 

measures of 0.88 and 0.77 were achieved for prediction of CAs and ICU transfer, 

respectively. Gultepe et al. (2014) developed a machine learning based system to predict 

lactate levels and mortality risk based on vital signs and white blood cell count (WBC) from 

EHR data. Multiple classification methods were used by Gultepe et al. (2014), including 

Naïve Bayes, Support Vector Machine, Gaussian Mixture model, Hidden Markov model. An 

accuracy of 99% and AUC of 1.00 were obtained for lactate level prediction. An accuracy of 

73% and AUC of 0.73 were achieved for mortality prediction. Austin et al. (2013) compared 

multiple classification methods, including Bootstrap aggregation, boosting, Random Forests, 

and Support Vector Machines, in distinguishing two subtypes of heart failure. The ability of 

these methods to predict the probability of the presence of one subtype heart failure was also 

investigated in the study. The dataset they used contained patient demographics, vital signs 

and physical examination at presentation, medical history, and results of laboratory tests. 

Acharya et al. (2015) developing a system for classifying normal and diabetes by using the 

heart rate information extracted from the Electrocardiogram (ECG) signals. They tested 

different classifiers, including Decision Trees, K-Nearest Neighbors, Naïve Bayes and 

Support Vector Machines, and obtained an average accuracy of 92.02%, sensitivity of 

92.59% and specificity of 91.46% by using Decision Trees.

Furthermore, machine learning approaches have also demonstrated effectiveness in SCD 

related studies. Milton et al. (2014) developed an ensemble system including a collection of 

14 models to predict Fetal Hemoglobin (HbF) in SCD using genetic risk score (GRS) 

composed of different numbers of single nucleotide polymorphisms (SNPs). The ensemble 

system was able to explain 23.4% of the variability in HbF, and the correlation between 

predicted HbF from the system and observed HbF ranged between 0.28 to 0.44 in three 

independent test cohorts. In paper (Desai et al., 2012), a machine learning algorithm based 

on support vector machines was adopted to identify a 10-gene signature that discriminates 

between patients with and without increased tricuspid regurgitation jet velocity (TRV), and 

validated it as a potential biomarker for an elevated TRV in SCD. Khalaf et al. (2016) 

presented various neural network models for classifying the level of dosage for SCD 

medication. They used 13 features, including body weight, Hemoglobin, and Mean 

Corpuscular Volume to recommend one out of 6 levels of hydroxyurea medication dosage 
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the patient needs to take, and obtained the best performance with AUC of 0.989. The same 

research group (Khalaf et al., 2017) further applied other machine learning architectures, 

such as random forest, support vector machines, and recurrent neural network to a similar 

problem, and found random forest produced the highest performance overall.

As mentioned earlier, pain is subjective and individualized in nature. However, the use of 

physiological measurements to study pain is not new. In paper (Brown et al., 2011), 

individuals were exposed to painful and non-painful thermal stimuli and the authors were 

able to successfully utilize Support vector machine to distinguish the two groups with an 

accuracy of 80.6% based on functional magnetic resonance imaging (fMRI) data. Huang et 

al. (2013) proposed a machine learning approach based on Naïve Bayes classifier to predict 

both binary level of pain (low pain and high pain) and continuous numerical value of pain 

(from 0 to 10) from single-trial laser-evoked potentials (LEPs). Their approach provided an 

accuracy of 86.3% at intra-individual level, and 80.3% at inter-individual level for binary 

pain prediction. Kächele et al. (2016) utilized multiple bio-physiological measurements such 

as electromyography (EMG), electrocardiogram (ECG), and skin conductance level (SCL) 

to predict pain intensity with two levels (no pain and high pain), as well as five levels using 

the random forest algorithm. The authors placed great effort into creating specialized 

classifiers for a patient by using only the most similar individuals as input data. Shankar et 

al. (2009) attempted to measure pain empirically using electrocardiogram (ECG), heart rate 

(HR), blood pressure (BP) and galvanic skin response (GSR) as artificial pain inducement 

with an apparatus that they designed called Pain Inducer. While they were able to find 

differences in the cardiac and GSR parameters between pain and non-pain conditions, they 

were not able to measure statistical differences in the two population groups. Tousignant-

Laflamme et al. (2005) explored the relationship between HR and pain perception, and 

found that the relationship was significant only in the male participants (19 out of 29 

participants). In paper (Harrison et al., 2006), the researchers explored the skin conductance 

as a measure of pain and stress in hospitalized infants. In this study, they did not find 

statistical differences in the skin conductance values between non-painful tasks like feeding 

and painful tasks like heel lancing.

One key point that was highlighted from all these studies is that pain is multifaceted, and the 

relationship between physiological symptoms and pain depends strongly on the patient 
cohort. Moreover, several of the described studies utilized artificial pain stimuli to study the 

relationship between pain and physiology. The relationships between pain and physiology 

were often inconclusive, mostly owing to the limited number of participants in the studies.

3. Material and methods

In this section, we discuss the techniques we used for data analysis, as well as handling 

missing data from our EHR dataset.

3.1 Data description

Our study used data collected from 40 in-patient participants with their clinical data 

recorded on admission at Duke University Hospital, from June 2015 to April 2017. There 

were total 5363 records from the 40 patients in the dataset. Each data entry contained six 
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vital signs measured at the same time. These were: (i) peripheral capillary oxygen saturation 

(SpO2), (ii) systolic blood pressure, (iii) diastolic blood pressure, (iv) pulse (aka heart rate), 

(v) respiratory rate (Resp), and (vi) temperature. Along with the physiological measures, the 

patient’s self-reported pain score was included with each data entry. This pain score was the 

current pain experienced by the patient with an ordinal range from 0 (no pain) to 10 (severe 

and unbearable pain). The data were anonymized using study labels to label the patient 

without identification and the timestamp for each data entry was recorded. Fig. 1 shows a 

sample of the Electronic Health Record (EHR) data. The blank area in the sample dataset is 

indicative of missing values. In our dataset, the data missing rate among all seven variables 

(six vital signs and the pain score) for all patients is 54.09%. The most direct approach to 

handle missing data is list-wise deletion, which means excluding all cases with any missing 

value. The percentage of complete cases in our dataset is only 6.34%, making it necessary to 

implement an imputation method to predict and impute missing data values.

3.2 Intra-individual level and inter-individual level analysis

Prediction of pain scores by using vital signs can be realized at two levels: intra-individual 

and inter-individual. At the intra-individual level, a personal prediction model is created by 

using data from a single patient, and can be applied to the same patient only. At the inter-

individual level, a general prediction model is created by using data from a group of patients, 

and can be applied to any patient. The intra-individual analysis can be applied to patients 

having enough data to create their own models, while the general inter-individual analysis 

can be utilized for new patients that do not have sufficient data initially to create their 

personal models, eventually moving to the intra-individual model as more data for the 

individual patient is collected.

3.3 Imputation method

A variety of imputation methods of varying complexity are available. Single imputation is 

the simplest and most common method for handling missing data. It generates a single 

replacement value for each missing data point. According to the value used to replace the 

missing value, there are several single imputation methods. One is mean imputation, in 

which missing values of each variable are replaced with the arithmetic mean of that variable. 

Mean imputation has the benefit of not changing the variable mean, but leads to an artificial 

decrease in variable variances. A better single imputation approach is regression imputation. 

In this method, each missing value in the dataset is replaced by a predicted value from a 

regression model based on complete cases. Regression imputation provides a more reliable 

value for missing data by including more information from the observed data. However, it 

overestimates the correlations between variables, and still underestimates variable variances. 

Therefore, the main disadvantage of single imputation is that the single value being imputed 

cannot reflect the variability and uncertainty of the actual value.

For these reasons, we chose to implement multiple imputation by Fully Conditional 

Specification (FCS). Multiple imputation is a method in which missing values are replaced 

by multiple simulated values (Rubin, 2004). Therefore, it takes into account for uncertainty 

in the missing values and improves the validity of the results when analyzing datasets with 

missing observations (Blankers et al., 2010). FCS is one of the implementation techniques 
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for multiple imputation. It is an iterative Markov Chain Monte Carlo (MCMC) method that 

can be used for a dataset with an arbitrary missing data pattern. FCS provides flexibility in 

creating imputation models and generally yields unbiased and appropriate estimates of 

missing values (Van Buuren, 2007). Additionally, multiple imputation has been successfully 

utilized in many healthcare related researches. For example, Fullerton et al. (2012) applied 

multiple imputation to impute missing data for respiratory rate, heart rate, temperature, 

systolic blood pressure, oxygen saturation and AVPU score; Shah et al. (2015) implied 

multiple imputation to replace missing data in body mass index, total cholesterol, blood 

pressure, smoking status, and other parameters. Multiple imputation involves three steps:

i. Each missing value is imputed M times from a distribution, which leads to M 

completed datasets.

ii. Each of the M completed datasets is analyzed using standard complete-case 

procedures independently.

iii. The M results are pooled into one result (Rubin, 2004). According to our data 

missing rate (~50%), M = 40 were chosen following the existing 

recommendation (Graham et al., 2007).

In our intra-individual level analysis, six vital signs and the pain score were used for 

imputation as well as pain prediction. However, for the inter-individual level analysis, the 

treatment of individual-level differences becomes a problem. By considering individual-level 

differences in the imputation phase, then patient labels should be used as a predictor in 

imputation. By considering individual-level differences in the prediction phase, the patient 

labels should then be included in the prediction model beyond six vital signs. Therefore, we 

presented our inter-individual results in four cases: (1) Case 1: imputation with patient labels 

and prediction with patient labels; (2) Case 2: imputation with patient labels and prediction 

without patient labels; (3) Case 3: imputation without patient labels and prediction with 

patient labels; (4) Case 4: imputation without patient labels and prediction without patient 

labels.

3.4 Prediction method

We implemented a series of classification algorithms to predict patients’ pain scores based 

on their vital signs, all of which belong to the category of supervised machine learning. In 

supervised machine learning, the task is inferring a function to model the relationship 

between the target variable (pain score), and predictor variables (vital signs) from a training 

dataset. The training dataset contains series of training samples. Each sample is a pair of 

target variable and predictor variables, which can be used to estimate parameters of the 

inferred function. After the training process, the inferred function can be used to predict the 

value of the target variable from a new sample of predictor variables.

We adopted four widely used classification algorithms for pain prediction: Multinomial 

Logistic Regression (MLR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 

and Random Forest (RF). The former two approaches are easier to implement and interpret; 

the latter two methods are more advanced and reported to have higher prediction accuracy. 
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Moreover, as mentioned in section 2 related work, it is clear that all four algorithms are also 

prevailing machine learning approaches in healthcare related areas.

The first prediction model we applied was Multinomial Logistic Regression (MLR). Logistic 

Regression is a simple type of supervised machine learning approach for binary 

classification. The inferred function used in Logistic Regression is called the logistic or 

sigmoid function. The output of logistic function is bounded between 0 and 1, which can be 

interpreted as the conditional probability of each possible value of the target variable by 

giving the input predictor variables. Therefore, Logistic Regression is commonly used to 

predict a binary category target variable. MLR can be considered as an extension of binary 

Logistic Regression, which can be used to predict the probabilities of the category 

membership of a nominal target variable with more than two classes. The final outcomes of 

a MLR model will be the probability assignments for each class, and the decision is made by 

choosing the class with the highest probability. In our case, the outcomes are the class 

membership of 11 pain scores. The main advantages of using MLR are its simple 

implementation, fast computation, and that we can draw qualitative conclusions about the 

phenomenon based on the value and significance of each predictor variable in the model.

K-Nearest Neighbors (KNN) is a simple, easy to interpret machine learning algorithm with 

high predictive power. In KNN classification, the category of a data point is determined by a 

majority of its k nearest neighbors. In other words, the data point is assigned with the most 

common class among its k nearest neighbors.

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is another widely used supervised 

machine learning algorithm. In a classification problem, an SVM model maps data points 

from input space to feature space, then finds a decision surface among classes that has the 

largest distance to any data point. New samples then can be mapped into the same feature 

space, and their categories can be predicted based on which side of the decision surface they 

fall on. In addition to performing linear classification like MLR, which means the decision 

surface is a hyperplane, SVM can effectively perform nonlinear classification using a kernel 

trick that maps inputs into high-dimensional feature spaces.

As suggested by Caruana & Niculescu-Mizil (2006), Random Forest (RF) has an overall 

excellent performance in many machine learning tasks. The basic principle of RF is that a 

group of weak learners can get together to establish a strong learner. Decision tree is the 

weak learner used in the RF algorithm, with tree leaves representing classes and branches 

representing combinations of features that lead to those classes. An RF model recruits a 

collection of decision trees at training time and predicts the class of a data sample as the 

majority voting from all trees. We used the method of 10 fold cross-validation to evaluate all 

our prediction results. This is a common technique for assessing the performance of the 

prediction model on an independent dataset in order to ensure generalizability (Kohavi, 

1995). As measures of classification utility, we reported accuracy and weighted average F1 

score based on precision and recall as evaluation metrics. Accuracy is the ratio of correctly 

predicted pain scores over total number of pain scores. We then computed precision and 

recall for each of 11 pain scores. Precision is the ratio of the number of correctly identified 

entities with this pain score over the total number of this particular pain score predicted by 
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the model. On the other hand, recall is the ratio of the number of correctly identified entities 

with this pain score over the total number entities with this pain score in the dataset. F1 

score is the harmonic mean of precision and recall for each pain score (Mitchell, 1997). The 

weighted average F1 score, a better choice for evaluating multiple classes datasets, is the 

average of F1 score among all pain scores weighted by the number of instances of each pain 

score (Larsen & Aone, 1999).

4. Results

4.1 Feature analysis (RQ1)

We first examined the Pearson correlation between each two of the six vital signs we plan to 

use as indicators for pain scores. Additionally, the correlation between each vital sign and 

the pain score was also inspected. Tables 1A and 1B shows the correlations for the dataset 

imputed with patient labels (intra-individual level) and the dataset imputed without patient 

labels (inter-individual level), respectively. All correlations are statistically significant (p-

value < 0.001). Only systolic and diastolic blood pressure have a moderate positive 

correlation with each other with r = 0.626 in Table 1A (or 0.640 in Table 1B), and the other 

variables are poorly correlated or uncorrelated with one another (Udovičić et al., 2007). The 

correlations of vital signs indicate that they can contribute to the prediction model by 

carrying information from different perspectives. Therefore, it is reasonable to utilize all six 

vital signs as predictors in the prediction models. We will further discuss the predictor 

importance in Section 4.3. For the correlations between pain score and vital signs at both the 

intra-individual and inter-individual levels, none of the parameters show a strong correlation. 

This indicates that the pain score is not linearly related to any of the six vital signs. 

Therefore, a linear model is not utilized for pain prediction.

4.2 Intra-individual analysis (RQ2)

Fig. 2 and Fig. 3 show the intra-individual pain prediction results for 38 patients in terms of 

accuracy and weighted average F1 score respectively. Two patients have too few data for 

intra-individual analysis, since the suggested minimum sample size required for multinomial 

classification is 3.3 times of the number of classes, which is 37 samples in our case (Raudys 

& Jain, 1991). For each patient, the accuracy and weighted average F1 score were defined as 

described in section 3.4, and obtained by pooling (i.e. taking the average) over 40 

imputations. The four boxplots in Fig. 2 represent the accuracy distribution of predictions 

for 38 patients by applying MLR, SVM, KNN and RF classifiers, respectively. Among all 

four prediction methods, SVM achieved the highest accuracy result ranging from 0.377 to 

0.800, and an average accuracy of 0.582. MLR obtained a little bit lower performance than 

SVM ranging from 0.377 to 0.786, and an average accuracy of 0.578. KNN and RF had 

lower average performances of 0.522 and 0.523, respectively.

Fig. 3 illustrates the intra-individual prediction results with respect to weighted average F1 

score. Due to the class imbalance problem (since the pain levels are not distributed equally 

over all the 11 pain levels), weighted F1 scores were lower than accuracy measures, but 

show a similar trend among the four algorithms. Once again, SVM outperformed other 

classifiers based on an average weighted F1 score of 0.529. MLR also had a similar 
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performance with an average weighted F1 score of 0.520. KNN and RF obtained an average 

weighted F1 score of 0.454 and 0.477 respectively.

4.3 Inter-individual analysis (RQ3)

Tables 2A and 2B summarize the pooled accuracy results and weighted average F1 score 

results of two prediction methods at the inter-individual level in the four cases defined in 

section 3.3. We tested the same four prediction algorithms as we used in the intra-individual 

level analysis, and MLR and SVM still outperformed KNN and RF. Therefore, we only 

reported MLR and SVM results for convenience. Among four inter-individual cases, the best 

performance was achieved by considering individual-level differences in both the imputation 

phase and the prediction phase (aka Case 1 that utilizes intra-individual imputation as well 

as intra-individual prediction). We describe the interpretation of these cases in more detail in 

Section 3.3. In Case 1, the accuracy was 0.429 for MLR, 0.421 for SVM, and the weighted 

average F1 score was 0.422 for MLR, 0.410 for SVM. A lower performance appeared in 

Case 4 with MLR (accuracy: 0.257, weighted average F1 score: 0.209) and SVM (accuracy: 

0.246, weighted average F1 score: 0.156). In general, MLR obtained better performance 

than SVM. Considering that there are total 11 pain scores to predict, the model will obtain a 

0.091 (1/11) accuracy by random guessing. Therefore, the prediction model can still be 

considered useful even though the accuracy is not as high as many classifiers with fewer 

levels.

In order to measure the importance of each feature in predicting the pain score, a likelihood 

ratio test was performed in Case 4, which means we evaluated the feature importance on the 

general population without considering individual-level differences (Hosmer et. al 2013). In 

this test, the value of deviance with and without a specific feature in the model are 

compared. The deviance is equal to −2lnL, where L is the likelihood of the fitted model. The 

difference between the deviances is the chi-square value shown in Table 3. It follows a chi-

square distribution with degrees of freedom equal to the difference in the number of 

parameters estimated. From the results shown in Table 1, we can find that all features have 

contributed to the prediction of pain scores (p-value < 0.001). By comparing the chi-squared 

value associated with each feature, we can estimate the relative importance of the six vital 

signs. Although the order of chi-squared values of six vital signs vary due to imputation, we 

can still find that SpO2, systolic blood pressure, pulse and temperature significantly affect 

pain prediction. Diastolic blood pressure has lower impact than the previous four features. 

Resp seems to have the smallest impact among all six features. However, since all the 

features were found to be significant parameters to measure pain, we have retained the six 

physiological measures for building pain prediction models.

4.4 Other pain rating scales (RQ4)

In the original EHR dataset, there are 11 different pain scores. There is a lot of uncertainty in 

how patients report their pain, and even in how a single patient will report their pain from 

one time to the next with such a dense rating scale. Moreover, there are other pain rating 

scales in use with fewer levels (Hjermstad et al., 2011). Therefore, we further created pain 

prediction models based on a 6-point rating scale, a 4-point rating scale, and a binary rating 

scale. Ten pain scores, except pain score 0, are divided evenly into five categories in the 6-
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point rating scale (new levels are: 0, 1–2, 3–4, 5–6, 7–8, 9–10). Different cut-points may be 

applied for pain caused by different diseases (Boonstra et al., 2014; Zelman et al., 2005). In 

the 4-point rating scale, NRS scores can be categorized as none (0), mild (1–3), moderate 

(4–6), and severe (7–10) (Krebs et al., 2007). Cut-point 5 is considered as the optimal 

solution for binary division of NRS scores (Zelman et al., 2003). Table 4 illustrates the 

transformation rules of pain rating scales from the original 11-point scale and the prediction 

performances in the four inter-individual analysis cases among these different scales. Only 

MLR results were listed in these tables, since we have demonstrated that MLR was the best 

among the four algorithms we have tested in section 4.2 and section 4.3. As shown in Table 

4, accuracies and weighted average F1 scores increased significantly with the decreasing 

number of pain levels. The performance of the four cases showed a similar trend as in inter-

individual analysis with 11 pain scores.

4.5 Pain change detection using physiology (RQ5)

In this study, pain change is defined as increase, decrease and no change, marked as 1, −1 

and 0, respectively. When the difference between next pain score and current pain score is 

larger than 0, it is an increase; when the difference is smaller than 0, it is a decrease; 

otherwise, it is no change. Current physiological measurements were used to predict the pain 

change direction from current pain score to next pain score. The same six vital signs were 

used as predictors for pain change detection. The prediction results are summarized in Table 

5. Only MLR results were listed due to its best performance.

5. Discussion

In this section, we discuss the implications and challenges of the different experiments, and 

results we obtained in the previous sections.

5.1 Feature analysis (RQ1)

The relationship between systolic and diastolic blood pressure has been well reported in 

healthy patients with correlations ranging around 0.6–0.7 (Soergel et al., 1997). It was 

interesting to see a similar relationship even within our SCD patient cohort. Since the 

coefficient of determination between systolic and diastolic blood pressure (r sq. = 0.38) was 

low, we concluded that they could be treated as independent variables for the prediction 

analysis. The other physiological measures appeared poorly correlated or uncorrelated with 

one another. Hence, we retained all the features to evaluate the pain prediction models as 

multicollinearity (when independent variables are dependent on each other) did not take 

place in our dataset. However, at this point, it was still not clear whether physiological 

measures can really be used to predict pain levels in SCD patients or not. We discuss the 

prediction results further in the next sections.

5.2 Intra-individual pain prediction (RQ2)

Pain is a subjective experience and really hard to assess except using patients’ own self-

reports according to its definition (McCaffery, 1968). However, as shown in our intra-

individual pain prediction results, we were able to predict pain scores of each patient using 

only six objective physiological measurements. An average accuracy of 0.582, and a 
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maximum accuracy of 0.800 were obtained among 38 individuals’ analysis results in our 

study comparing to their self-reported values.

Among all four machine learning algorithms, SVM with linear kernel had the best 

performance, but the results of the relatively simpler MLR were comparable to those from 

the SVM. Moreover, MLR is a probabilistic algorithm, as opposed to SVM which is more 

geometrically inspired. SVM tries to learn support vectors that best separate the classes by a 

hyperplane, hence SVM is a more complex and less explainable model (Cortes & Vapnik, 

1995). Based on these findings, we rationalized that MLR might be adopted as the optimal 

algorithm for our remaining experiments. For the other machine learning methods, it is not 

surprising that KNN had the worst performance since it just considered the local 

neighborhood of the current data point. Physiological measurements are not only affected by 

pain, but also affected by other things like patients’ activity. For the same pain score, there 

may not always be the same combination of vital signs. Therefore, a simple algorithm like 

KNN is less likely to perform as well as other techniques for this dataset. The reason why 

the accuracy of RF was not as good as in some other applications was that the number of 

data samples used for training from each patient were limited, which was not sufficient to 

leverage the predictive power of RF.

Considering the evaluation metrics, accuracy is the most commonly used one. However, 

when the dataset has a class imbalance challenge, then just using accuracy to evaluate the 

results biases the evaluation toward the majority class, since accuracy measures the ratio of 

the number of accurate predictions to the total predictions. Precision and recall are two 

measures generally used in these circumstances. For example, precision could be used to 

represent the fraction of correctly predicted pain score 8 among all claimed pain score 8 by 

the prediction model; recall could be used to represent the fraction of correctly predicted 

pain score 8 among all actual pain score 8 in the dataset. To represent these two metrics with 

one quantifier, we used F1 score, the harmonic mean of precision and recall, as our 

evaluation metric for each single class. Furthermore, since we had total 11 classes (pain 

scores), we used one single weighted average F1 score to represent the general prediction 

results among all 11 classes. We found that due to the class imbalance problem, the 

weighted F1 scores were lower than the accuracies, but still provided comparable, as well as 

unbiased performances. The weighted F1 score further showed similar trends as the accuracy 

results among the four machine learning algorithms, indicating that both metrics were 

effective for this dataset.

5.3 Inter-individual pain prediction (RQ3)

Due to the inherent individual differences in physiological data and the subjective nature of 

pain, inter-individual prediction will tend to have lower performance than intra-individual 

pain prediction. However, in real clinical conditions, when a new patient is enrolled, there 

are no data to build an intra-individual level model for the new patient, in which case the 

inter-individual level model should be applied. Furthermore, the performance of inter-

individual prediction was still much better than the baseline random guess (accuracy of 

1/11), which indicates that the six vital signs are still strong predictors for pain scores at 

inter-individual level. Similar patterns of results in inter-individual pain predictions were 
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observed as compared to the intra-individual pain predictions of accuracies and weighted 

average F1 scores using the four machine learning algorithms: MLR and SVM achieved the 

best and comparable performance, and weighted average F1 scores were lower than 

accuracies. Due to the limited number of features (six vital signs) and a moderate-sized 

dataset (5363 samples), it turned out that more complex algorithms like RF did not improve 

the prediction accuracy. Overall, MLR should be considered the optimal algorithm at both 

intra-individual and inter-individual levels due to its prediction accuracy, ease of 

implementation and explanatory power. The better performance of MLR may be due to the 

fact that there are high variances in the corresponding training samples among different 

imputed datasets, thus a simpler algorithm that needs less tuning of parameters is more 

robust and able to obtain a better and generalizable performance among 40 different imputed 

datasets.

As described in section 3.3, there were four different cases in inter-individual pain 

prediction. Among all four cases, two cases are worth further attention: Case 1, considering 

individual differences in both imputation phase and prediction phase; Case 4, not 

considering individual differences in either imputation phase or prediction phase. Case 1 is 

important as it had the highest performance by utilizing patient labels in both the imputation 

phase and the prediction phase. Case 4 is also important because it didn’t employ patient 

labels in any phases. The remaining two cases fall in between these two extreme conditions 

with applying patient labels in only one of the two phases. A typical scenario in practical 

application is, when a new patient X is enrolled in the system, no vital signs and pain scores 

are recorded for this patient, then the Case 4 model could be applied first which assumes no 

prior information about patient X. With the increase of data records from patient X, we 

could then apply the Case 1 model to obtain a more personalized model with improved 

performance.

5.4 Other pain rating scales (RQ4)

In the practical clinical application, there is a very fine line between consecutive pain levels 

such as 5 and 6 making it extremely challenging for machine learning techniques to achieve 

that degree of precision. Not surprisingly, as shown from the prediction with other pain 

scales (Table 3), we found that with a decreasing number of pain levels, the prediction 

accuracies increased significantly, but meanwhile we also lost some sensitivity in 

distinguishing different pain intensities. When the pain prediction system was applied with 

the 4-point rating scale, we were able to reach a “sweet spot”, where a good balance was 

achieved between prediction accuracy (0.681 in Case 1, 0.563 in Case 4 as shown in Table 3) 

and pain assessment sensitivity. This was further corroborated by our clinical collaborators 

who either used the 11-point scale from 0 to 10, or the 4-point scale (None, Mild, Moderate, 

Severe).

Furthermore, the 11-point prediction model and the 4-point prediction model can be applied 

to patients in different pain scenarios. For example, patients hospitalized routinely use the 0 

to 10 point visual analog scale to monitor patient pain levels and response to interventions. 

Patients using this scale was found useful in the titration of analgesics during pain crisis and 

used to assist in discharge planning (Ballas, 1993). It is possible to use the 4-point model for 
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this case as well, but we lose granularity by doing so. That said, for patients with sparser 

data, the 11-point model maybe too complex a model, creating issues like under-fitting due 

to less training data.

Medical providers more often use the 4-point model for outpatients with SCD to assist with 

clinical decision making. Based on classification of pain (none, mild, moderate or severe), 

patients can be advised to treatment of their pain with oral medications (WHO guidelines). 

In addition, when the pain levels of a patient are sparse, the 4-point model is appropriate for 

pain prediction. For example, one of the patients in our dataset only had self-reported pain 

scores as [0, 4, 5, 7], which is an ideal case for applying the 4-point model. Similarly, if a 

patient was newly admitted to the hospital and had reported pain levels for a single day, then 

the 4-point model would be initially used until more data were obtained for that patient.

As mentioned in section 2, the feasibility of pain prediction using objective physiological 

measurements has been explored by several research studies. Huang et al. (2013) reported 

their results for both intra-individual level and inter-individual level with accuracies of 0.863 

and 0.803 respectively for binary pain prediction using LEPs. Kächele et al. (2016) reported 

their accuracy for inter-individual binary pain prediction of 0.857. Furthermore, they also 

provided their inter-individual prediction for five pain levels with accuracy of 0.395. These 

accuracy results for inter-individual binary prediction were comparable to our results (0.821 

in Case 1 as shown in Table 3) with vital signs as predictors. Meanwhile the accuracy of five 

pain levels (0.395) from Kächele et al. was comparable to our inter-individual prediction 

results with six pain levels of Case 4 (as shown in Table 3) where the accuracies were 0.397.

5.5 Pain change detection using physiology (RQ5)

In pain change detection, we defined pain change as increase, decrease and no change which 

made it a three-class classification problem. The baseline accuracy in this case would then 

be 0.33 (1/3). However, the highest accuracy we achieved in our experiments was 0.404. It 

indicated that the current dataset we used was not sufficient for accurate pain change 

detection as the results were not much improved from the baseline. The main reason of the 

low performance was that other pain related information, such as medication usage, was not 

included in the analysis. For example, if patients take pain relief medications, their pain 

scores will decrease. However, the prediction model has no clue of the medication usage, 

hence the pain change cannot be predicted correctly. Moreover, the magnitude of pain 

change were not utilized by the prediction model, which further affected the algorithm 

performance.

5.6 Importance in clinical practice

We believe our findings are crucial to clinical providers of patients with pain. Due to the 

subjective nature of the pain, assessment and management is currently difficult. Clinicians 

often rely on other indicators, such as vitals and non-verbal cues, to improve their 

assessment of the pain. Evaluating the predictive ability of objective physiologic 

measurements is therefore critical. Although studies have shown independent associations 

between heart rate and blood pressure with pain, there have been no significant efforts 

reported on the attempt to predict pain. Clifton et.al. (2017) reported modeling of symptoms 
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of pain in relation to pain medication administration. The model was a new hybrid model for 

the dynamics of subjective pain that involves a dynamical systems approach using both 

differential equations to predict future pain levels and a statistical approach to combine 

system parameters to patient data (both personal characteristics and medication response 

history). We are now reporting our initial efforts to build predictive techniques for pain 

based on vital signs.

We recognize the limitations in a pilot study, including sample size and potential 

confounders to changes in vital signs outside of pain (such as dehydration and infection). We 

attempted to include patients similar in admission diagnosis and exclude patients with active 

infection or receiving transfusions. Patients with an admission diagnosis of uncomplicated 

pain crisis were included and received standard of care treatments including intravenous 

fluids and narcotic pain medications.

6. Conclusion

Using only physiological measurements for patients with SCD, we estimated the pain scores 

of the individuals without including their medication information. Using multiple 

imputation, we utilized missing data in the machine learning algorithms. We proposed pain 

prediction models in various scenarios: (i) intra-individual pain prediction with 11 pain 

scores, (ii) inter-individual pain prediction with 11 pain scores, and (iii) inter-individual pain 

prediction with condensed pain levels numbering less than 11 (6,4 and 2 pain levels). In each 

of these experiments, MLR gave the optimal performance among the four algorithms we 

tested (MLR, SVM, KNN, RF), striking a balance between accuracy and model simplicity. 

Our test results addressed the main research hypothesis regarding the feasibility of using 

objective physiological measurements to predict subjective pain in SCD patients.

For future work, patients’ personal and demographic information like age, gender and 

baseline pain score will be included in the prediction model to further improve the system 

performance. Medication usage will be included in the pain change detection model. We 

also plan to incorporate wearable device data into the model, replacing the physiological 

measures from the EHR data with the wearable physiological information. We are currently 

in the process of collecting wearable data from SCD patients with the Microsoft Band 2 

device, where we will utilize the data from the Band to predict the pain levels of the patients. 

This is a step towards continuous and non-invasive pain management for SCD patients 

during hospitalization and after they are discharged from the hospital. Doing so will allow us 

to create a remote pain management system that can hopefully reduce re-hospitalization and 

improve the quality of life for patients with SCD.
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Fig. 1. 
Sample Electronic Health Record
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Fig. 2. 
Intra-individual pain prediction accuracy results using MLR, SVM, KNN and RF
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Fig. 3. 
Intra-individual pain prediction weighted average F1 score results using MLR, SVM, KNN 

and RF
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Table 1A

Pearson correlation of six vital signs in imputed dataset with patient labels (Note: SpO2 = oxygen saturation, 

Resp = respiratory rate, and BP = blood pressure)

SpO2 Systolic
BP

Diastolic
BP

Pulse Resp Temperature Pain Scores

SpO2 1.000 −0.095 −0.058 −0.147 −0.046 −0.102 −0.015

Systolic BP 1.000 0.626 −0.001 0.019 0.012 0.090

Diastolic BP 1.000 0.078 0.084 −0.005 0.033

Pulse 1.000 0.361 0.458 −0.203

Resp 1.000 0.217 −0.126

Temperature 1.000 −0.075

Pain 1.000
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Table 1B

Pearson correlation of six vital signs in imputed dataset without patient labels (Note: SpO2 = oxygen 

saturation, Resp = respiratory rate, and BP = blood pressure)

SpO2 Systolic
BP

Diastolic
BP

Pulse Resp Temperature Pain Scores

SpO2 1.000 −0.072 −0.058 −0.161 −0.047 −0.094 0.088

Systolic BP 1.000 0.640 −0.019 0.017 −0.0154 0.134

Diastolic BP 1.000 0.058 0.065 −0.042 0.039

Pulse 1.000 0.380 0.450 −0.212

Resp 1.000 0.204 −0.121

Temperature 1.000 −0.098

Pain Scores 1.000
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Table 2A

Inter-individual pain prediction accuracy results using MLR and SVM

Imputation with labels
[MLR, SVM]

Imputation without labels
[MLR, SVM]

Prediction with labels Case1: [0.429, 0.421] Case 3: [0.313, 0.305]

Prediction without labels Case 2: [0.215, 0.236] Case 4: [0.257, 0.246]
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Table 2B

Inter-individual pain prediction weighted average F1 score results using MLR and SVM

Imputation with labels
[MLR, SVM]

Imputation without labels
[MLR, SVM]

Prediction with labels Case 1: [0.422, 0.410] Case 3: [0.301, 0.290]

Prediction without labels Case 2: [0.173, 0.193] Case 4: [0.209, 0.156]
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Table 4

Inter-individual pain prediction results with varying pain scales

Number of Pain 
Ratings

Transformation Rules Imputation with 
labels & Prediction 
with labels
(Case 1)
Accuracy/Weighted 
F1

Imputation with 
labels & Prediction 
without labels
(Case 2)
Accuracy/Weighted 
F1

Imputation without 
labels & Prediction 
with labels
(Case 3)
Accuracy/Weighted 
F1

Imputation without 
labels & Prediction 
without labels
(Case 4)
Accuracy/Weighted 
F1

11 Pain Scores N/A 0.429 / 0.422 0.215 / 0.173 0.313 / 0.301 0.257 / 0.209

6 Pain Scores None:0 0.546 / 0.540 0.347 / 0.262 0.449 / 0.423 0.397 / 0.313

Very mild: 1–2

Mild: 3–4

Moderate: 5–6

Severe: 7–8

Very severe:9–10

4 Pain Scores None: 0 0.681 / 0.673 0.521 / 0.421 0.607 / 0.578 0.563 / 0.483

Mild: 1–3

Moderate: 4–6

Severe: 7–10

2 Pain Scores No/mild 0.821 / 0.819 0.680 / 0.647 0.730 / 0.718 0.678 / 0.616

Pain: 0–5

Severe

Pain: 6–10
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Table 5

Pain change prediction results using MLR

Accuracy Imputation with labels
Accuracy/Weighted F1

Imputation without labels
Accuracy/Weighted F1

Prediction with labels Case 1:0.403 / 0.386 Case 3: 0.390 / 0.374

Prediction without labels Case 2: 0.363 / 0.315 Case 4: 0.404 / 0.347
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