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Abstract

The influence of hypoxia (lowered arterial blood and/or tissue PO2) on fetoplacental development 

and the role of hypoxia in preeclampsia are major research foci in perinatal biology. While animal 

and cell models are of utility, we do not know whether artificial hypoxic stimuli mimic the 

pathological conditions attributed to hypoxic stress in vivo; we cannot distinguish the effects of 

hypoxia from under- or overlying pathologies. High altitude (>2700 m) is the natural experiment 

we can use to distinguish pathology from adaptation in human pregnancy. The two best known 

impacts of high altitude on pregnancy outcome are reduced fetal growth and an increased 

incidence preeclampsia. This review focuses on the mechanisms by which altitude increases 

maternal risk for the development of preeclampsia. The review first considers the evidence that 

placental hypoxia is causally involved in the development of preeclampsia. It then focuses on how 

data from studies of pregnant women at high altitude support (or do not support) etiological 

models of preeclampsia. Considered are the theories that reduced uteroplacental blood flow, 

circulating factors of placental origin, placental oxidative stress and increased maternal vascular 

reactivity are etiological in preeclampsia. The data suggest that oxidative stress and endothelial 

dysfunction have pathophysiological origins that are independent of placental hypoxia. We 

conclude that altitude shifts the individual risk for the development of preeclampsia because of 

impacts on multiple physiological systems, no one of which can be specifically pointed to as 

causal.
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2. HIGH ALTITUDE AND PREECLAMPSIA

The ancient Greeks gave eclampsia (lightning) its name because the disease struck quickly 

and without warning. Pre-eclampsia, the prodromal state, was characterized by racing 

pulses, a symptom that would now be recognized as hypertension. After more than 2000 

years, the cause of preeclampsia remains unknown.
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Residence at high altitude (>2700 m) is the only external environmental factor that has been 

consistently linked with an increased incidence of preeclampsia (1–4). Despite the utility of 

experimental animal and cell culture models employing hypoxic stimuli, high altitude is the 

only in vivo human model with which to compare the results of in vitro and animal 

experimentation. To date we do not know whether artificial hypoxic stimuli mimic the 

pathological conditions attributed to hypoxic stress in vivo. This review evaluates how the 

data from high altitude support or do not support etiological theories of preeclampsia. We 

have used a variety of research designs, all with appropriate Institutional Review Board 

Approvals and participants’ informed consent, including cohort studies, birth-certificate 

analyses and prospective longitudinal physiological analyses. The data have consistently 

shown anywhere from a two- to a four-fold elevation in the incidence of preeclampsia at 

high altitude using both strict criteria (primiparas with documented proteinuria and 

hypertension that resolved following delivery) and less strict, but clinically relevant criteria 

(e.g. hypertension plus evidence of other organ system involvement, such as neurological 

symptoms, abnormal liver function or platelet consumption). Increased preeclampsia at high 

altitude is a global phenomenon, being observed in North and South America, the middle 

east and anecdotally among Chinese migrants to Tibet. It is not due to an altitude-associated 

increase in known maternal risk factors (e.g. obesity). The effect of altitude is independent 

of other risk factors, including socioeconomic status (5, 6). Since the most obvious effect of 

high altitude is lowered arterial oxygen tension (hypoxemia, lowered PO2), the increased 

incidence of preeclampsia and IUGR at high altitude supports that hypoxia contributes to the 

development of preeclampsia. Further support derives from the disease literature: women 

with congenital heart diseases associated with poor cardiac output or impaired lung transfer 

of oxygen to blood also have a markedly increased risk for preeclampsia (7).

A plethora of animal studies have investigated regulation of vascular tone and reactivity, 

uterine artery structure and growth and maternal physiology in pregnancy under hypoxic 

conditions (reviewed in 8–10). They converge in revealing how subtle changes in multiple 

physiological systems likely contribute to an increased risk for the development of 

preeclampsia at high altitude. The following section of this review examines some of the 

evidence that hypoxia is involved in the etiology of preeclampsia. We then examine 4 well-

known etiological models of preeclampsia and consider to what extent data from high 

altitude are consistent with the etiological model.

2.1. Hypoxia and preeclampsia

The model presented in Figure 1 is only one of many possibilities but will serve for this 

review as an organizational schema.

The first question that must be answered if we are to consider high altitude a useful model 

for understanding the pathophysiology of preeclampsia is whether the evidence supports that 

preeclampsia is characterized by fetoplacental hypoxia. Hypoxia and/or ischemia-

reperfusion injury are often invoked as a mechanism contributing to preeclampsia (11–17). 

Many studies since the early 1980s, pioneered by Stuart Campbell in the UK (uterine 

arteries) and Warwick Giles in Australia (umbilical arteries), have demonstrated that 

increased resistance to blood flow is present before the onset of symptoms in women who 
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eventually develop preeclampsia and/or intrauterine growth restriction (18–20). Increased 

resistance implies reduced blood flow, though this correlation has not been directly tested. 

We found that reduced uterine artery blood flow is present at high altitude (21) and that 

reduced blood flow precedes the onset of symptoms in preeclampsia (22). The high-altitude 

fetus is thus subjected to the double insult of hypoxemia of the blood entering the placental 

intervillous space and decreased uteroplacental blood flow. This supports the idea that 

reduced oxygen delivery and/or PO2 contribute to the development of preeclampsia and 

IUGR at any altitude, and likely augments the risk at high altitude.

But does what is observed at high altitude mirror what is seen in preeclampsia? Both 

morphological and molecular evidence support that high altitude placentas resemble 

preeclampsia in some, but not all features. Fox, (23, 24) showed that hypoxia was associated 

with increased cytotrophoblast proliferation, a finding mirrored in high altitude placentas by 

an increased proportion of cytotrophoblast relative to other trophoblast cell populations 

(reviewed in 25). There is decreased remodeling of the uteroplacental arteries at the level of 

the basal plate in preeclampsia (26) and at high altitude, although not to the same extent as 

in preeclampsia. Increased vascularity (27) or a more tortuous and dense distribution of 

blood vessels at the level of the maternal myometrium is observed in preeclampsia, and in 

high altitude placentas (28). In contrast increased fibrin deposition and other evidence of 

syncytial damage is common in preeclampsia, but consistently decreased at high altitude 

(25). Placental expression of markers of hypoxia, such as erythropoietin receptor (29) and 

sFlt-1 (30) are increased at high altitude and/or in preeclampsia. Global profiles of gene 

expression were similar in placentas exposed to high altitude hypoxia, preeclampsia at sea 

level and term placental explants cultured under 3% oxygen conditions (31) (Figure 2). 

Confirmation of the changes in a number genes by Soleymanlou and colleagues (qPCR) 

indicated that the high altitude placenta retains an immature phenotype (consistent with 

lower oxygen tension) relative to the low altitude placenta. There is increased expression of 

Integrin alpha6, a marker of immature trophoblast phenotype, and increased markers of 

proliferation and hypoxia (e.g. VEGF). These molecular data are consistent with the 

morphological data (increased cytotrophoblast and vascular development). Correlation 

between the gene expression profiles demonstrated in Figure 2 was strong in preeclampsia 

versus high altitude (r=.5, p<.001), and greater still in preeclampsia versus term explants 

cultured under 3% oxygen (r=.6, p<.001) (31). There is thus good evidence to support the 

involvement of hypoxia in preeclampsia. However, hypoxia is neither necessary nor 

sufficient to cause preeclampsia. A doubling of the incidence at high altitude in the absence 

of differences in epidemiological risk factors indicates that hypoxia increases risk, but other 

factors must come into play in orderto tip one individual versus another over her particular 

tolerance into the preeclampsia syndrome. This is where the high altitude model is of special 

utility.

3. ALTITUDE AND ETIOLOGICAL MODELS OF PREECLAMPSIA

3.1. Etiological model #1 - Reduced blood flow

The idea that placental ischemia or hypoxia ‘causes’ preeclampsia has a long and 

contentious history. Beker, in 1929, wrote that ‘an inadequate blood supply to the uterus may 
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be the cause of toxaemia’ (32). Browne and Veall countered, in 1953, that ‘placental 

ischemia is the result, and not the cause of hypertension in toxaemia’ (33), a theory modified 

by Clemetson, who proposed that reduced or slowed cord blood flow causes fetal hypoxia 

(markedly lower umbilical artery PO2) and this in turn causes placental ‘hypoxia’ via the 

blood return through the umbilical arteries to the placental circulation (34). To date, the 

chicken and egg question of whether decrement in blood flow precedes the onset of 

symptoms remains contentious.

A majority of investigators believe impaired placental invasion of the maternal vasculature, 

possibly due to fetoplacental-maternal immuno-incompatibility (35), or to aberrant oxygen 

sensing (12, 36) is the primary initiating factor in the disease and ‘causes’ the reduced blood 

flow and resultant placental hypoxia (Figure 1). Table 1 summarizes the relevant 

publications on uteroplacental blood flow in normal and pathological human pregnancy. 

While many clinicians feel that uteroplacental blood flow cannot be reliably or accurately 

measured, data across 50 years and multiple techniques converge on an average blood flow 

of ~700 ml/min in late pregnancy. The ranges in Table 1 are noteworthy; normotensive 

women without complications have blood flows that could overlap with those noted in 

preeclampsia (Table 1), suggesting lowered blood flow alone is not causal in preeclampsia.

The underlying cause of reduced blood flow in preeclampsia is thought to be a relative 

failure of trophoblast to fully invade and remodel the maternal spiral arteries (37–43). 

Abnormal Doppler findings correlate with other placental morphological characteristics, 

such as reduced tertiary branching of the villous vascular tree, that would logically be 

associated with reduced blood flow or intermittent ischemia (13, 19, 40). We examined the 

decidual ends of uteroplacental arteries in placentas from high (3100 m) vs. low (1600 m) 

altitude. We found that while individually variable, remodeling was absent in 67% of all 

arteries examined in the high altitude placentas vs. 27% of the arteries examined in low 

altitude placentas (28). The latter contrasts with findings using the same technique at sea 

level, wherein 100% of arteries from normal placentas were remodeled (26). Other studies 

suggest that a gradient of remodeling is a much more likely scenario in normal human 

placentas (38). Thus there may be exquisite sensitivity of the trophoblast to oxygen tension 

such that even very small differences in tissue PO2 can effect the invasion process. To that 

end, a number of investigators are now testing their in vitro models across a range of oxygen 

concentrations, e.g. 1–8%, which would likely reflect the high and low extremes of blood 

circulating in the intervillous space near term (44–46).

The high altitude data are consistent with a variety of studies indicating that failed 

remodeling contributes to reduced uteroplacental blood flow. But there are nonetheless 

troubling inconsistencies in the data. The occurrence of placental ischemia (<50% reduction 

in blood flow) without hypertension or IUGR is noted in the literature (reviewed in Table 1). 

A small subset of women have impaired trophoblast invasion of the maternal spiral arteries, 

but develop neither preeclampsia nor IUGR, while other subsets of women have impaired 

invasion and develop IUGR, but not preeclampsia (37, 39, 42). Moreover having normal 

resistance indices does not necessarily mean that blood flow is normal. We found no 

evidence for increased vascular resistance in the uterine artery at high altitude, despite the 

relative lack of uteroplacental arterial remodeling, and despite lower uterine blood flow (47). 
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Another study at even greater altitude (4300 m) found lower vascular resistance in the 

uterine artery (48). This means that resistance does not directly translate into volumetric 

flow: there can be a marked reduction in overall uteroplacental blood flow, which would 

reduce both oxygen and substrate delivery, without any obvious differences in resistance. In 

summary, with caveats regarding indirect measures of blood flow, the literature on 

preeclampsia and from high altitude are consistent in showing that reduced blood flow is 

present more often than in normal pregnancy. It seems reasonable to infer that reduced 

uteroplacental blood is not sufficient to produce the disease, but that reduced blood flow 

may increase the risk for development of preeclampsia in women who are otherwise 

susceptible.

3.2. Etiological model #2 - Circulating factors of placental origin

The idea that the hypoxic/ischemic or otherwise stressed placenta produces something toxic 

to the mother (toxaemia) is also a theory with a long history. Even the idea that oxidative 

mechanisms are involved can be traced back as far as 1949, when Thompson & Tickner 

proposed that ‘a mono-amine oxidase in the placenta is inactivated by placental ischemia; 

there is evidence that it can destroy vaso-constrictor amines and thus ischemia may cause 

vasoconstriction’ (49). Innumerable “factors” have since been suggested and tested (50, 51). 

Today’s equivalent of yesterday’s abnormal coagulation cascade is the angiogenic growth 

factors (reviewed in this volume), currently under scrutiny as a causal culprit (52). However 

it is worth noting that without exception, no circulating factor has ever been found where the 

ranges reported in preeclampsia do not overlap with those of normotensive women. 

Similarly, in those studies wherein serial samples were collected and retrospectively 

analyzed for the factor(s) of interest, sensitivity and specificity have not attained a 

consistency that would permit clinical use. Factors that do change prior to the onset of 

hypertension and other symptoms also overlap with the ranges observed in women who 

remain normotensive.

In this respect the data from high altitude are still being explored. We have shown greater 

maternal circulating concentrations and placental expression of the circulating anti-

angiogenic growth factor sFlt-1 (30), favored as a potential cause of endothelial dysfunction 

(53). We have also shown greater expression of placental VEGF and circulating total VEGF 

(31, 54) at high altitude. However, additional data indicate that a significant portion of the 

sFlt-1 (and VEGF) measured in serum may actually be of platelet or other circulating cell 

origin. This means the circulating concentrations reported often reflect variation in sample 

collection and storage as opposed to reflecting the in vivo circulatory state (55–57). How 

local platelet or other circulating cells’ secretion of growth factors or cytokines may 

influence the development of preeclampsia is a difficult area of study, but one that merits 

greater attention (58–61). It is at least possible that our collective failure to find “the” 

circulating factor of placental origin that causes preeclampsia is first, that no single factor 

exists, and second, that virtually all the circulating factors reported to date as being 

“associated” with preeclampsia, whether prior to or during the course of the disease, are 

released (or not) to a variable degree after the blood has been collected. They therefore may 

reflect risk or susceptibility, but not the true “in vivo” circulating milieu. This would account 
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for the lack of consistency between studies, and the substantial overlap that exists between 

what is observed in preeclampsia vs. normotensive pregnancy.

Nonetheless, one of the breakthroughs in theoretical models of preeclampsia was the idea 

that the plethora of symptoms, along with the inter-individual variability in symptoms, might 

be accounted for by a systemic dysfunction localized to a cell type as opposed to specific 

organ, i.e. disruption of the vascular endothelium (62). With respect to markers of 

endothelial cell activation or dysfunction, the circulating factors that have been studied thus 

far in high altitude pregnancy (other than sFlt-1 and total VEGF) are pro-versus anti-

inflammatory cytokines, and endothelial cell adhesion molecules.

Increased Th1 (pro-inflammatory) cytokine activity in pregnancy is associated with 

preeclampsia (63–66). More proinflammatory cytokines are produced by lymphocytes from 

preeclamptic women than from women with normal pregnancies (67–69). This again 

emphasizes the idea that no one circulating factor is really important. Rather, local release of 

factors that interact with the endothelium, potentially escalating the cascade of preeclampsia 

symptoms, are more important. We found that maternal circulating concentrations of the 

pro-inflammatory cytokines IL-6, TNF-alpha, and IL-8 were all elevated late in normal 

pregnancy in women residing at high altitude, but did not differ even marginally in the non-

pregnant state. The same subjects failed to increase their levels of anti-inflammatory (Th-2) 

IL-10 during pregnancy, causing a marked reduction in circulating concentrations relative to 

low altitude controls that was most pronounced in the third trimester when pregnancy 

complications develop (70). We suspect that the overall profile of cytokine production 

during pregnancy at high altitude is altered by sympathoadrenal activation secondary to the 

interaction of hypoxia and pregnancy (a general stress, see the section on vascular reactivity 

below). Alternatively, altered cytokine production or degradation may reflect underlying 

mechanisms that contribute both to the observed alterations in circulating concentrations, 

and to the development of preeclampsia, without one necessarily causing the other.

Elevation of pro-inflammatory cytokines such as IL-6 have been linked with an increase in 

circulating concentrations of endothelial cell adhesion molecules in preeclampsia (71). We 

investigated circulating concentrations of vascular cell adhesion molecule (VCAM-1), E-

Selectin and platelet-endothelial cell adhesion molecule (PECAM). Not only were none of 

these circulating markers elevated relative to low altitude (71) but VCAM-1 was reduced at 

high compared with low altitude in normal pregnancies (72). The discordance between our 

findings at high altitude and in preeclampsia suggests that placental hypoxia is unlikely to be 

the cause of elevated circulating VCAM-1 concentrations in preeclampsia. Likewise, since 

prior data link an increase in pro-inflammatory cytokines with elevated VCAM-1 in 

preeclampsia, the high altitude data suggest that increased inflammation does not necessarily 

increase endothelial cell adhesion molecules under in vivo conditions of hypoxia. Insofar as 

these limited data permit us to infer, endothelial cell activation does not seem to be a 

generalized effect of maternal hypoxemia, or of mild placental hypoxia, and therefore may 

be uniquely associated with the pathophysiology of preeclampsia.
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3.3. Etiological model #3 - Placental oxidative stress

In this theoretical model (Figure 1) there is an imbalance between the cellular generation of 

reactive oxygen species (ROS) and the capacity of anti-oxidants to prevent oxidative 

damage. This has been suggested as playing a pivotal role in preeclampsia (reviewed in 73). 

In this etiological model, placental oxidative stress is often considered as the event 

precipitating the increased placental apoptosis observed in preeclampsia (74–76). Increased 

apoptosis, in turn, is thought to increase the deportation of apoptotic syncytiotrophoblast 

fragments (STBMs) into the maternal circulation, and, for reasons that are not clear, such 

fragments are not cleared by the lungs as in normal pregnant women, and circulate in the 

mother. These fragments then increase inflammatory stress and endothelial cell damage (77). 

The oxidative stress model has both a maternal and a placental component. The maternal 

model suggests that reduced anti-oxidants (e.g. vitamins A, C, and E) in the mother increase 

her placental/endothelial susceptibility to oxidative stress, while the placental model argues 

that the placenta’s ability to buffer oxidative stress is either diminished or overwhelmed. The 

high altitude data can thus far address only the placental model. Antioxidant enzymes are 

markedly reduced in preeclamptic placentas (78) and oxidative stress is therefore increased 

(Table 2). Some studies show that there are compensatory mechanisms for oxidative stress in 

preeclamptic placentas (79) while others show specific defects that could limit the placenta’s 

ability to cope with normal levels of oxidative stress or which would contribute to unusually 

high burdens of oxidative stress (80, 81). Along with oxidative stress is increased nitrative 

stress (82), specifically of the syncytiotrophoblast and this too, is thought to contribute to 

increased apoptosis. Table 2 summarizes the results generated from the same laboratory with 

respect to preeclampsia and gestational age-matched controls (78) and normal pregnancies at 

high altitude versus low altitude (83). Clearly high-altitude placentas are similar to 

preeclamptic placentas in having a diminished anti-oxidant capacity, but unlike 

preeclampsia, they show no evidence of increased lipid peroxidation or protein 

carbonylation (Table 2). Lipid peroxidation is reduced by 47% in high-altitude relative to 

low-altitude placentas, and thus increased oxidative stress in preeclamptic placentas is 

unlikely to be due to chronic mild hypoxia. Moreover, we evaluated apoptosis in the high 

versus low altitude placentas (83), and there was no difference between altitudes; the values 

obtained were similar to other published data using similar techniques (84). Surprisingly, 

given the lack of lipid peroxidation and protein carbonylation in the high altitude placentas, 

we found that there were increased nitrotyrosine residues in the syncytiotrophoblast, a 

feature that has been consistently reported in preeclampsia (75). Thus the primary 

conclusion of these studies was that hypoxia does not necessarily increase oxidative stress, 

nor apoptosis. A second conclusion was that hypoxia may increase nitrative stress, likely via 

increased nitric oxide scavenging of oxygen radicals, but increased nitrative stress does not 

appear to contribute to apoptosis (83). Again, these data suggest that mechanisms other than 

lowered tissue PO2 contribute to the increased oxidative stress observed in preeclampsia.

3.4. Etiological model #4 - Altered vascular sensitivity

Altered vascular responsiveness in preeclamptic women began to be investigated in the 

1950s (85–87). The seminal publication in 1973 by Norman Gant, in which primigravid 

adolescents showed an increased vasopressor response to angiotensin II long before the 

onset of symptoms (88) further promoted the idea that an underlying, perhaps constitutional 
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aberration in vascular sensitivity is present in women predisposed to develop preeclampsia. 

While compelling, this idea is hampered by the fact that the rate of repeat preeclampsia in 

subsequent pregnancies is only ~30%; the increased incidence of the disease in primiparous 

women argues against a constitutional predisposition of any great impact. Instead vascular 

sensitivity may vary from pregnancy to pregnancy, even within the same woman, due to the 

interaction of other pregnancy-related physiological changes. A substantial literature 

supports that human pregnancy is characterized by attenuated systemic vascular response to 

a number of pressor agents, as well as enhanced response to vasodilators, which contributes 

to the fall in systemic vascular resistance that, in turn, facilitates the normal increase in 

cardiac output and redistribution of blood flow to favor the uteroplacental circuit (88–92). 

But this varies considerably from individual to individual.

Enhanced pressor and systemic vascular resistance response to not only angiotensin II, but 

also catecholamines are noted in hypertensive pregnancy (87, 93, 94). Circulating 

norepinephrine and epinephrine levels correlate with elevated blood pressure, reduced 

plasma volume and elevated heart rate in preeclamptic, but not normotensive pregnant 

women (94). Directly measured sympathetic neural outflow (muscle sympathetic nerve 

activity) is greater in women who develop preeclampsia (95, 96). Moreover a preeclampsia 

like syndrome can be induced in animals by inducing sympathetic over-reactivity (97), and 

eclamptic seizures can occur in preeclamptic women given anticholinergics (98). These data 

imply that diminution of para-sympathetic activity potentiates an already hyper-reactive 

sympathetic vascular stimulation -one which may be constitutional or pregnancy-induced. 

This particular theory concerning the etiology of preeclampsia waxes and wanes in 

popularity. Nonetheless the evidence for SNS dysregulation and an exaggerated stress 

response in preeclampsia is too great to simply ignore the possibility (95, 99–103). Taken 

together, the data support that alpha-sympathetic activity in preeclamptic women is 

enhanced compared with normal pregnant women. The high altitude-data support that SNS 

activity may contribute to an increased risk for the disease. Urinary excretion of 

catecholamines was elevated in pregnancy at high altitude (70). Altitude-associated 

differences in both norepinephrine and epinephrine were most pronounced early in 

pregnancy (46% and 109% greater, respectively), although even non-pregnant values were 

37% (norepinephrine) and 47% (epinephrine) greater among the high altitude women.

The idea that altered vascular reactivity is present in high altitude pregnancy has been 

vigorously pursued in a series of animal studies by several different laboratories (see the 

excellent review in 8). Taken together the data suggest that there is altered vascular reactivity 

in pregnancy at high altitude that favors increased vasoconstrictor over vasodilator 

responses. Increasingly sophisticated methods to explore the effects of shear stress, 

intraluminal pressure and other variables are being systematically applied to pregnancy- 

related vascular reactivity under conditions of normoxia and hypoxia (104–106). But the 

importance of altered vascular reactivity is central to each of the 3 hypotheses evaluated in 

sections 3.1–3.3 above, and may be the underlying correlate of the numerous alterations in 

maternal physiology present in high altitude pregnancy. These physiological studies are 

summarized in Table 3. The take-home message of the human data (reviewed in 10) is that 

maternal physiological adjustment to pregnancy is altered under conditions of chronic mild 
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hypoxemia to a state that is intermediate between normal pregnancy and preeclampsia. The 

underlying cause of such systemic alterations can only be vascular.

4. CONCLUSIONS AND PERSPECTIVES

These 4 broad theories, reduced blood flow, circulating factors, placental oxidative stress 

and altered vascular function, are, of course, related and subject to numerous permutations in 

terms of the direction of causal arrows shown in Figure 1. The natural experiment of 

voluntary residence at high altitude clearly supports the idea that multiple systems are 

involved in preeclampsia. It also supports that while extremes of variation may be present in 

one individual’s measurements, there is virtually always overlap with the normal range when 

a large enough population is considered. The question that remains to be answered is if there 

is a single cause, or a final common pathway by which preeclampsia is induced, why would 

it be more common at high altitude? This rhetorical question implies the answer - there 

cannot be a single cause. Rather, the likely explanation for the link between maternal 

hypoxemia and an increased risk for preeclampsia lies in the impact of hypoxia on multiple 

physiological systems (Figure 3, Table 3). In this model it is not just one effect of hypoxia 

that ‘causes’ preeclampsia, rather it is the impact of hypoxia on several important 

adjustments to pregnancy that shifts the general population risk such that more women 

eventually develop the disease (Figure 3). In the model presented in Figure 3, we suggest 

that most physiological variables have a normal distribution, and that perturbation of the 

environment (e.g. by lowered oxygen pressure) can shift a greater proportion of individuals 

into a higher risk category for the development of a disease such as preeclampsia. None of 

the variables discussed above and listed in Tables 2 or 3, are sufficient to cause 

preeclampsia. Rather they are correlates of the disease, not markers of a single underlying 

cause, but far more likely to represent the range of variability present in human pregnancy. 

Altitude simply shifts the risk.
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Figure 1. 
Individual susceptibility is a prominent contributor to the development of preeclampsia; 

obesity, variation in thresholds for inflammatory response, vascular sensitivity, insulin 

sensitivity or other characteristics can contribute to increased susceptibility. At the top of the 

model we show that impaired trophoblast invasion is a common feature of the disease, and 

while as yet the cause of impaired invasion is unknown there is good evidence to support 

disrupted oxygen sensing and immunological interactions as playing a role (these issues are 

reviewed elsewhere in this volume). At high altitude trophoblast invasion is impaired and 

uterine blood flow is reduced. This review considers how these two observations may 

translate into specific features of preeclampsia, such as placental oxidative stress, altered 

production of growth factors and increased vascular responsiveness
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Figure 2. 
Shown here are the results of microarray analysis of pooled placental samples from term 

explants cultured under 3% oxygen, preeclamptics, high altitude, age-matched controls for 

the preeclamptic patients and low altitude controls for the high altitude patients. This 

analysis is based on self-organizing maps. Of the 1700 genes represented on the microarray 

plate, areas of increased gene expression are shown in red and areas of decreased gene 

expression are shown in blue. The methodological details of the analysis, the results from a 

targeted analysis of the maximally different areas of these microarrays, the list of individual 

gene differences and the validation of differences in selected individual genes between 

altitude, explants, preeclampsia and controls are in reference 31. This figure is reprinted here 

to highlight the broad similarity in the pattern of gene expression between the in vitro and in 
vivo models of placental hypoxia (3% O2, preeclampsia and high altitude) and their 

divergence from the controls (AMC at sea level and low altitude). Reprinted by permission 

from 31.
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Figure 3. 
Model for how chronic mild hypoxemia due to high-altitude residence, operating on 

multiple maternal physiological characteristics, may right-shift the population-wide risk of 

preeclampsia.
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