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Abstract

Physicians and patients may choose a certain treatment only if it is predicted to have a large effect 

for the profile of that patient. We consider randomized controlled trials in which the clinical goal is 

to identify as many patients as possible that can highly benefit from the treatment. This is 

challenging with large numbers of covariate profiles, first, because the theoretical, exact method is 

not feasible, and, second, because usual model-based methods typically give incorrect results. 

Better, more recent methods use a two-stage approach, where a first stage estimates a working 

model to produce a scalar predictor of the treatment effect for each covariate profile; and a second 

stage estimates empirically a high-benefit group based on the first-stage predictor. The problem 

with these methods is that each of the two stages is usually agnostic about the role of the other one 

in addressing the clinical goal. We propose a method that characterizes highly benefited patients 

by linking model estimation directly to the particular clinical goal. It is shown that the new method 

has the following two key properties in comparison with existing approaches: first, the meaning of 

the solution with regard to the clinical goal is the same, and second, the value of the solution is the 

best that can be achieved when using the working model as a predictor, even if that model is 
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incorrect. In the Citalopram for Agitation in Alzheimer’s Disease (CitAD) randomized controlled 

trial, the new method identifies substantially larger groups of highly benefited patients, many of 

whom are missed by the standard method.
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1 Introduction

Patients often differ in their response to treatment, and characterizing this variation is crucial 

for the development of evidence-based, personalized treatment plans. In practice, treatments 

may be costly or may pose harm to patients (e.g. through adverse side effects or drug 

toxicity) and clinicians must balance treatment recommendations with each patient’s 

probability of response. Thus, there is considerable interest in the development and 

refinement of statistical methods capable of identifying patients with high versus low 

average treatment effect. For example, a recent randomized controlled trial in psychiatry 

evaluated the efficacy of citalopram for reducing agitation in patients with probable 

Alzheimer’s disease [1]. Although the estimated average treatment effect in the trial was 

positive, an adverse cardiac event occurred in a small proportion of people, and the treatment 

was associated with slight cognitive worsening. Additionally, only 40% of participants 

assigned to citalopram had a moderate or marked response compared to 26% of those 

assigned to placebo, and thus it would clearly be desirable to identify strong predictors of 

response. In this setting, the preferred clinical goal is to target the treatment to patients who 

are predicted to experience a large clinical benefit. In addition to providing practical 

recommendations regarding who should be targeted for treatment, identifying patients 

whose response to citalopram is large could help clarify the biological mechanisms for 

citalopram’s action in this population.

Several approaches have been employed to estimate heterogeneity in treatment effects in the 

setting of randomized controlled trials. One general approach is to posit outcome regression 

models in which the effect of treatment assignment on response can differ depending on 

baseline covariates. A major limitation of this approach is that the posited outcome 

regression model may be misspecified. Zhang et al. [2] (see also Zhao et al. [3], Rubin and 

van der Laan [4]) adapt this regression framework and develop a robust method for 

identifying an optimal treatment regime, which, when followed, maximizes the empirical 

treatment effect in the study population. However, this optimal treatment regime does not 

necessarily identify highly benefited patients; indeed, it assigns treatment to a patient even 

when their expected treatment effect is small, as long as it is positive. In addition, one cannot 

directly adapt Zhang et al.’s [2] method to identify highly respondent subgroups of patients, 

for the following reason. That method maximizes the empirical treatment effect in the entire 

study population. If instead the goal is to maximize the treatment effect over particular 

subsets of patients, there will almost always be some small subsets that appear to achieve a 

treatment effect higher than a particular threshold chosen. Therefore, parameter estimation 

in this setting is ill-defined because it reduces to selecting the subgroup with the highest 
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estimated treatment effect, regardless of the size of this subgroup. This issue illustrates that 

balance needs to be addressed between the magnitude of the treatment effect in a particular 

subgroup and the number of patients in that subgroup.

Cai et al. [5] proposed an alternative method for estimating heterogeneity in the treatment 

effect. In a two-stage approach, the first stage posits a working regression model (fitted by 

maximum likelihood, for example), and estimates each subject’s model-based expected 

response under each treatment arm, and hence the model-based subject’s effect is estimated 

as the difference between the two estimates. In a second stage, the approach uses the model-

based effect estimate as a scalar index score for grouping patients. Then, a local likelihood 

approach is used to obtain non-parametric estimates of the treatment effect within each strata 

of the index score. This approach produces consistent estimates of the treatment effect 

within strata defined by the estimated regression model. However, because the working 

model in the first stage of the procedure may be misspecified, maximum likelihood or 

ordinary least squares estimators of model parameters may not be the best approach (even in 

large samples) to characterize the largest subgroup possible whose empirical treatment effect 

is greater than some pre-specified threshold.

In this paper we propose a method that characterizes large subgroups who experience a large 

treatment effect. Section 2 formulates the goal and further reviews the existing approaches. 

Section 3 develops the new approach. The essence of this approach is that it connects the 

estimation of parameters from the working model directly to the clinical goal – to identify 

large subgroups that experience a large empirical treatment effect. We show theoretically, 

and also by application to the CitAD trial throughout, that the proposed approach 

characterizes different highly benefited groups that can be much larger than those 

characterized by the existing approach. Section 4 concludes with remarks.

2 Goal and motivating background

2.1 Problem and limitations of existing methods

For the general framework, consider a study of a random sample of n individuals from a 

population and for each of whom we can measure a vector of covariates Xi, which we 

assume have finite although possibly many levels. Each individual can be assigned a 

standard treatment t = 0, in which case we would measure a potential outcome Yi(t = 0), or a 

new treatment t = 1, in which case we would measure a potential outcome Yi(t = 1) [6]. 

Actual assignment Treati(= 0, 1) is assigned at random, that is, Treati is independent of 

(Yi(0), Yi(1), Xi), and then the outcome Yi := Yi(Treati) corresponding to the actual 

assignment is observed. Based on the information of the study, the overall population 

average potential outcome E{Yi(t)} can be estimated without further assumptions by the 

sample analogue E(Yi | Treati = t) of the average observed outcomes among those assigned 

Treati = t.

Even if the new treatment is the best (on average, or for a particular patient, Zhang et al. [2]), 

its effect may be small and its administration associated with burden or adverse effects. 

Then, for subsequent clinical practice, physicians may wish to only give the new treatment 

to patients for whom the above study suggests the effect is large enough. To do this, for 
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example, in the psychiatric trial we discuss in Section 2.2, the physicians wanted to 

characterize a subgroup of patients based on covariates, for whom the treatment effect is, on 

average, greater than a chosen clinically important value, say effmin. Taking here the 

absolute difference as the causal effect of interest, the physicians’ goal is as follows:

find a group of patients,  highly 
 benefited , that maximizes the proportion, pr Xi ∈  highly 

 benefited 
,

subject to having large average effect, E Y i(1) − Y i(0) Xi ∈  highly 
 benefited 

≥ effmin .

(1)

If it is possible to estimate well the conditional effect (Xi) := E{Yi(1) – Yi(0) | Xi} for all Xi 

without further assumptions, then the goal eq. (1) is easily addressable. To see this, consider, 

for any indicator function in(Xi), the quantity effect {in(Xi) = 1} := E{Yi(1) – Yi(0) | in(Xi) 

= 1}. We prove the following result in the Appendix.

Result 1. Among all indicator functions in(Xi) such that effect {in(Xi) = 1} ≥ effmin, the 

indicator that maximizes the size pr{in(Xi) = 1} is of the form

in0 Xi : = 1 if and only if effect  Xi ≥ k

where k is a constant determined by effect {in0(Xi) = 1} = effmin, provided that such a k 
exists.

In other words, the largest group 
 highly 

 benefited  satisfying eq. (1) is {x : in0(x) = 1} and is 

obtained if we start including in the group patients from the larger down to the smaller 

values of the conditional effect (Xi), and stop when including the covariate with the next 

smallest value of effect (Xi) in 
 highly 

 benefited  would first produce an average effect 

E Y i(1) − Y i(0) | Xi ∈  highly 
 benefited 

 smaller than effmin.

More realistically, when the levels of Xi are many, the conditional effects are not estimable 

without further assumptions, and the above direct approach is not feasible. An existing 

approach [5] mirrors the theoretical approach using a working model (see Figure 1, first two 

columns). Specifically, here the existing approach in a first stage fits a parametric working 

model (which may not be correct): pr(Yi(t) | Xi, β) (= pr(Yi | Xi, Treati = t, β), by random 

assignment), by the MLE βmle or a solution to another standard estimating equation. Based 

on this fit, the approach obtains an initial, model-based estimate of the effect E(Yi | Xi, Treati 
= 1)- E(Yi | Xi, Treati = 0) using

effectmodel Xi, βmle : = E Y i Xi,  Treat i = 1, βmle − E Y i Xi,  Treat i = 0, βmle . (2)
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This approach can attempt to approximate goal eq. (1) by mimicking the theoretical solution 

given above, as follows: first, sort the covariates by the values of estimated effects, effect 

effectmodel Xi, βmle ; then, start creating the set 
 highly 

 benefited  βmle  by cumulating Xi from larger 

to smaller values of effectmodel Xi, βmle ; and close the set 
 highly 

 benefited  βmle  when the empirical 

(non-parametric) estimated effect (difference in sample averages of treated minus control) in 

that set would stop being ≥ effmin. This gives

 highly 
 benefited  βmle = the largest‐fraction  Xi:  effect  thodel  Xi, βmle ≥ e

over all values e
(3)

such that the empirical treatment effect in the set is at least effmin. By largest-fraction set we 

mean a set that has the largest probability based on the empirical distribution of Xi in the 

study.

A useful property of this approach, resulting from the empirical estimation at the second 

stage, is that the effect among the estimated highly benefited set in eq. (3) is approximately 

the desired clinical effect effmin, even if the working model is incorrect. Specifically, [5] 

show that, allowing for the working model to be incorrect, the estimator βmle will converge 

to a value, say βmle, and the set 
 highly 

 benefited  βmle  will converge to

 highly 
 benefited  βmle =  the largest‐probability set  Xi: effectmodel, βmle ≥ e

 over e

such that the effect within the set is at least effmin. Therefore, the empirical 

effect    highly 
 benefited  βmle , defined as the difference between the empirical averages of the 

highly benefited set assigned Treat = 1 versus those assignd Treat = 0, converges to at least 

the nominal effect effmin. The above assumes that effectmodel Xi, βmle  is not constant in XI; if 

it is, then the convergence may not hold, for example, because the sets may be empty.

For a trial with small to moderate sample size, the set of patients 
 highly 

 benefited  βmle  may have a 

true effect that is smaller than the limit. For this reason, we can use a modified set 

 highly 
 benefited 

calib
βmle , that uses a resampling method to calibrate its effect to the nominal 

effmin (Appendix B).

A problem with the above approach, however, is that it still uses the estimate (e.g., MLE) of 

the working model as if the model were correct. In Section 3, we show that, by using a 

different estimation of the same working model, a different highly benefited group can be 

identified, which can be much larger than the one identified by the existing approach. First, 
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however, we illustrate the existing approach using data from the Citalopram for Agitation in 

Alzheimer Disease Study (CitAD) [1].

2.2 A motivating example

CitAD was a randomized placebo-controlled trial designed to evaluate the efficacy of 

citalopram in reducing agitation in patients with probable Alzheimer’s disease [1]. The 

estimated average treatment effect was a 13.6% (se=7.1%) reduction in the probability of 

agitation symptoms in the citalopram versus the placebo group, as measured by the modified 

Alzheimer Disease Cooperative Study-Clinical Global Impression of Change Score 

(hereafter, mADCS-CGIC, Schneider et al. [7], Drye et al. [8]).

As agitation in Alzheimer’s disease (AD) is a heterogeneous clinical syndrome that 

encompasses many underlying pathologies, a secondary aim of the study was to characterize 

which patients were more likely to respond to citalopram, potentially elucidating which 

dysfunctional pathways might respond to citalopram. Characterizing heterogeneity in 

citalopram’s effect is also important because its use is associated with an adverse cardiac 

complication (long QT syndrome and cognitive worsening), and a preferred clinical goal 

would be to target highly respondent patients for treatment [9]. We hypothesized that 

agitation in AD might involve disturbances in affective and/or executive control which might 

further reflect different disturbances in underlying brain circuits. One hypothesized type of 

agitation reflects affective disturbance, manifested by mood lability, irritability, anxiety, 

dysphoria, and/or other affective/mood symptoms. Another hypothesized type reflects 

agitation from loss of inhibitory control resulting in disinhibition, disorganization, apathy, or 

other clinical manifestations of loss of executive control. Given the substantial evidence for 

the involvement of serotonergic deficits in affective dysregulation in mood disorders, we 

hypothesized that participants with primarily affective type of agitation would respond better 

to citalopram treatment. To this end, one of the authors (CGL) derived two categorical 

scales, the affective dysregulation scale (ADS, ranging from 0–7), and the exective 

dyscontrol scale (EDS, ranging from 0 to 6), where higher values indicate more dysfunction. 

These scales were derived by examining the CitAD dataset for items that appeared to be a 

priori associated with affective or executive dysregulation (see Appendix A for detailed 

derivation). Table 1 is a cross-tabulation of the number of patients in each arm of the study 

with different combinations of ADS and EDS scores at baseline.

Our goal here is to assess if there exist patient profiles, based on the ADS and EDS 

covariates, that experience a high citalopram versus placebo effect effmin, examining this 

question for effmin = 30%, 35% and 40% (by comparison the overall average was estimated 

at 13.6%). Table 1 shows that each cell is populated by a relatively small number (if any) of 

patients, so direct implementation of the theoretical approach described in Section 2.1 is not 

feasible.

To address the goal, consider first the approach of positing a working model, also described 

in Section 2.1. In particular, consider the logistic regression working models for the binary 

outcome Yi, with value 1 signifying a reduction in agitation symptoms:
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logit E Yi ADSi, EDSi,  Treat i = 1, β = β10 + β11ADSi + β12EDSi + β13ADSi × EDSi
logit E Yi ADSi, EDSi,  Treat i = 0, β = β00 + β01ADSi + β02EDSi + β03ADSi × EDSi .

In this first approach, the parameters, β, were estimated by the MLE βmle, and effect 
model(Xi, β) in eq. (2) was estimated by effectmodel Xi, βmle . The latter takes 41 unique 

values, each corresponding to a non-empty cell in Table 1 (provided no two elements of βmle

are the same). Next, patients were ranked by their values effect effectmodel Xi, βmle , and for 

each of the three values of effmin = 30%, 35% and 40%, first we identified the uncalibrated 

set, say 
 highly 

 benefited  βmle;  eff min , of the highly benefited patients based on the description in 

Section 2.1.

We evaluated the properties of these sets, by conducting a simulation as described in 

Appendix B. First, we found that the true effects experienced by the uncalibrated sets were 

approximately 5% lower than their corresponding three nominal values. Then, for each 

nominal value, we searched for the value that the empirical effect should have in order that 

the simulated true effects be equal to the nominal. These resulting values were 35%, 40% 

and 45%, respectively, and the corresponding sets, which we call 

 highly 
 benefited 

calib
βmle;  eff emp  eff min  in Appendix B, are shown on the top three panels in 

Figure 2.

For example, the set 
 highly 

 benefited 
calib

βmle;  eff emp  eff min = 30%  of patients who experience 

an average effect of 30% are the patients with EDS ≤ 3 & ADS ≥ 4 or with EDS ≥ 4 & ADS 

≤ 2. This group is estimated to form 34% of the study population.

3 Proposed approach

The proposed approach is motivated by re-examining the parallelism that a better estimation 

approach should try to draw to the theoretical solution. In the theoretical solution (left 

column of Figure 1), the largest set 
 highly 

 benefited  is achieved by cumulatively including 

covariates based on the order of the true conditional effects effect (Xi). The model-based 

approach of Section 2.1 tries to parallel this by, first, estimating the conditional effects based 

on the MLE of a model βmle, and then cumulating these ordered effects, effect 

effectmodel Xi, βmle , as in eq. (3).

While the above set of patients does experience the desired effect effmin in large samples, 

this is not, of course, the largest such set if the working model is incorrect. In fact, it is not 

even the largest achievable set when using the same working model. This is because, if the 

model is incorrect, the member of the model βmle  that maximizes the (incorrect) likelihood 
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does not necessarily have the invariance property with respect to the truth, and so it is not 

necessarily the same as the member of the model that achieves the largest set.

The proposed approach is to find the largest such set that can be achieved. To do this, the 

model should be left free at the first stage, so that one can consider all values of the 

parameter β, that can predict effect (Xi) by effect model(Xi, β). Then,

(i) for each value β of the parameter, find

 highly 
 benefited (β)as the largest‐fraction set Xi:  effect model Xi, β ≥ e

 over e
(4)

and such that the empirical effect within the set is at least effmin; then

(ii) find

 highly 
 benefited  βbest  as the largest‐fraction set  highly 

 benefited  (β),

 over β
(5)

where, 
 highly 

 benefited (β) is as obtained in eq. (4).

By construction in eq. (5), the proposed set 
 highly 

 benefited  βbest  is the largest possible set of the 

type in eq. (4) that can be achieved by using the working model, and so it is also at least as 

large as the one obtained in eq. (3) by the standard approach. Also by construction, the set 
 highly 

 benefited  βbest  will converge to

 highly 
 benefited (βbest) =  the largest‐probability set  Xi:  effect model Xi, β ≥ e ,

 over e and β

such that the effect within the set is at least effmin, where βbest is the maximizer of the right-

hand-side of the last expression. Thus we have:

Pr Xi ∈  highly 
 benefited (βbest) ≥ Pr Xi ∈  highly 

 benefited (βmle)

Moreover, with finitely many levels of x, the empirical effect, say effect    highly 
 benefited  βbest  on 

the new highly benefited set converges, in large samples, to at least the nominal effect effmin, 

and the empirical proportion, say Pr Xi ∈  highly 
 benefited (βbest)  converges to the probability 
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Pr Xi ∈  highly 
 benefited (βbest) . A formal proof of this result would be more involved, due in part 

to having to deal with the estimators of parameters within functions (such as empirical 

estimates of probabilities and effects), and also due to the appearance of non-smooth 

indicator functions in both the probability statement and the effect function. Nonetheless, 

this heuristic argument seems to suggest that, under some regularity conditions and in 

sufficiently large samples, the new method will correctly produce a larger set of highly 

benefited patients than the standard method.

In small to moderate samples, and as with empirical maximization of other objective 

functions (e.g., sum of squares), the above convergence happens, by construction, from 

values of the effect that can be larger than the nominal one. For this reason, it is better to 

consider a modified set 
 highly 

 benefited 
calib

βbest  that uses the resampling approach to calibrate to 

the nominal minimal effect (see Appendix B).

We evaluated the properties of this new method by an analogous simulation to that for the 

standard method of Section 2 and as described in detail in Appendix B. We found that the 

true effects experienced by the uncalibrated sets of the new method were approximately 10% 

lower than their corresponding three nominal values. Then, for each nominal value, we 

searched for the value that the empirical effect should have in order that the simulated true 

effects be equal to the nominal. These three values were approximately 40%, 45% and 50%, 

respectively, and these resulting sets, which we call 
 highly 

 benefited 
calib

βbest;  eff emp  eff min  in 

Appendix B, are shown on the bottom three panels in Figure 2.

For example, the set 
 highly 

 benefited 
calib

βmle;  eff emp  eff min = 30%  of patients that experiences 

an average effect of 30% are the patients with EDS ≤ 4 & ADS ≥ 4 and the following 

(EDS,ADS) cells: (3,3), (4,3), (5,4), (6,4), as shown within the black contour of the bottom 

left panel of Figure 2. This group is estimated to form 56% of the study population. 

Therefore, even after adjusting for overfitting, the new method is estimated to characterize 

substantially larger groups of patients with high benefit.

4 Discussion

We have illustrated a new method of characterizing groups of patients with high benefit. We 

believe the new method can have important clinical implications regarding which patients 

are targeted for treatment, as well as important methodological implications for 

characterizing such groups in observational studies.

The example of CitAD illustrates the potential of these methods. The ADS and EDS 

covariates are indeed predictive of effect regardless of whether standard methods or the new 

methods presented above are used, but the proportion of participants is much higher with the 

new method. For example, using a 30% effect size as the minimum difference of clinical 

significance, 34% of participants fall into ADS/EDS categories with clinically significant 

effects using standard methods compared to 56% with the new method. Thus, using 
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ADS/EDS categories a clinician could identify 20% more patients with AD and agitation 

who would be predicted to have a clinically significant response to citalopram, an 

undoubtedly clinically meaningful difference. Given the potential toxicity of medications 

(for example, QTc prolongation observed with citalopram treatment in CitAD, [9]), 

identifying patients most likely to respond to drug represents a substantial improvement in 

maximizing benefit over risk. It is particularly impressive that ADS/EDS categories are so 

useful for predicting response because these subscales were derived from first principles, i.e. 

examining instruments at the item level and deriving the instruments pre hoc, independently 

of results, not as the result of cluster analytic techniques. This suggests the potential utility 

of applying these methods to other trials to improve clinicians’ ability to predict response to 

drug treatment.

A number of areas regarding the proposed method warrant further exploration. First, it is 

possible that the largest subgroup that, on average, has an effect larger than a constant may 

include finer subgroups with a negative effect. This is difficult to know, however, because a 

method that would search for this would be also subject to the difficulty of fitting effects 

given the high dimensional X. Perhaps an expert’s opinion on whether the finer parts of the 

subgroup make sense would be useful. Second, making the clinical objective the same as the 

statistical objective function to maximize, while scientifically desirable, is prone to 

overfitting. Here, we addressed this in part by calibration through simulation. Additional 

work is needed to develop accessible inference methods for confidence intervals, and for 

finding if and how a semiparametric efficient estimator can be achieved for the set 
 highly 

 benefited (βbest), for example using theory of van der Laan and Rubin [10], van der Laan and 

Rose [11]. Further, one can build additional parsimony into the estimation by regularizing 

the objective function through adding a condition that, for example, the magnitude of the 

coefficients be restricted. Thus, the contribution of the proposed method is not in 

competition with regularization, but is, instead, to emphasize the change of the core 

objective function - from a statistical one (e.g., least squares or likelihood) to a clinically 

meaningful one such as of the proportion of highly benefited patients. Working with this 

objective function analytically is not as straightforward because its complexity suggests it 

may not be convex. In practice we searched for maxima using simulated annealing.

Usefully, the new method can be applied to also characterize highly benefited groups in 

observational studies. Specifically, if treatment assignment is ignorable [6] and the 

propensity score [12] is reliably estimable, then, in principle, similar methods to these 

presented here can be applied to the population of potential outcomes after adjusting through 

the propensity score. This would provide an alternative way of fitting, for example, a 

structural mean model [13, 14], where the coefficients are chosen to maximize group of 

patients that are benefited beyond a minimum effect desired by physicians and patients.
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Appendix

Appendix A:: Characterization of the largest highly benefited subgroup

We prove the result for the case where Xi has finite though possibly many levels. Consider 

the indicator in0(Xi) and the constant k defined in Result 1; and consider any other indicator 

in(Xi) whose subgroup size is strictly larger than that of in0, i.e., suppose P := pr{in(Xi) = 1} 

> P0 := pr{in0(Xi) = 1}. Then it is useful to consider the quantity

q(x): =
in0(x)

P0
− in(x)

P  effect (x) − k p(x),

where effect (x) is as defined in Section 2.1 and p(x) = pr(Xi = x). Specifically, q(x) is non-

negative because if in0(x) = 1, both of the first two terms are non-negative; and if in0(x) = 0, 

both of the first two terms are non-positive. Moreover, q(x) is strictly positive with positive 

probability because, when effect (x) > k (and in0(x) = 1), then the first two terms are strictly 

positive regardless of in(x). Now, if q(x) is summed over x, we get

0 < ∑
x

q(x) = E0 − k − E + k,  so  E < E0

where E0 and E are the effects effect {in0(Xi) = 1} and effect {in(Xi) = 1}, respectively, 

within the subgroups defined by the indicators. Thus, if E ≥ E0 we must have P ≤ P0. By 

assumption, E0 = effmin, and thus the maximum size is attained at P0 by in0.

Appendix B:: Evaluation and calibration of highly benefited sets through 

simulation

We sought to evaluate the properties of estimated highly benefited subgroups derived 

through fitting data Dobs from a trial, utilizing both the standard and proposed methods. To 

do so, we applied the estimated sets to the target population from which the data are 

sampled. In order to do this, for example, for the proposed method and for a nominal 

minimum effect effnom equal to, say 30%, we did the following.

For both the standard and the proposed methods for characterizing a highly benefited 

subgroup, we evaluated properties of the estimated sets based on Xi – derived through fitting 

data Dobs from a trial – are applied to the target population from which the data are sampled. 

In order to do this, for example, for the proposed method and for a nominal minimum effect 

effnom equal to, say 30%, we did the following.

1. Treat Dobs as the target source population, and obtain a bootstrap data sample, 

Drep with replacement.

2. For Drep, derive 
 highly 

 benefited   βbest;  eff emp eff min = 30%; Drep  in order to reach a 

minimum empirical effect effemp = 30% on data Drep, as described in Section 3 
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(here, the explicit notation for the empirically achieved minimum effect and for 

the data Drep is important).

3. Apply 
 highly 

 benefited  βbest;  eff emp; Drep  back to the target source population Dobs, 

and find the true effect on these patients 
 highly 

 benefited  βbest;  eff emp; Drep , which, 

based on the notation of Section 2.1, is effect  highly 
 benefited  βbest;  eff emp; Drep .

4. Repeat steps (1)–(3) and find the true average effect

E effect  highly 
 benefited  βbest;  eff emp; Drep Dobs ,

averaged over the simulated data sets Drep given Dobs.

5. If the true effect as verified in step 4 is different from the nominal 30% then 

search, using a bijection method, for what value we should require the empirical 

effect in step 2 to be, so that the true effect in step 4 is equal to the nominal. Call 

that empirical effect effemp(effnom) (this function can be different between the 

proposed method and the standard method).

6. for the data Dobs define the calibrated highly benefited group for the nominal 

effnom = 30% effect, as

 highly 
 benefited 

calib
βbest;  eff nom; Dobs : =  highly 

 benefited  βbest;  eff emp eff nom ; Dobs

We used the same approach to evaluate and produce calibration also for the 

standard method.

Appendix C:: Derivation of the affective and executive scales

Items were derived from medical/psychiatric history and from neuropsychiatric instruments 

including Cornell Scale for Depression in Dementia (CSDD, Alexopoulos et al. [15]), 

Neurobehavioral Rating Scale (NBRS, Levin et al. [16]), Neuropsychiatric Inventory (NPI, 

Cummings et al. [17]), and Cohen-Mansfield Agitation Inventory (CMAI, Cohen-Mansfield 

[18]). The ADS consisted of 7 items: (1) family history of mood disorder;(2) personal 

history of mood disorder; (3) Depression defined as CSDD score ≥ 6 or NBRS depression 

item ≥ 3 or NPI Depression score ≥ 4; (4) Mood lability defined as NBRS mood lability item 

≥ 3; (5) Anxiety defined as NBRS anxiety ≥ 3 or NPI Anxiety ≥ 4; (6) Irritability defined as 

NPI Irritability ≥ 4; and Somatic defined as NBRS somatic symptoms item ≥ 3. Each ADS 

item was scored as 0 or 1 and summed for total range of 0 to 7. The EDS consisted of 6 

items: (1) Inattention defined as NBRS inattention item ≥3; (2) Aberrant Motor Behavior 

defined as NPI Aberrant Motor Behavior ≥ 4 or CMAI aberrant motor behavior item ≥ 4; (3) 

Disinhbition defined as NPI Disinhibition ≥ 4 or CMAI disinhibition ≥ 4 or CMAI 

disinhibition ≥ 4; (4) Apathy defined as NPI Apathy ≥ 4 or NBRS apathy item ≥3; (5) Poor 
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planninag as defined by NBRS poor planning item ≥ 3; (6) Disorganization defined as 

NBRS disorganization item ≥3. Each EDS item was scored as 0 or 1 and summed for total 

range of 0 to 6.
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Figure 1: 
Schematic representation of the theoretical solution, the existing approach, and the proposed 

approach, for a given effmin.
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Figure 2: 
ADS-EDS profile of patients (black contours) that have large treatment effect (30% in left 

panels, 35% in middle panels, and 40% in right panels), as found by the standard two-stage 

method (top panels) and by the new proposed method (bottom panels). Both methods are 

calibrated as described in Appendix B. The percents given in boxed rectangles are 

determined over 500 simulation samples of the process in Appendix B; and the intensity of 

the blue color of a particular ADS-EDS cell represents the proportion of times, over the 

same 500 samples, that the cell is included in the highly benefited group. The number 

provided in each cell displays the number of patients in the dataset in each category.
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Table 1:

Patients falling in each ADS and EDS categories; values in red are patients assigned to the placebo group, 

values in blue are patients assigned to the treatment group. Values are shown for the 167 patients for whom 

outcome data were available.

7 0/0 0/0 0/0 0/0 0/2 1/0 0/0

6 0/0 0/0 0/0 1/0 0/0 0/0 0/0

5 0/1 1/2 2/2 3/2 0/3 1/3 3/2

4 2/1 2/0 5/3 1/2 4/9 3/3 2/3

ADS 3 0/1 5/1 4/4 6/6 1/2 8/3 2/1

2 1/1 1/6 1/5 3/3 2/2 2/2 2/0

1 1/1 1/4 4/3 1/1 0/0 0/1 0/1

0 0/0 1/0 0/0 2/0 1/0 0/0 1/0

0 1 2 3 4 5 6

EDS

Int J Biostat. Author manuscript; available in PMC 2019 March 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Charu et al. Page 17

Table 2:

Items comprising the affective (ADS) and dysexecutive (EDS) indicators at baseline.

ADS (Affective), Range = 0–7 EDS (Dysexecutive), Range = 0–6

1. Family history of mood disorder in first-degree relative 1. Inattention

 a. form EH ‒ 1, item 19 scored as C, D, E, or F  a. form NR item 7 scored ≥3 (NBRS)

2. Personal history of mood disorder 2. Aberrant motor behavior

 a. form EH ‒ 1, item 21 scored as C, D, E, or F  a. form NP item 101a times item 101b scored ≥4 (NPI)

3. Depression  OR

 a. form CS total score of ≥ 6 (Cornell Depression Scale total)  b. form CM item 12 scored ≥4 will (CMAI)

 OR 3. Disinhibition

 b. form NR item 19 scored ≥3 (NBRS)  a. form NP item 83a times item 83b scored ≥4 (NPI)

 OR  OR

 c. form NP item 46a × item 46b scored ≥4 (NPI)  b. form CM item 11 scored ≥4 will (CMAI)

4. Mood liability  OR

 a. form NR, item 31 scored ≥3  c. form NR item 14 scored ≥3 (NBRS)

5. Anxiety 4. Apathy

 a. form NR, item 10 scored ≥3 (NBRS)  a. form NP item 74a times item 74b scored ≥4 (NPI)

 OR  OR

 b. form NP item 55a times item 55b scored ≥4 (NPI)  b. form NR item 12 will will scored ≥3 (NBRS)

6. Irritability 5. Poor planning

 a. form NP item 92a × item 92b scored ≥4 (NPI)  a. form NR item 30 scored ≥3 (NBRS)

7. Somatic 6. Disorganization

 a. form NR item 8 scored ≥3 (NBRS)  a. form NR item 13 scored ≥3 (NBRS)
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